首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A Hart  J B Balinsky 《Enzyme》1985,34(4):186-195
The administration of hydrocortisone to 3- to 15-day-old rats increased the levels of hepatic argininosuccinate synthetase (ASS) and arginase. In 13-day-old rat liver explants maintained in organ culture, ornithine carbamoyltransferase (OTC), carbamoylphosphate synthetase (CPS) and arginase were stimulated by betamethasone. Actinomycin D prevented the responses of the latter two enzymes. Dibutyryl cyclic AMP raised OTC, CPS, ASS and arginase in vitro. The responses of the latter three enzymes were blocked by cycloheximide and puromycin and partially inhibited by actinomycin D. The simultaneous presence of betamethasone and dibutyryl cyclic AMP in the culture medium raised CPS and OTC in an additive manner. The sequential treatment of the cultures with betamethasone followed by dibutyryl cyclic AMP increased CPS and arginase synergistically and amplified the response of ASS to dibutyryl cyclic AMP.  相似文献   

2.
1. The administration of triamcinolone (19-190mug/animal) to postnatal rats increased the arginine synthetase system activity 1.2-2.5-fold above control values 24h after exposure to the hormone. Cortisol (hydrocortisone), however, increased the arginine synthetase system activity only when larger (190mug/animal) or repeated daily doses were given. Glucagon (100mug/animal) stimulated arginine synthetase system activity only after the second postnatal day. None of these agents increased the activity in 19.5-21.5-day foetuses after intrauterine administration. 2. The viability of foetal rat liver explants maintained in organ culture for up to 54h was validated both by ultramicroscopic examination and by incorporation of radioactive leucine and orotic acid. 3. In organ cultures of foetal rat liver explants (18.5 days to term), triamcinolone (20mug/ml of medium) evoked a 2.8-4.3-fold increase after 24h of incubation. This increase was completely inhibited by actinomycin D (25mug/ml) or cycloheximide (10mug/ml). Cortisol (5-50mug/ml) or glucagon (0.067-67mug/ml) also increased the arginine synthetase system activity above the respective control values, but there was no increase in activity with insulin (0.05-0.25i.u./ml). 4. Maximum concentrations of glucagon (67mug/ml), dibutyryl cyclic AMP (6-N,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate) (0.1mm) and triamcinolone (20mug/ml) incubated for 24h with foetal rat liver explants each produced between a two-and three-fold increase in the activity of the arginine synthetase system. Combinations of maximum amounts of glucagon and the cyclic nucleotide did not produce a greater effect than either agent alone. However, the combination of dibutyryl cyclic AMP with triamcinolone appeared to produce somewhat less than additive effects. 5. The effects of the cyclic nucleotide and triamcinolone were evident after 12h of incubation and increased steadily throughout the 24h of observation. This time-course of increased enzyme activity is very much slower than that reported for the induction of other enzymes in explant cultures of foetal rat liver.  相似文献   

3.
4.
1. The activities of enzymes of the urea cycle, carbamoyl phosphate synthetase, ornithine transcarbamoylase, argininosuccinate synthetase, argininosuccinase (the last two comprising the arginine synthetase system) and arginase, were measured in the liver during development of the rat. All five enzymes exhibited relatively low activities in foetal liver and a rapid postnatal increase was found. The rate-limiting enzyme of urea synthesis in the rat, the condensing enzyme of the arginine synthetase system, showed the lowest activity at birth and the most rapid postnatal increase, a fivefold increase within 24hr. after birth. A second increase of activity was noted after the tenth day. These results suggest that the postnatal increase of arginine synthetase activity initiates the ability for urea synthesis in the rat. 2. Some factors influencing the development of the rate-limiting arginine synthetase system were studied in more detail. (a) Intraperitoneal administration of puromycin inhibited the postnatal increaseof the enzyme activity. (b) Starvation of newborn animals for 24hr. after birth had no effect on the postnatal development of the enzyme. (c) Bilateral adrenalectomy at birth caused a marked diminution in the postnatal increase of the enzyme activity and injections of triamcinolone were effective in preventing the effect of adrenalectomy. (d) Administration of triamcinolone alone had a marked stimulatory effect on the postnatal development of this enzyme. (e) Premature and postmature birth had virtually no effect on the developmental pattern of the arginine synthetase activity, suggesting that the increase of this enzyme activity after birth is not initiated by the birth process.  相似文献   

5.
Hormonal regulation of glycogen metabolism in neonatal rat liver   总被引:5,自引:3,他引:2  
1. The development of active and inactive phosphorylase was determined in rat liver during the perinatal period. No inactive form could be found in tissues from animals less than 19 days gestation or older than the fifth postnatal day. 2. The regulation of phosphorylase in organ cultures of foetal rat liver was examined. None of the agents examined [glucagon, insulin or dibutyryl cyclic AMP (6-N,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate)] changed the amount of phosphorylase activity. 3. Glycogen concentration in these explants were nevertheless decreased more than twofold by 4h of incubation with glucagon or dibutyryl cyclic AMP. Incubation with insulin for 4h increased the glycogen content twofold. 4. Glycogen synthetase activity was examined in these explants. I-form activity (without glucose 6-phosphate) was found to decrease by a factor of two after 4h of incubation with dibutyryl cyclic AMP, whereas I+D activity (with glucose 6-phosphate) remained nearly constant. Incubation for 4h with insulin increased I-form activity threefold, with only a slight increase in I+D activity. 5. When explants were incubated with insulin followed by addition of dibutyryl cyclic AMP, the effects of insulin on glycogen concentration and glycogen synthetase activity were reversed. 6. These results indicate that the regulation of glycogen synthesis may be the major factor in the hormonal control of glycogen metabolism in neonatal rat liver.  相似文献   

6.
The allylisopropylacetamide-induced increase of δ-aminolevulinate synthetase in the rat liver was significantly reduced when any one of glucose, ATP, cyclic 3′,5′-AMP, dibutyryl cyclic 3′,5′-AMP, theophylline, insulin, or glucagon was given to rats simultaneously with the administration of allylisopropylacetamide. Administration of these substances to the rats not given allylisopropylacetamide resulted in decrease in enzyme activity in the liver. However, when these substances were given to rats after an intensive induction had commenced, the level og δ-aminolevulinate synthetase in the liver cytosol increased greatly, while the enzyme level in the mitochondria decreased markedly, so that the increase in the total activity of δ-aminolevulinate synthetase in the liver was not appreciably reduced except that the total activity in the glucose-treated rats was considerably lower than that in the control rats. Moreover, the half-life of the δ-aminolevulinate synthetase in cytosol was much longer when rats were given dibutyryl cyclic AMP. These findings are quite similar to those observed after the administration of hemin to rats treated or untreated with allylisopropylacetamide and suggest that these substances, as well as hemin, inhibit in some way both the induction of δ-aminolevulinate synthetase and the conversion of the cytosol δ-aminolevulinate synthetase to the mitochondrial δ-aminolevulinate synthetase. Dibutyryl cyclic AMP and glucagon were effective even in alloxan-diabetic rats, suggesting that the effects of cyclic AMP and glucagon may not be mediated by insulin.  相似文献   

7.
C V Byus  D H Russell 《Life sciences》1974,15(11):1991-1997
The administration of aminophylline results in rapid increases in cyclic AMP in the adrenal medulla, adrenal cortex, liver, and kidney of the rat. The injection of theophylline results in a similar increase in cyclic AMP in the liver of the rat. In all instances, these increases are followed by 4- to 2-fold elevations of ornithine decarboxylase activity. The generality of this phenomena suggests that ornithine decarboxylase activity is regulated by an increase in cyclic AMP.  相似文献   

8.
Arginine is an intermediate in the elimination of excess nitrogen and is the substrate for nitric oxide synthesis. Arginine synthesis has been reported in brain tissue. We have studied the activity of the arginine biosynthetic enzymes argininosuccinate synthetase and argininosuccinate lyase in dexamethasone and/or dibutyryl cyclic AMP treated rat astrocyte cultures. Argininosuccinate lyase activity was stimulated by treatment with either effector and an additive effect was obtained when both agents were added simultaneously. Argininosuccinate synthetase was also increased in dexamethasone treated astrocytes. The effect of dibutyryl cyclic AMP on argininosuccinate synthetase was variable, suggesting a role for additional factors in its regulation as compared to argininosuccinate lyase. Regulation of arginine synthesis in astrocytes may be important to insure that arginine is not limiting for nitric oxide synthesis in neural tissue.  相似文献   

9.
In adult rat liver, amounts of the urea cycle enzymes are regulated by diet, glucocorticoids, and cAMP. Rat hepatocytes cultured in chemically defined medium were used to precisely define the roles of glucocorticoids and cAMP in regulation of these enzymes at the pretranslational level. With the exception of ornithine transcarbamylase mRNA, cultured rat hepatocytes retain the capacity to express mRNAs for the urea cycle enzymes at the same level observed for liver of intact rats. In the absence of added hormones, mRNAs for argininosuccinate synthetase and argininosuccinate lyase remained at or above normal in vivo levels, while mRNAs for the other three enzymes declined to very low levels. Messenger RNAs for carbamyl phosphate synthetase I, argininosuccinate synthetase, argininosuccinate lyase, and arginase increased in response to either dexamethasone or 8-(4-chlorophenylthio) cAMP (CPT-cAMP). Half-maximal responses occurred at 2-3 nM dexamethasone and at 2-7 microM CPT-cAMP. Cycloheximide abolished the response to dexamethasone but not to CPT-cAMP, suggesting that dexamethasone induced expression of an intermediate gene product required for induction of these mRNAs. The effects of a combination of both hormones were additive for argininosuccinate lyase mRNA and synergistic for carbamyl phosphate synthetase I, argininosuccinate synthetase, and arginase mRNAs. Messenger RNA for ornithine transcarbamylase showed little or no response to any condition tested. Depending on the particular mRNA and hormonal condition tested, increases in mRNA levels ranged from 1.4- to 70-fold above control values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Arginine is an intermediate of the urea cycle in the liver. It is synthesized by the first four enzymes of the cycle, carbamylphosphate synthetase I, ornithine transcarbamylase, argininosuccinate synthetase, and argininosuccinate lyase, and is hydrolyzed to urea and ornithine by arginase I, forming the cycle. In endotoxemia shock, inducible nitric oxide (NO) synthase (iNOS) is induced in hepatocytes and arginine is utilized for NO production. Regulation of the genes for iNOS and the urea cycle enzymes was studied using lipopolysaccharide (LPS)-treated rat livers. When rats were injected intraperitoneally with LPS, iNOS mRNA was markedly induced. Cationic amino acid transporter-2 and C/EBPbeta mRNAs were also highly increased. In contrast, mRNAs for all the urea cycle enzymes except ornithine transcarbamylase were gradually decreased and reached 16-28% of controls at 12 h. However, all these enzymes remained unchanged at protein level up to 24 h. In light of these results, we suggest that synthesis of urea cycle enzymes is downregulated and that the protein synthetic capacity is directed to synthesis of proteins required for defense against endotoxemia.  相似文献   

11.
12.
1. The activities of enzymes of the urea cycle [carbamoyl phosphate synthetase, ornithine transcarbamoylase, argininosuccinate synthetase, argininosuccinase (these last two comprising the arginine-synthetase system) and arginase] have been measured in control, alloxan-diabetic and glucagon-treated rats. In addition, measurements were made on alloxan-diabetic rats treated with protamine–zinc–insulin. 2. Treatment of rats with glucagon for 3 days results in a marked increase in the activities of three enzymes of the urea cycle (carbamoyl phosphate synthetase, argininosuccinate synthetase and argininosuccinase). The pattern of change in the alloxan-diabetic group is very similar to that of the glucagon-treated group, although the magnitude of the change was much greater. 3. Comparison was made of the actual and potential rate of urea synthesis in normal and diabetic rats. In both groups the potential rate of urea production, as measured by the activity of the rate-limiting enzyme, argininosuccinate synthetase, slightly exceeds the actual rate of synthesis by liver slices in the presence of substrates. The relative activities of the actual and potential rates were similar in the two groups of animals, this ratio being 1:0·70. 4. In the alloxan-diabetic rats treated with protamine–zinc–insulin for 2·5 or 4 days there was a marked increase in liver weight. This was associated with a rise in the total hepatic activity of the urea-cycle enzymes located in the soluble fraction of the cell (the arginine-synthetase system and arginase) after 2·5 days of treatment. After 4 days of treatment the concentration of these enzymes/g. of liver decreased, and the total hepatic content then reverted to the untreated alloxan-diabetic value. 5. No effects of glucagon or of insulin in vitro could be found on the rate of urea production by liver slices. 6. The present results are discussed in relation to how far this pattern of change is typical of conditions resulting in a high urea output, and comparison has been made with other values in the literature.  相似文献   

13.
In order to establish if the urea found in foetal fluids in sheep could be of foetal origin and whether there are changes in the ability of ovine liver to synthesise urea during foetal and postnatal development, the rates of urea production from ammonium and bicarbonate ions have been measured in liver and kidney slices from animals aged from 50 days conceptual age to 16 weeks after birth, and in pregnant and non-pregnant ewes. The activities of five enzymes directly involved in the biosynthesis of urea have also been determined.Urea was found to be synthesised by foetal liver from at least 50 days conceptual age at rates similar to those observed in adult ewes. Highest rates of urea synthesis per unit weight of liver were found immediately after birth. In the liver there were significant positive correlations between the rates of urea synthesis by slices and the activities of carbomoyl phosphate synthase (ammonia) (EC 2.7.2.5), argininosuccinate synthetase (EC 6.3.4.5) and argininosuccinate lyase EC 4.3.2.1). Ornithine carbomoyl transferase (EC 2.1.3.3) activity was highest in the livers of ruminating animals. Hepatic arginase activity (EC 3.5.3.1) was highest during the late foetal life and in the mature foetuses the activity was ten-fold greated than that in maternal liver.Urea was not synthesised from ammonia and bicarbonate in kidney slices and neither ornithine carbomoyl transferase activity nor argininosuccinate synthetase activity could be detected. The activity of renal arginase was at least 70 times less than that found in the liver and the highest activity was found in ruminating lambs.The changes observed in the activities of the urea cycle enzymes during development have been contrasted with those reported to occur in other species. It is concluded that there is no single factor regulating the activities of the five enzymes directly concerned with urea synthesis during development. The results support the hypothesis that in mammals the ability of the liver to synthesise urea in foetal life is related to renal development.  相似文献   

14.
The role of cyclic AMP in the regulation of hepatic ornithine decarboxylase (ODC) activity in the rat was studied in the whole animal and in the perfused organ. Dibutyryl cyclic AMP or butyrate given to intact rats increased ODC activity; this increase was abolished by hypophysectomy 1 h prior to administering ether compound. Administration of 1 mg 1-methyl-3-isobutylxanthine (MIX) to intact rats increased ODC activity within 4 hours whereas hypophysectomy 1 h before treatment prevented this increase. No change in hepatic cyclic AMP content was seen in either intact or hypophysectomized rats following MIX. Perfusion with 0.5 mM dibutyryl cyclic AMP decreased ODC activity in isolated livers whereas perfusion with 0.5 mM 8-bromocyclic GMP produced a small increase in ODC activity. These data suggest that the effect of dibutyryl cyclic AMP in intact animals may be a property of the butyrate and that this action as well as the action of MIX may be mediated through the permissive effect of pituitary and/or adrenal hormones. The normal hepatocyte does not increase its ornithine decarboxylase activity after direct exposure to dibutyryl cyclic AMP.  相似文献   

15.
The activity changes of the urea-cycle enzymes were monitored in cultured foetal hepatocytes after dexamethasone and insulin treatments. Addition of dexamethasone induced the development of carbamoyl-phosphate synthetase, argininosuccinate synthetase, argininosuccinase and arginase activities as soon as day 16.5 of gestation. When insulin was added together with dexamethasone, it markedly inhibited the steroid-induced increase in carbamoyl-phosphate synthetase, argininosuccinate synthetase and argininosuccinase activities.  相似文献   

16.
At the 18th day of gestation and thereafter foetal rat liver explants in organ culture showed the competence to respond to dexamethasone by increased cystathionase activity, whereas the ability to respond to dibutyryl cyclic AMP or glucagon became evident at a later developmental stage (during the last 2 days prior to term). Simultaneous incubation with cycloheximide inhibited the stimulatory effect of these agents on foetal rat liver cystathionase activity in vitro. Dexamethasone and glucagon were both capable of increasing liver cystathionase activity both in newborn and 3-day-old animals in vivo.  相似文献   

17.
The sensitivity of 6-phosphofructo-2-kinase to glucagon and cyclic AMP was studied during the perinatal period. In liver homogenates from foetal and neonatal rats, incubation with cyclic AMP produced inactivation of 6-phosphofructo-2-kinase 3 h after birth. The maximal effect was obtained 12 h after birth. In primary cultures of hepatocytes from 22-day-old foetuses, glucogon induced an inhibition of 6-phosphofructo-2-kinase that required 45 min to reach the half-maximal effect. Cycloheximide prevented the glucagon-induced changes in this activity from cultured foetal hepatocytes. These results suggest that the adult form of 6-phosphofructo-2-kinase is rapidly induced after birth, probably by the hormonal changes that occur in this period.  相似文献   

18.
1. Epinephrine-induced increase in rat liver cyclic AMP in vivo was potentiated when the circulating insulin was suppressed by injection of anti-insulin serum or by induction of diabetes. Consequently, phosphorylase was activated, glycogen synthetase was inactivated and glycogen accumulation induced by glucose load was prevented by epinephrine in the insulin-deficient rats to a much larger extent than in normal rats. 2. Insulin lack was effective in potentiating epinephrine-induced increase in liver and muscule cyclic AMP even after the treatment of rats with theophylline; the potentiation could not be solely accounted for by the inhibition of cyclic AMP phosphodiesterase. Thus, it is likely that insulin lack enhaces epinephrine activation of adenylate cyclase. 3. Unlike epinephrine, glucagon increased liver cyclic AMP to essentially the same extent whether the rat was treated with anti-insulin serum or not. 4. Based on the difference in dose-response curves between normal and insulin-deficient rats, a possibility is discussed that there are two adenylate cylase in the liver with higher and lower affinities for epinephrine and that circulating insulin blocks the high affinity enzyme selectively.  相似文献   

19.
I Matsui  S Otani  S Morisawa 《Life sciences》1979,24(24):2231-2236
The administration of biliverdin (0.1mg/g of body weight) into the peritoneal cavity of rats resulted in the induction of ornithine decarboxylase in the liver. When the temporal relationships between the changes in intracellular adenosine 3', 5'-cyclic monophosphate (cyclic AMP) level, cyclic AMP-dependent protein kinase activity and the induction of ornithine decarboxylase were investigated, the concentration of cyclic AMP increased significantly 2 h after the administration of biliverdin, while cyclic AMP-dependent protein kinase was activated after 2–4 h. The hepatic ornithine decarboxylase activity began to increase 4 h after biliverdin injection. These results suggest that there is some sequential relationship between the increase of cyclic AMP, the activation of cyclic AMP-dependent protein kinase and the induction of ornithine decarboxylase although the direct correlation of these three events remains to be elucidated.  相似文献   

20.
1. In the livers of six sheep given a high-protein diet, the concentrations of certain urea-cycle enzymes [ornithine transcarbamoylase, arginine synthetase (combined activity of argininosuccinate synthetase and argininosuccinase) and arginase] were significantly greater than when the sheep were given a low-protein diet. Alkaline phosphatase activity/mg. of liver protein was not significantly affected by diet. 2. Three sheep previously given the high-protein diet showed no significant rise in the concentration of ammonia in the blood after the administration of urea (0·5g./kg. body wt.). The concentration of ammonia in the blood of the three sheep given the low-protein diet rose exponentially with time after dosing with urea and all sheep died. 3. It is suggested that tolerance to ammonia toxicity in the sheep is at least partly a function of the activity of the urea-cycle enzymes in the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号