首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The combination of 1.6 microM 4 beta phorbol, 12 beta myristate, 13 alpha acetate (PMA) and 1 microM A23187 produced a five-fold greater stimulation of rat hepatocyte glycogen phosphorylase activity than was seen with PMA alone. Vasopressin activation of glycogen phosphorylase was comparable to that seen with PMA plus A23187. Glycogen phosphorylase activity due to PMA plus A23187 was increased significantly after 30 sec, maximal at 120 and sustained at elevated levels for 240 sec. In contrast, activation due to vasopressin was maximal at 30 sec followed by a decrease. The addition of PMA 5 min prior to the A23187 abolished the synergism between these two agents. These data are compatible with the hypothesis that diacylglycerol and Ca2+ synergistically increase glycogen phosphorylase activity in rat hepatocytes.  相似文献   

2.
Transplasma membrane electron transport, as assayed by external ferricyanide reduction, has been related to control of growth and hormone response of cells. Elicitor-stimulated transmembrane NADPH oxidase is important for bacteriocidal superoxide production by neutrophils. Since adriamycin is myelosuppressive and can stimulate superoxide production, its effects on the two redox systems of porcine neutrophil plasma membranes were compared. Adriamycin inhibits transplasma membrane ferricyanide and stimulates superoxide production activated by phorbal myristate acetate (PMA). Ferricyanide reduction in PMA-treated cells becomes resistant to inhibition by adriamycin. These results provide evidence for an independent effect of adriamycin on transmembrane ferricyanide reduction and on superoxide generation.  相似文献   

3.
The differential effects of phagocytic and chemical stimuli on neutrophil enzyme and specific protein release were compared. Phorbol myristate acetate (PMA) stimulated release of the specific granule matrix marker, vitamin B-12-binding protein in a dose-dependent manner. Subcellular fractionation by sucrose density gradient centrifugation indicated that the residual vitamin B-12-binding protein is associated with the specific granule fraction. In contrast, neutral α-glucosidase and adenosine diphosphatase, associated with specific granule membranes, were not released by PMA. Subcellular fractionation studies suggest that fusion of the specific granule membrane and plasma membrane occurs, thus translocating the adenosine diphosphatase to the cell surface. The relevance of this finding to the possible role of nucleoside phosphatases in limiting platelet aggregation is discussed. Serum-treated zymosan particles also caused a selective released of vitamin B-12-binding protein from the specific granule without release of α-glucosidase and adenosine diphosphatase. Neither PMA nor opsonized zymosan caused significant release of azurophil, tertiary granule or cytosol marker enzymes.  相似文献   

4.
The expression of GABA(A) receptors in rat cerebellar granules in culture has been studied by beta(2/3) subunit immunocytochemistry and fluorescence confocal microscopy. These cells show labeling all over the cell bodies' plasma membrane and dendrites. Treatment with the protein tyrosine kinase (PTK) inhibitor genistein results in a decrease of the labeling associated with the beta(2/3) subunit in both cell bodies and dendrites. No effect was found with an inactive genistein analogue, daidzein. A similar effect was found with a protein kinase C (PKC) activator, phorbol myristate acetate (PMA). The effects of genistein and PMA are additive.The interpretation of the results is that PTK inhibition blocks exocytotic deposit of newly synthesized GABA(A) receptors onto the neuronal plasma membrane. On the other hand, PKC activation speeds up endocytotic removal of GABA(A) receptors.  相似文献   

5.
In rat hippocampal slices, carbachol and norepinephrine induce an accumulation of [3H]-inositol-1-phosphate which is markedly amplified in the presence of lithium. The tumor-promoting agents phorbol 12,13-dibutyrate (PDB) and 4 beta phorbol, 12 beta-myristate, 13 alpha-acetate (PMA) have no effect on [3H] inositol-1-phosphate accumulation alone, but when preincubated with hippocampal slices significantly inhibit the accumulation of [3H]-inositol-1-phosphate induced by carbachol and norepinephrine. The IC50 values for PDB and PMA are 0.2 microM and 25 microM respectively. In contrast, the weak tumor promoting agents 4-O-methylphorbol 12 myristate 13 acetate (MPMA) and phorbol 13,20-diacetate (P 13,20 DA) only slightly attenuate the agonist-induced response at concentrations less than or equal to 100 microM, whereas 4 alpha-phorbol (4 alpha-PHR), a biologically inactive phorbol, has no effect. These data suggest that phorbol ester receptor-mediated events may be negatively coupled to agonist-induced phosphatidylinositol hydrolysis.  相似文献   

6.
The expression of GABAA receptors in rat cerebellar granules in culture has been studied by β2/3 subunit immunocytochemistry and fluorescence confocal microscopy. These cells show labeling all over the cell bodies' plasma membrane and dendrites. Treatment with the protein tyrosine kinase (PTK) inhibitor genistein results in a decrease of the labeling associated with the β2/3 subunit in both cell bodies and dendrites. No effect was found with an inactive genistein analogue, daidzein. A similar effect was found with a protein kinase C (PKC) activator, phorbol myristate acetate (PMA). The effects of genistein and PMA are additive.The interpretation of the results is that PTK inhibition blocks exocytotic deposit of newly synthesized GABAA receptors onto the neuronal plasma membrane. On the other hand, PKC activation speeds up endocytotic removal of GABAA receptors.  相似文献   

7.
The median and left lateral lobes of rat liver in situ were rendered ischemic for 30 min, then blood flow reinstituted. After 1, 3, 6, 24, or 48 h, livers were removed and set up for isolated perfused organ study. Luminol enhanced chemiluminescence (LEC) was recorded from the surface of the median and left lateral lobes before and for 90 min following phorbol myristate acetate (PMA, 1.6 × 10−8 M) perfusion. An increase in PMA induced LEC was evident at 1 h and continued to increase up to 6 h. By 24 h the magnitude of the PMA response had returned to within control values. This indicates that a large influx of inflammatory cells had occurred in the liver following the in vivo ischemia-reperfusion insult and that these cells were well fixed in the tissue and capable of mounting a very large and sustained burst of radical production on stimulation with PMA. This combined in vivo/in vitro technique is ideally suited for the assessment of interventions designed to ameliorate damage following oxidative stress.  相似文献   

8.
Guinea pig polymorphonuclear leukocytes (PMN) were briefly activated with soluble stimulators such as sodium myristate (SM) or phorbol myristate acetate (PMA) and then disrupted by the nitrogen cavitation method to study the subcellular distribution of NADPH oxidase, which is responsible for O2 - generation. Fc-receptor and 5'-nucleotidase activities were measured as plasma membrane markers. 1) The homogenate was first fractionated by differential centrifugation. The O2- -generating activity of PMN activated either by SM or PMA was recovered in a 2 X 10(4) g pellet which contained a large amount of granules and about 50% of the plasma membrane markers, but not in a 1 X 10(5) g pellet which consisted of plasma membranes and few granules. 2) Further separation of the 2 X 10(4) g pellet from PMA-activated PMN was attempted by an iso-osmotic Percoll density gradient centrifugation. The O2- -generating activity was recovered in light fractions in which plasma membrane markers were found, but neither in specific nor in azurophil granules. The 1 X 10(5) g pellet showed a similar distribution of the plasma membrane markers to that of the 2 X 10(4) g pellet, except that the peak of the O2- -generating activity was much smaller on an identical density gradient. The results showed that NADPH oxidase is located in the plasma membranes precipitated by centrifugation at 2 X 10(4) X g but not in the ones precipitated at 1 X 10(5) X g. The results suggest that the plasma membrane of activated PMN has a mosaic distribution of NADPH oxidase.  相似文献   

9.
用促癌剂佛波酯(PMA)作用于SMMC-7721人肝癌细胞,研究细胞表面的主要粘附分子α5β1整合蛋白基因表达及相应细胞粘附行为的改变.用100nmol/LPMA作用SMMC-7721人肝癌细胞,发现其作用因时间的长短而异,作用30、60、120min分别增加细胞与纤连蛋白(Fn)粘附18.8%、38.7%和56.6%,作用6、12h分别降低44.0%、37.4%,而不影响与多聚赖氨酸的粘附.使用足量的抗α5和/或抗β1单抗预先封闭细胞与Fn的结合点,再将细胞与Fn粘附,发现α5单抗单独使用可将SMMC-7721细胞与Fn的粘附抑制20%左右,β1单抗则抑制14%,两者联合使用时可封闭40%左右的粘附,提示该细胞表面存在除α5β1外的其它整合蛋白在介导着细胞与Fn的粘附.进一步应用Northernblot方法,分析整合蛋白基因表达,发现100nmol/LPMA抑制α5亚基转录,以30min最明显,抑制达83.1%,作用6、12h抑制率仍为46.6%、43.6%.还就PMA影响细胞粘附和整合蛋白基因表达的可能机理作了讨论.  相似文献   

10.
Linoleic acid hydroperoxide (LOOH) is a naturally occurring product of lipid peroxidation. Incubation of rat alveolar macrophages with LOOH produced alterations of membrane properties and function at concentrations of LOOH as low as 0.1 microM. These included phorbol myristate acetate (PMA)-stimulated superoxide production, mitochondrial membrane potential, and plasma membrane potentials. These effects were clearly separated from gross loss of structural integrity as measured by lactate dehydrogenase release, in terms of both time of incubation and concentration of LOOH. PMA-stimulated superoxide production measured 15 min after addition of 10 microM LOOH was inhibited approximately 50%; however, addition of this concentration of the hydroperoxide after PMA stimulation was without effect. Superoxide production was also measured in a cell-free system produced by incubation of alveolar macrophages with sodium dodecyl sulfate. Prior incubation of alveolar macrophages with LOOH, H2O2, or t-butyl hydroperoxide, under conditions that significantly inhibited superoxide production by the intact cells, did not produce inhibition of the NADPH-dependent superoxide generating system in the cell-free preparation. These results suggest that the effect of LOOH was upon signal transduction involved in the stimulation of superoxide production rather than on the NADPH oxidase itself. Measurements of membrane potential changes were made using the lipophilic ions, 3,3'-dipentyloxacarbocyanine (DiOC5(3] and bis(3-phenyl-5-oxoisoxazol-4-yl)pentamethineoxonol (oxonol V). On the basis of their charge, DiOC5(3) fluorescence primarily reports mitochondrial potential and oxonol V absorbance reports plasma membrane potential. With 10 microM LOOH, depolarization of the plasma and mitochondrial membranes appeared to occur within seconds. As prior depolarization depresses superoxide production, these hydroperoxide-induced changes in membrane potential may be responsible for decreased PMA-stimulated superoxide production.  相似文献   

11.
We investigated the expression of the T cell receptor (TCR)/CD3 complex on a CD4-positive human T cell lymphoma cell line treated with phorbol myristate acetate (PMA) and/or CA2+ ionophore using fluorescence flow cytometry and fluorescence microscopic analysis. PMA induced a significant decrease in the expression of the CD3 complex on the cell membranes. Fluorescence microscopy confirmed that the down regulation is due to internalization of the antigens. Ca2+ ionophore treatment had no effect on the internalization of the CD3 complex. Double staining revealed that the vesicles containing the internalized CD3 complex and those containing intra-cytoplasmic class I major histocompatibility complex antigen had similar distribution in the PMA-stimulated cells, implying coexistence of these two antigens in a cytoplasmic perinuclear distribution.  相似文献   

12.
During periods of ischemia and vascular injury, factors are released which recruit monocytes and polymorphonuclear leukocytes (PMNs) to the site of injury by promoting adherence to the endothelium and transmigration across the endothelial cell (EC) layer. During coronary artery stenosis, we have shown that the endothelium-derived, cytochrome P450 metabolites of arachidonic acid, the epoxyeicosatrienoic acids (EETs), are elevated. Therefore, we examined if the EETs could stimulate PMN adherence to cultured ECs. Pretreatment of ECs with EETs for either 30 min or 4 hr did not alter the adherence of 51Cr-labelled PMNs to ECs while phorbol myristate acetate (PMA) produced a 4-fold increase in PMN adherence. The combination of EETs and PMA did not significantly augment or diminish PMA-induced PMN adherence to ECs. When ECs and 51Cr-labelled PMNs were coincubated, treatment with EETs alone did not alter PMN adherence. However, when EETs and PMA were added together during the coincubation of ECs and 51Cr-labelled PMNs, the EETs produced a concentration-related decrease in PMN adherence. Microscopic analysis of the culture media bathing the cells revealed aggregates of the labeled PMNs. We examined the effects of the EETs on PMN aggregation. 8,9-EET (10, 50, and 100 microM) increased PMN aggregation (7 +/- 3, 35 +/- 10, and 65 +/- 11%) and intracellular calcium by 1.7 +/- 0.5, 4.7 +/- 1.4, and 6.8 +/- 2.3-fold above basal. 5,6-, 11,2- and 14,15-EETs also stimulated aggregation. FMLP stimulated the production of superoxide; however, 8,9-EET did not. These observations indicate that the decrease in PMN adherence observed in the coincubation experiment is the result of EET-induced PMN aggregation. Given the increase in EET production during coronary artery stenosis, these data may provide insight into their potential biological significance during myocardial ischemia and vascular injury.  相似文献   

13.
In human neutrophils stimulated with phorbol myristate acetate (PMA) or with the chemotactic factor N-formyl-methionyl-leucyl-phenylalanine (fMLF) a number of proteins are phosphorylated, including proteins recovered in the membrane fraction corresponding to molecular masses of 130, 78, 46, 40, and 34 kDa and proteins recovered in the cytosol fraction corresponding to molecular masses of 65, 55, 48, 38, 36, 30, and 22 kDa. Phosphorylation of the membrane proteins was fourfold greater in cells stimulated with PMA, as compared to cells stimulated with fMLF, whereas both activators induced similar phosphorylation of proteins recovered in the cytosol fraction. Phosphorylation of membrane proteins appeared to be mediated by native protein kinase C (PKC) translocated from the cytosol to the plasma membrane. Thus phosphate incorporation was inhibited by retinal and a similar pattern of incorporation was reproduced in a reconstituted system composed of isolated cell membranes and purified PKC. Phosphorylation of cytosol proteins, on the other hand, appeared to be mediated by the proteolytically modified form of PKC. In this case, phosphate incorporation was inhibited by leupeptin, which prevents the conversion of native PKC to the proteolytically modified form, The phosphorylation pattern was reproduced when isolated cytosol fractions were incubated with the proteolytically modified form of the enzyme but not with the native PKC. These results demonstrate that responses to stimuli such as PMA or fMLF are mediated by different forms of PKC and that the proteolytically modified form is responsible for the major responses elicited by fMLF.  相似文献   

14.
Phagocyte superoxide (O2-) response is primed by a variety of physiologic compounds including the neutrophil secretory proteases cathepsin G and elastase. To study whether protease priming of neutrophil O2- response is related to changes in membrane physical state, we examined enzyme effects on the order and lateral mobility of lipid probes in intact neutrophil membranes. Exposure to cathepsin G (5 micrograms/ml) or elastase (10 micrograms/ml) caused a significant decrease in fluorescence anisotropy of the probe trimethylammonium diphenylhexatriene in neutrophil plasma membranes (0.279 to 0.256 for cathepsin G, 0.274 to 0.256 for elastase, p less than 0.02 for both), indicating a decrease in phospholipid chain order in the surface membrane bilayer. Cathepsin G and elastase also caused significant increases in membrane lipid lateral mobility as measured by excimer formation of the fluorescent probe 1-pyrenedecanoic acid (for cathepsin G, a 107% increase, and for elastase, a 44% increase in excimer/monomer fluorescence ratio, p less than 0.001). Enzyme effects on membrane structure were dependent on intact proteolytic activity, and were cell specific; the proteases had no effect on lipid order or lateral mobility in liposomes. In corollary studies, the possible association between the physical state of the polymorphonuclear leukocyte membrane and O2- generation was analyzed with the membrane modifying compounds, linoleic acid, ethanol, and cholesterol. Cell exposure to linoleic acid (1 microM) caused a significant decrease in lipid order and an increase in lipid lateral mobility along with increased O2- production to N-formyl-Met-Leu-Phe (fMLP) (191%) and phorbol myristate acetate (PMA) (39%), p less than 0.02 for each. 3 mM ethanol also augmented O2- response to fMLP (31%) and PMA (48%) and caused a significant decrease in lipid order, but did not affect lipid lateral mobility. Treatment with cholesteryl hemisuccinate (100 micrograms/ml) resulted in increased lipid order and decreased lipid lateral mobility, as well as decreased neutrophil superoxide response to fMLP (-61%, p less than 0.001) and PMA (-50%, p less than 0.02). We then examined whether modulation of membrane physical state may explain the mechanism of action of a known priming agent by studying the effects of low concentrations of a diacylglycerol. Cells treated with 10 microM 1-oleoyl-2-acetyl-sn-glycerol had a greater than 8-fold increase in superoxide response to fMLP (p less than 0.001) while demonstrating a significant decrease in lipid order (0.289 to 0.281, p less than 0.01) and a 50% increase in lipid lateral mobility (p less than 0.001).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Phorbol myristate acetate (PMA) causes acute lung injury (ALI). The present study was designed to elucidate the role of nitric oxide (NO), inducible NO synthase (iNOS), neutrophil elastase (NE) and other mediators in the ALI caused by PMA. In isolated rat’s lungs, PMA at various doses (1, 2 and 4 μg/g lung weight) was added into the lung perfusate. Vehicle group received dimethyl sulfoxide (the solvent for PMA) 100 μg/g. We measured the lung weight changes, pulmonary arterial pressure, capillary filtration coefficient, exhaled NO, protein concentration in bronchoalveolar lavage (PCBAL) and Evan blue dye leakage. Nitrate/nitrite, methyl guanidine, proinflammatory cytokines, NE and myeloperoxidase (MPO) in lung perfusate were determined. Histopathological examination was performed. We detected the iNOS mRNA expression in lung tissue. PMA caused dose-dependent increases in variables for lung changes, and nitrate/nitrite, methyl guanidine, proinflammatory cytokines, NE and MPO in lung perfusate. The pathology was characterized by alveolar hemorrhagic edema with inflammatory cell infiltration. Scanning electron microscopy revealed endothelial damage. PMA upregulated the expression of iNOS mRNA. Our results suggest that neutrophil activation by PMA causes release of NE, upregulation of iNOS and a series of inflammatory responses leading to endothelial damage and ALI.  相似文献   

16.

Background  

Fat embolism syndrome (FES) associated with acute lung injury (ALI) is a clinical condition following long bone fracture. We have reported 14 victims due to ALI with FES. Our laboratory has developed an animal model that produced fat emboli (FE). The major purpose of this study was to test whether neutrophil activation with phorbol myristate acetate (PMA) and inhibition with sivelestat (SVT) exert protection on the lung.  相似文献   

17.
The phorbol myristate acetate (PMA) stimulated nutrophil respiratory burst has been considered to simply involve the activation of protein kinase C (PKC). However, the PLD activity was also increased by 10‐fold in human neutrophils stimulated with 100 nM PMA. Unexpectedly, U73122, an inhibitor of phospholipase C, was found to significantly inhibit PMA‐stimulated respiratory burst in human neutrophils. U73122 at the concentrations, which were sufficient to inhibit the respiratory burst completely, caused partial inhibition of the PLD activity but no inhibition on PKC translocation and activation, suggesting that PLD activity is also required in PMA‐stimulated respiratory burst. Using 1‐butanol, a PLD substrate, to block phosphatidic acid (PA) generation, the PMA‐stimulated neutrophil respiratory burst was also partially inhibited, further indicating that PLD activation, possibly its hydrolytic product PA and diacylglycerol (DAG), is involved in PMA‐stimulated respiratory burst. Since GF109203X, an inhibitor of PKC that could completely inhibit the respiratory burst in PMA‐stimulated neutrophils, also caused certain suppression of PLD activation, it may suggest that PLD activation in PMA‐stimulated neutrophils might be, to some extent, PKC dependent. To further study whether PLD contributes to the PMA stimulated respiratory burst through itself or its hydrolytic product, 1,2‐dioctanoyl‐sn‐glycerol, an analogue of DAG , was used to prime cells at low concentration, and it reversed the inhibition of PMA‐stimulated respiratory burst by U73122. The results indicate that U73122 may act as an inhibitor of PLD, and PLD activation is required in PMA‐stimulated respiratory burst.  相似文献   

18.
In order to determine the signal transduction pathways involved in the regulation of proteoglycan (PG) synthesis in immature rat Sertoli cells (SC), we have examined the effect of the tumor promoter phorbol ester PMA (phorbol myristate acetate) on [35S]sulfate and [3H]glucosamine incorporation into PG molecules neosynthesized by cultured rat SC. PMA induced a dose- and time-dependent stimulation of labeled cell-associated PG as determined by quantitative solid phase assay. The overall effect of PMA resulted from enhancement of both glycosylation and catabolism of cell PG, this latter effect leading to a drastic decrease of their residence time in the membrane. Besides these quantitative effects, activation of protein kinase C by PMA induced qualitative changes as reflected by increase in relative proportion of heparan sulfate PG (HSPG) in cell membrane PG. In light of our previous results suggesting an inverse relationship between PG synthesis and FSH responsiveness in immature rat Sertoli cells, the PMA-induced upregulation of cell membrane PG, and particularly HSPG, could constitute one mechanism involved in the repression of FSH-stimulated steroidogenesis induced by PKC activation.  相似文献   

19.
Protein kinase C is known to be involved both in initiation and termination of cellular responses due to phosphoinositide breakdown. Here we report that in PC12 cells (a line of neurosecretory cells derived from a rat pheochromocytoma), pretreatment with nanomolar concentrations of phorbol myristate acetate, PMA, which is believed to specifically activate protein kinase C, inhibits the cytosolic-free Ca2+ concentration rise induced by depolarizing agents. In contrast, plasma membrane potential and 45Ca efflux from preloaded cells were unaffected by PMA pretreatment. Inhibition by PMA and diacylglycerol of the cytosolic-free Ca2+ concentration rise induced by depolarization was observed also in another cell line, the insulin secreting line RINm5F. These results raise the possibility that the voltage-gated Ca2+ channel is under inhibitory control by protein kinase C.  相似文献   

20.
Von Willebrand protein was synthesized and secreted by human endothelial cells in culture. Ca2+ ionophore A23187 and phorbol myristate acetate stimulated the release of Von Willebrand protein from the cultured cells. Stimulated release was accompanied by the disappearance of rod-like structures from the cultured endothelial cells immunostained for Von Willebrand protein, suggesting the existence of a storage organelle for Von Willebrand protein in these cells (Loesberg, C., Gonsalves, M.D., Zandbergen, J., Willems, C., Van Aken, W.G., Stel, H.V., Van Mourik, J.A. and De Groot, P.G. (1983) Biochim. Biophys. Acta 763, 160–168). Cultured human endothelial cells were fractionated on a density gradient of colloidal silica. Von Willebrand protein was found in two organelle populations: a buoyant one sedimenting with a variety of cell organelle marker enzymes, including those of the Golgi apparatus, mitochondria, lysosomes, peroxisomes, endoplasmic reticulum and plasma membrane fragments (peak density of this fraction: 1.08 g·ml?1), and a dense one with a peak density of 1.12 g·ml?1. The dense organelles containing Von Willebrand protein were apparently free of other organelles. Stimulating Von Willebrand protein release with phorbol myristate acetate or Ca2+ ionophore A23187 resulted in a decrease or even complete disappearance of Von Willebrand protein from the high-density organelle fraction, implying a role of this organelle in the stimulus-induced release of Von Willebrand protein. The Von Willebrand protein content of the buoyant fraction was lowered to some extent or did not change upon incubation of the cells with ionophore A23187 and phorbol myristate acetate. Restoration of Von Willebrand protein content of the dense organelle fraction after stimulation occurred within 2 days; this was accompanied by recurrence of immunostaining of rod-shaped structures in cells and an increase in cellular Von Willebrand protein. The excretion of restored Von Willebrand protein could be stimulated again.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号