首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Intracerebral inoculation of resistant mice (C57BL/10SNJ) with Theiler's murine encephalomyelitis virus (TMEV) results in acute encephalitis followed by subsequent clearance of virus from the central nervous system (CNS). In contrast, infection of susceptible mice (SJL/J) results in virus persistence and chronic immune-mediated demyelination. Both resistance and susceptibility to TMEV-induced disease appear to be immune mediated, since immunosuppression results in enhanced encephalitis in resistant mice but diminished demyelination in susceptible mice. The purpose of these experiments was to determine whether anti-TMEV cytotoxic T lymphocytes (CTLs) are generated during acute and chronic TMEV infection. Nonspecific lectin-dependent cellular cytotoxicity was used initially to detect the cytolytic potential of lymphocytes infiltrating the CNS irrespective of antigen specificity. Using TMEV-infected targets, H-2-restricted TMEV-specific CTLs of the CD8+ phenotype were demonstrated in lymphocytes from the CNS of susceptible and resistant mice, arguing against the hypothesis that the ability to generate CD8+ CTLs mediates resistance. In chronically infected SJL/J mice, TMEV-specific CTL activity was detected in the CNS as late as 226 days postinfection. These experiments demonstrate that virus-specific CTLs are present in the CNS during both acute and chronic TMEV infection. Anti-TMEV CTLs in the CNS of chronically infected SJL/J mice may play a role in demyelination through their ability to lyse TMEV-infected glial cells.  相似文献   

2.
Intracranial infection of Theiler's murine encephalomyelitis virus (TMEV) induces demyelination and a neurological disease in susceptible SJL/J (SJL) mice that resembles multiple sclerosis. While the virus is cleared from the central nervous system (CNS) of resistant C57BL/6 (B6) mice, it persists in SJL mice. To investigate the role of viral persistence and its accompanying immune responses in the development of demyelinating disease, transgenic mice expressing the P1 region of the TMEV genome (P1-Tg) were employed. Interestingly, P1-Tg mice with the B6 background showed severe reductions in both CD4(+) and CD8(+) T-cell responses to capsid epitopes, while P1-Tg mice with the SJL background displayed transient reductions following viral infection. Reduced antiviral immune responses in P1-Tg mice led to >100- to 1,000-fold increases in viral persistence at 120 days postinfection in the CNS of mice with both backgrounds. Despite the increased CNS TMEV levels in these P1-Tg mice, B6 P1-Tg mice developed neither neuropathological symptoms nor demyelinating lesions, and SJL P1-Tg mice developed significantly less severe TMEV-induced demyelinating disease. These results strongly suggest that viral persistence alone is not sufficient to induce disease and that the level of T-cell immunity to viral capsid epitopes is critical for the development of demyelinating disease in SJL mice.  相似文献   

3.
Infection of the central nervous system (CNS) with Theiler's murine encephalomyelitis virus (TMEV) induces an immune-mediated demyelinating disease in susceptible mouse strains such as SJL/J (H-2(s)) but not in strains such as C57BL/6 (H-2(b)). In addition, it has been shown that (C57BL/6 × SJL/J)F1 mice (F1 mice), which carry both resistant and susceptible MHC haplotypes (H-2(b/s)), are resistant to both viral persistence and TMEV-induced demyelinating disease. In this study, we further analyzed the immune responses underlying the resistance of F1 mice. Our study shows that the resistance of F1 mice is associated with a higher level of the initial virus-specific H-2(b)-restricted CD8(+) T cell responses than of the H-2(s)-restricted CD8(+) T cell responses. In contrast, pathogenic Th17 responses to viral epitopes are lower in F1 mice than in susceptible SJL/J mice. Dominant effects of resistant genes expressed in antigen-presenting cells of F1 mice on regulation of viral replication and induction of protective T cell responses appear to play a crucial role in disease resistance. Although the F1 mice are resistant to disease, the level of viral RNA in the CNS was intermediate between those of SJL/J and C57BL/6 mice, indicating the presence of a threshold of viral expression for pathogenesis.  相似文献   

4.
C P Rossi  E Cash  C Aubert    A Coutinho 《Journal of virology》1991,65(7):3895-3899
Theiler's virus, a murine picornavirus, persists in the central nervous system of susceptible strains of mice, causing chronic inflammation and demyelination in the white matter of the spinal cord. Resistant strains, however, clear the virus and do not develop late disease. In this study, we compared the characteristics of T and B lymphocytes in C57BL/6 (resistant) and SJL/J (susceptible) mice 1 week after intracerebral infection. We detected a marked increase of the number of immunoglobulin M (IgM)-secreting cells in the spleens of C57BL/6 detected a marked increase of the number of immunoglobulin M (IgM)-secreting cells in the spleens of C57BL/6 mice (but not in those of SJL/J mice), which correlated with higher levels of serum IgM antiviral antibodies. The role of the humoral response in virus clearance and resistance was demonstrated by a marked decrease in the number of infected spinal cord cells in SJL/J mice after passive transfer of serum from infected C57BL/6 donors. The B-cell response was found to be partly T cell independent. These results suggest an important role of the early humoral immune response in resistance to Theiler's virus-induced disease.  相似文献   

5.
Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease serves as a relevant animal model of human multiple sclerosis. Myelin damage induced by TMEV infection appears to be immune mediated. Disease susceptibility correlates best with the temporal development of chronic, high levels of TMEV-specific, MHC class II-restricted delayed-type hypersensitivity (DTH) responses. We have proposed a model wherein these responses result in CNS demyelination via a macrophage-mediated terminal nonspecific bystander response. As virus-specific DTH responses appear to be intimately involved in the pathogenicity of CNS demyelination, it is critical to determine the specificity of these responses so that effector T cells specific for potential pathogenic epitopes can be targeted to serve as the focus of specific immunoregulatory processes. In the current study, the capsid protein specificity of the TMEV-susceptible SJL/J and TMEV-resistant C57BL/6 mouse strains was examined. DTH and Tprlf responses in both infected and immunized SJL/J mice were found to be predominantly directed toward the VP2 capsid protein, specifically to an epitope(s) contained within the N-terminal 150 amino acids of VP2. This same epitope was also found to be dominant in priming SJL/J mice for responses to challenge with intact virions. In contrast, the T cell-mediated responses of TMEV-resistant C57BL/6 mice did not show preferential reactivity towards VP2, because all three major capsid proteins (VP1, VP2, and VP3) elicited responses with essentially equal potency. The relationship of the restricted VP2 T cell epitope to predicted neutralizing antibody sites on the VP2 protein is discussed as is the potential use of this epitope for prevention and/or treatment of TMEV-induced demyelinating disease via the induction of epitope-specific tolerance.  相似文献   

6.
Infection with Theiler''s murine encephalomyelitis virus (TMEV) in the central nervous system (CNS) of susceptible mice results in an immune-mediated demyelinating disease which is considered a relevant viral model of human multiple sclerosis. We previously demonstrated that the expression of positive costimulatory molecules (CD40, CD80, and CD86) is higher on the microglia of TMEV-resistant C57BL/6 (B6) mice than the microglia of TMEV-susceptible SJL/J (SJL) mice. In this study, we analyzed the expression levels of the negative costimulatory molecules PD-1 and PDL-1 in the CNS of TMEV-infected SJL mice and B6 mice. Our results indicated that TMEV infection induces the expression of both PD-1 and PDL-1 on microglia and macrophages in the CNS but not in the periphery. The expression of PD-1 only on CNS-infiltrating macrophages and not on resident microglia was considerably higher (>4-fold) in TMEV-infected SJL mice than TMEV-infected B6 mice. We further demonstrated that interleukn-6 (IL-6) is necessary to induce the maximal expression of PDL-1 but not PD-1 after TMEV infection using IL-6-deficient mice and IL-6-transgenic mice in conjunction with recombinant IL-6. In addition, cells from type I interferon (IFN) receptor knockout mice failed to upregulate PD-1 and PDL-1 expression after TMEV infection in vitro, indicating that type I IFN signaling is associated with the upregulation. However, other IFN signaling may also participate in the upregulation. Taken together, these results strongly suggest that the expression of PD-1 and PDL-1 in the CNS is primarily upregulated following TMEV infection via type I IFN signaling and the maximal expression of PDL-1 additionally requires IL-6 signaling.  相似文献   

7.
In genetically susceptible strains of mice, the DA strain of Theiler's virus, a picornavirus, causes a persistent infection of the white matter of the spinal cord associated with chronic demyelination. In resistant strains, on the other hand, the infection is cleared within 1 to 2 weeks. In this article, we show that Theiler's virus induces a rapid and abundant cytotoxic T lymphocyte (CTL) response in resistant C57BL/6 mice, while the response remains low throughout infection in susceptible SJL/J mice. This difference can be referred to a higher number of virus-specific CTL precursors in C57BL/6 mice. These observations indicate that the efficient induction of virus-specific CTL precursors is critical for avoiding the establishment of a persistent picornaviral infection.  相似文献   

8.
Infection with Theiler''s murine encephalomyelitis virus (TMEV) in the central nervous system (CNS) causes an immune system-mediated demyelinating disease similar to human multiple sclerosis in susceptible but not resistant strains of mice. To understand the underlying mechanisms of differential susceptibility, we analyzed viral replication, cytokine production, and costimulatory molecule expression levels in microglia and macrophages in the CNS of virus-infected resistant C57BL/6 (B6) and susceptible SJL/J (SJL) mice. Our results indicated that message levels of TMEV, tumor necrosis factor alpha, beta interferon, and interleukin-6 were consistently higher in microglia from virus-infected SJL mice than in those from B6 mice. However, the levels of costimulatory molecule expression, as well as the ability to stimulate allogeneic T cells, were significantly lower in TMEV-infected SJL mice than in B6 mice. In addition, microglia from uninfected naïve mice displayed differential viral replication, T-cell stimulation, and cytokine production, similar to those of microglia from infected mice. These results strongly suggest that different levels of intrinsic susceptibility to TMEV infection, cytokine production, and T-cell activation ability by microglia contribute to the levels of viral persistence and antiviral T-cell responses in the CNS, which are critical for the differential susceptibility to TMEV-induced demyelinating disease between SJL and B6 mice.BeAn and DA are members of Theiler''s original subgroup of Theiler''s murine encephalitis virus (TMEV) (52). Intracerebral inoculation of susceptible mice, such as SJL/J (SJL) mice, with either of these viruses results in a biphasic disease characterized by early encephalitis and late chronic demyelination (24). Infection of susceptible mice with these viruses results in a chronic, white matter-demyelinating disease similar to human multiple sclerosis (24). In susceptible strains, infection of the central nervous system (CNS) with TMEV leads to a chronic immune response to viral antigens, which eventually leads to autoimmune responses against myelin autoantigens (29). In contrast, resistant mouse strains, such as C57BL/6 (B6), rapidly clear virus from the CNS and do not develop demyelinating disease, suggesting that viral persistence in these mice corresponds to susceptibility to disease (26, 42, 45). Demyelination in susceptible mice is considered to be immunity mediated, as removal of immune components reduces the clinical onset and severity of demyelinating disease (9, 25, 44, 47).In particular, infiltration of proinflammatory CD4+ Th1-type cells has been associated with tissue destruction and demyelination (41, 56). A number of CD4+ T cells specific for TMEV during the course of disease in SJL mice recognize four predominant viral capsid epitopes (VP1233-250, VP274-86, VP324-37, and VP451-70), with one each on the external and internal capsid proteins (10, 19, 55, 56). The external capsid epitopes appear to account for the majority (∼80%) of major histocompatibility complex (MHC) class II-restricted T-cell responses to TMEV capsid proteins (55, 57). Recently, viral capsid epitopes recognized by CNS-infiltrating CD4+ T cells from TMEV-infected B6 mice have also been identified (18). When levels of virus capsid-specific CD4+ T cells in the CNS are compared between B6 and SJL mice at early stages of viral infection, significantly higher levels are found in the CNS of resistant B6 mice (30), suggesting that virus-specific CD4+ T cells are important for protection from demyelinating disease during initial immune responses (2). Similarly, levels of CNS-infiltrating virus-specific CD8+ T cells in the CNS are as much as threefold higher in resistant mice at the same time point (28). Therefore, it appears that levels of both initial CD4+ and CD8+ T-cell responses to the virus are critically important in setting the stage of viral persistence/clearance and consequent susceptibility or resistance to inflammatory demyelinating disease.In order to further understand the potential mechanisms of differences in susceptibility and antiviral immunity levels between SJL and B6 mice, the properties of resident microglial cells and infiltrating macrophages in the CNS during the early stage of viral infection in these mouse strains were investigated. It has previously been established that nonprofessional antigen-presenting cells (APCs; mainly microglial cells and astrocytes) isolated from the CNS of TMEV-infected SJL mice are capable of presenting antigens to both TMEV- and CNS autoantigen-specific T-cell hybridomas and clones (21, 33, 37). Furthermore, microglial cells and/or infiltrating macrophages in the CNS are known to be a major cell population supporting viral persistence during chronic infection (4). Hence, these cells support the replication of TMEV and the activation and/or differentiation of CD4+ and CD8+ T cells infiltrating the CNS of virus-infected mice. Therefore, CNS APCs involved in triggering T-cell responses and harboring viral persistence may ultimately determine susceptibility/resistance to TMEV-IDD via their effects on virus clearance/persistence as well as on target tissue inflammation.In this study, we compared the potential roles of microglia and macrophages from TMEV-infected susceptible SJL and resistant B6 mice in the innate and adaptive immune responses affecting viral persistence and ultimate disease susceptibility. Our results indicate that viral replication and cytokine production levels are consistently higher in microglia from TMEV-infected SJL mice than in those from B6 mice. In addition, the expression of costimulatory molecules is significantly higher in resistant B6 mice throughout the course of viral infection, suggesting more efficient T-cell activation in resistant B6 mice. On the other hand, both virus replication and type I interferon (IFN) production in microglia from naïve SJL mice are significantly higher than those in such cells from naïve B6 mice. Therefore, differences in the intrinsic properties of microglia in viral replication and virus-induced innate cytokine production are likely to contribute significantly to viral persistence, cellular infiltration to the CNS, and consequent inflammation, leading to the development of demyelinating disease.  相似文献   

9.
Cells that can participate in an innate immune response within the central nervous system (CNS) include infiltrating cells (polymorphonuclear leukocytes [PMNs], macrophages, and natural killer [NK] cells) and resident cells (microglia and sometimes astrocytes). The proinflammatory cytokine interleukin-6 (IL-6) is produced by all of these cells and has been implicated in the development of behavioral seizures in the Theiler's murine encephalomyelitis virus (TMEV)-induced seizure model. The assessment, via PCR arrays, of the mRNA expression levels of a large number of chemokines (ligands and receptors) in TMEV-infected and mock-infected C57BL/6 mice both with and without seizures did not clearly demonstrate the involvement of PMNs, monocytes/macrophages, or NK cells in the development of seizures, possibly due to overlapping function of the chemokines. Additionally, C57BL/6 mice unable to recruit or depleted of infiltrating PMNs and NK cells had seizure rates comparable to those of controls following TMEV infection, and therefore PMNs and NK cells do not significantly contribute to seizure development. In contrast, C57BL/6 mice treated with minocycline, which affects monocytes/macrophages, microglial cells, and PMNs, had significantly fewer seizures than controls following TMEV infection, indicating monocytes/macrophages and resident microglial cells are important in seizure development. Irradiated bone marrow chimeric mice that were either IL-6-deficient mice reconstituted with wild-type bone marrow cells or wild-type mice reconstituted with IL-6-deficient bone marrow cells developed significantly fewer behavioral seizures following TMEV infection. Therefore, both resident CNS cells and infiltrating cells are necessary for seizure development.  相似文献   

10.
Intracranial inoculation of Theiler's murine encephalomyelitis virus (TMEV) leads to the development of a chronic demyelinating disorder in certain mouse strains. Development of this disease is controlled by at least two unlinked genes, one of which is within or linked to the H-2 complex. In the present study, we attempted to map the relevant H-2 loci involved in susceptibility to TMEV-induced demyelination using crosses between SJL and several congenic H-2 recombinant mouse strains bearing different combinations of MHC genes from the susceptible H-2s and resistant H-2b haplotypes all on the C57BL/10 strain background. The data suggest that the D region of the H-2 complex strongly influences development of the demyelinating disease because increased susceptibility correlates well with homozygosity for H-2s alleles in the D region, but not in K or I-A. In addition, we also attempted to correlate certain immune and nonimmune pathophysiologic parameters with the development of clinical disease. Specifically, central nervous system TMEV titers and TMEV-specific humoral and cellular [delayed-type hypersensitivity (DTH) and T cell proliferative (Tprlf)] responses were examined. The data show that TMEV-induced demyelinating disease did not correlate with either CNS TMEV titers or TMEV-specific humoral or Tprlf responses but did correlate closely with the presence of high levels of TMEV-specific DTH. Collectively, our findings demonstrating a strong correlation between disease incidence, the presence of particular H-2D region genotypes, and high levels of TMEV-specific DTH in susceptible strains (as well as previous findings showing predominant mononuclear cell infiltrates in CNS demyelinating lesions) support the hypothesis that the disease is immune mediated rather than a result of direct cytolytic effects of virus infection.  相似文献   

11.
Natural killer (NK) cells have been implicated in the recognition and killing of a variety of virus infected target cells in vitro, yet their role in vivo remains uncertain. In these experiments, the role of NK cells in the regulation of resistance to herpes simplex virus-1 (HSV-1) was studied. Adult C57BL/6 mice are resistant to HSV-1 (HFEM strain), but are rendered highly susceptible by treatment with cyclophosphamide 24 hr prior to infection. In this model, passive transfer of 10(8) normal spleen cells or 10(7) poly I:C-treated spleen cells provided protection for 72% of the recipients. Spleen cells from NK cell-deficient beige mice similarly treated failed to engender passive protection. The phenotype of the cells responsible for transferring protection was NK1.1+, and asialo GM1+. Transfer of NK cells resulted in marked reduction of HSV titers in the livers and brains of recipients. These experiments provide direct evidence for a role for NK cells in protection against development of fatal HSV infection in mice.  相似文献   

12.
Kang BS  Lyman MA  Kim BS 《Journal of virology》2002,76(22):11780-11784
Theiler's murine encephalomyelitis virus (TMEV) infection induces immune-mediated demyelinating disease in susceptible mouse strains and serves as a relevant infectious model for human multiple sclerosis. To investigate the pathogenic mechanisms, two strains of TMEV (DA and BeAn), capable of inducing chronic demyelination in the central nervous system (CNS), have primarily been used. Here, we have compared the T-cell responses induced after infection with DA and BeAn strains in highly susceptible SJL/J mice. CD4(+) T-cell responses to known epitopes induced by these two strains were virtually identical. However, the CD8(+) T-cell response induced following DA infection in susceptible SJL/J mice was unable to recognize two of three H-2K(s)-restricted epitope regions of BeAn, due to single-amino-acid substitutions. Interestingly, T cells specific for the H-2K(s)-restricted epitope (VP1(11-20)) recognized by both strains showed a drastic increase in frequency as well as avidity after infection with DA virus. These results strongly suggest that the level and avidity of virus-specific CD8(+) T cells infiltrating the CNS could be drastically different after infection with these two strains of TMEV and may differentially influence the pathogenic and/or protective outcome.  相似文献   

13.
Intracerebral inoculation of mice with Theiler's murine encephalomyelitis virus results in an intense inflammatory response of mononuclear leukocytes which infiltrate into the central nervous system. Resistant strains of mice have the ability to clear virus whereas susceptible strains become infected persistently and are associated with chronic demyelination which is proposed to be immune-mediated. In an attempt to better understand the role of the immune response during demyelination, mononuclear leukocytes were isolated from the central nervous system of infected mice and stained by an immunoperoxidase technique with anti-Thy-1.2, anti-L3T4, anti-Lyt-2 and anti-MAC-1 mAb. Infection of susceptible SJL/J mice resulted in a biphasic immune response which peaked on days 7 and 27 post-infection. In contrast, a single peak (day 7) was observed in resistant C57BL/10SNJ mice. The presence of Thy-1.2, L3T4, and MAC-1+ cells was similar between the two strains. However, although the number of Lyt-2+ cells peaked on day 7 in C57BL/10SNJ mice, they were not detected in SJL/J mice until 14 days post-infection and gradually increased in number over the course of infection. To further study the role of T cells in demyelination, serial frozen sections of brain and spinal cord were stained for the presence of Lyt-2 and L3T4+ cells in the lesions of chronically infected SJL/J mice. L3T4+ cells were observed predominantly in perivascular regions while Lyt-2+ cells were observed infiltrating the parenchyma. These results provide further evidence that Lyt-2+ lymphocytes are important in the mechanism of susceptibility/resistance to Theiler's murine encephalomyelitis virus-induced demyelination.  相似文献   

14.
The pathological mechanisms that cause central nervous system (CNS) dysfunction in most neurological diseases are not well established. Theiler's murine encephalomyelitis virus (TMEV) is known to interact with cells of the CNS and its intracerebral inoculation to susceptible mice strains causes neurological disorders resembling multiple sclerosis (MS). In this study, we reported that primary astrocyte cultures from SJL/J susceptible mice when infected with TMEV released important amounts of nitrites (NO2-) to the culture medium, as measured in the supernatants 24 hours after infection. In addition, we observed an increment in the production of tumour necrosis factor alpha (TNF-alpha) by susceptible SJL/J strain derived astrocytes infected with TMEV. The treatment with the thiolic antioxidant N-acetyl-cysteine partially suppressed the virus-stimulated production of nitric oxide and TNF-alpha, in a dose response fashion. These results indicate that during viral infection astrocytes are an important cellular source of nitric oxide and TNF-alpha, substances which play important roles during CNS inflammatory events. The effects of the antioxidant N-acetyl-cysteine, modulating the production of the above compounds by TMEV-infected astrocytes may be a significant factor in preventing CNS demyelination.  相似文献   

15.
Administration of neutralizing monoclonal antibody to gamma interferon increased Theiler's virus-induced demyelination and virus antigen persistence in the spinal cord in susceptible SJL/J mice and completely abrogated resistance such that all C57BL/10SNJ mice developed demyelination. These experiments support the hypothesis that gamma interferon is critically important for resistance to Theiler's virus-induced disease but is not required for myelin destruction.  相似文献   

16.
During the first 45 days after intracerebral infection with Theiler's murine encephalomyelitis virus (TMEV), the levels of mRNAs encoding chemokines MCP-1/CCL2, RANTES/CCL5, and IP-10/CXCL10 in the central nervous system (CNS) are closely related to the sites of virus gene expression and tissue inflammation. In the present study, these chemokines were monitored during the latter 135 days of a 6-month course of TMEV-induced disease in susceptible (PLJ) or resistant (C57BL/6) mice that possessed or lacked either CD4+ or CD8+ T cells. These data were additionally correlated to mouse genotype, virus persistence in the CNS, antiviral antibody titers, mortality, and the severity of neurological disease. Surprisingly, the major determinant of chemokine expression was virus persistence: the factors of susceptible or resistant genotype, severity of neuropathology, and presence or absence of regulatory T cells exerted minimal effects. Our observations indicated that chemokine expression in the CNS in this chronic viral disorder was intrinsic to the CNS innate immune response to infection and was not governed by elements of the adaptive immune system.  相似文献   

17.
Cryptosporidium infections in inbred strains of mice.   总被引:6,自引:0,他引:6  
Cryptosporidium, a protozoan parasite of man and animals, is an important etiological agent of diarrhea throughout the world, particularly in children and immunocompromised individuals such as AIDS patients. Unfortunately, because of the lack of both in vivo laboratory models and reliable in vitro parasite culture systems, virtually nothing is known about the immunological events occurring during disease. In order to identify reliable animal models for infection, we studied C. parvum infections in 19 different strains of mice representing 12 H-2 haplotypes: A/J, AKR/J, B10.D2/J, B10.M/J, C3H/HeJ, C57BL/65, C57BL/6J-bgJ, CBA/NJ, DBA/1J, DBA/2J, HRS/J, HTG/J, NZB/B1NJ, NZW/J, P/J, RIII/J, SJL/J, SWR/J, and WB/ReJ, and in one gerbil: Meriones unguiculatus. Fecal samples and histological sections of the intestine taken on day 7 post-Cryptosporidium inoculation indicated that only the beige mouse (C57BL/6J-bgJ) harbored significant numbers of parasites compared to the other strains. The numbers of parasites harbored in these NK cell-deficient beige mice were, however, considerably lower than those seen in neonatal mice. Adult inbred mouse strains susceptible to Cryptosporidium infections are discussed.  相似文献   

18.
Intracerebral inoculation of Theiler's murine encephalomyelitis virus (TMEV) produces chronic demyelination and persistent infection in the central nervous system (CNS) of susceptible SJL mice. This series of experiments examined the contribution of humoral immunity and C to myelin destruction. As in multiple sclerosis, mice persistently infected with TMEV had elevated levels of IgG and oligoclonal bands in the cerebrospinal fluid (CSF). Immunoblot studies revealed that even in animals exhibiting profound demyelination, IgG in the serum and CSF was directed primarily at virus antigen rather than at normal myelin components. Inflammatory cells positive for Ig were distributed mainly around blood vessels, but occasionally they infiltrated the spinal cord parenchyma. Rare examples of myelin sheaths positive for IgG were found by immunoelectron microscopy in spinal cord sections from infected mice; the third component of complement (C3) was commonly found in the walls of CNS blood vessels but not on myelin. Neither serum nor CSF IgG from infected mice bound to myelin sheaths or other CNS components in sections of normal syngeneic spinal cord. There were significantly more demyelinating lesions in infected mice depleted of C components with cobra venom factor. These data do not support a humoral autoimmune basis for the CNS demyelination that occurs in association with persistent TMEV infection. However, the humoral immune response directed at TMEV antigens may either limit virus spread or promote virus persistence.  相似文献   

19.
NK cells not only respond rapidly to infection, shaping subsequent adaptive immunity, but also play a role in regulating autoimmune disease. The ability of NK cells to influence adaptive immunity before Ag exposure was examined in a gender-dependent model of preferential Th1 and Th2 activation. The inability of young adult male SJL mice to activate Th1 cells was reversed via depletion of NK1.1(+) cells, whereas the presence or the absence of NK1.1(+) cells did not alter responses in age-matched females. Consistent with a gender-dependent role in regulating adaptive immunity, significantly more NK1.1(+) cells were present in males compared with females, and this difference was reversed by castration. In contrast to NK1.1(+) cells derived from C57BL/6 mice, no spontaneous cytokine secretion was detected in NK1.1(+) cells derived from either male or female SJL mice, although an increased frequency of IL-10-secreting NK1.1(+) cells was observed in males vs females following in vitro stimulation. Direct evidence that NK1.1(+) cells in males influence CD4(+) T cell activation before Ag exposure was demonstrated via the adoptive transfer of APC from control and NK1.1-depleted males. The absence of a functional NK T cell population in SJL mice suggests that NK cells influence adaptive immunity before Ag exposure via alterations in APC activity.  相似文献   

20.
Theiler's murine encephalomyelitis virus (TMEV) induces demyelinating disease in susceptible mouse strains after intracerebral inoculation. The clinical symptoms and histopathology of the central nervous system appear to be similar to those of human multiple sclerosis (MS), and thus, this system provides an excellent infectious animal model for studying MS. The virus-induced demyelination is immune mediated, and the genes involved in the immune response such as those for the T-cell receptor beta-chain and major histocompatibility complex (MHC) haplotypes are known to influence disease susceptibility. To define whether the T-cell receptor Jbeta-Cbeta or Vbeta genes are associated with susceptibility, we have analyzed F2 mice from crosses of susceptible SJL/J (Vbeta(a)-JCbeta(b)) mice and resistant C57L (Vbeta(a)-JCbeta(a)) mice. Our results indicate that susceptibility to TMEV-induced demyelination is associated with restriction fragment length polymorphism reflecting the T-cell receptor Jbeta1-Cbeta1 region rather than the Vbeta polymorphism. This association becomes stronger when the MHC haplotype is considered in the linkage analysis. However, differences in the T-cell receptor alpha-chain haplotype have no significant influence on the pathogenesis of TMEV-induced demyelination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号