首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of calmodulin on the activity of the plasma membrane Ca-ATPase was investigated on plasma membranes purified from radish (Raphanus sativus L.) seedlings. Calmodulin stimulated the hydrolytic activity and the transport activity of the plasma membrane Ca-ATPase to comparable extents in a manner dependent on the free Ca2+ concentration. Stimulation was marked at low, nonsaturating Ca2+ concentrations and decreased increasing Ca2+, so that the effect of calmodulin resulted in an increase of the apparent affinity of the enzyme for free Ca2+. The pattern of calmodulin stimulation of the plasma membrane Ca-ATPase activity was substantially the same at pH 6.9 and 7.5, in the presence of ATP or ITP, and when calmodulin from radish seeds was used rather than that from bovine brain. At pH 6.9 in the presence of 5 micromolar free Ca2+, stimulation of the plasma membrane Ca-ATPase was saturated by 30 to 50 micrograms per milliliter bovine brain calmodulin. The calmodulin antagonist calmidazolium inhibited both basal and calmodulin-stimulated plasma membrane Ca-ATPase activity to comparable extents.  相似文献   

2.
The effect of controlled proteolysis on the plasma membrane (PM)Ca2+-ATPase was studied at the molecular level in PM purified from radish (Raphanus sativus L.) seedlings. Two new methods for labeling the PM Ca2+-ATPase are described. The PM Ca2+-ATPase can be selectively labeled by treatment with micromolar fluorescein isothiocyanate (FITC), a strong inhibitor of enzyme activity. Both inhibition of activity and FITC binding to the PM Ca2+-ATPase are suppressed by millimolar MgITP. The PM Ca2+-ATPase maintains the capability to bind calmodulin also after sodium dodecyl sulfate gel electrophoresis and blotting; therefore, it can be conveniently identified by 125l-calmodulin overlay in the presence of calcium. With both methods a molecular mass of 133 kD can be calculated for the PM Ca2+-ATPase. FITC-labeled PM Ca2+-ATPase co-migrates with the phosphorylated intermediate of the enzyme[mdash]labeled by incubation with [[gamma]-32P]GTP in the presence of calcium[mdash]on acidic sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Controlled trypsin treatment of purified PM determines a reduction of the molecular mass of the PM Ca2+-ATPase from 133 to 118 kD parallel to the increase of enzyme activity. Only the 133-kD but not the 118-kD PM Ca2+-ATPase binds calmodulin. These results indicate that trypsin removes from the PM Ca2+-ATPase an autoinhibitory domain that contains the calmodulin-binding domain of the enzyme.  相似文献   

3.
Askerlund P 《Plant physiology》1996,110(3):913-922
The effect of controlled trypsin digestion of a calmodulin-stimulated Ca2+-ATPase in low-density intracellular membranes from cauliflower (Brassica oleracea L.) inflorescences was investigated. Ca2+ uptake into vesicles was measured either continuously with the fluorescent Ca2+ indicator Calcium Green-5N or with a radio-active filter technique. Trypsin treatment of vesicles resulted in a 3-fold activation of Ca2+ uptake and loss of calmodulin sensitivity. Immunoblotting experiments with an antiserum raised against the Ca2+-ATPase showed that the trypsin activation was accompanied by a decrease in the amount of intact Ca2+-ATPase (111 kD) and by successive appearances of polypeptides of 102 and 99 to 84 kD. 125I-Calmodulin overlays showed that only the intact Ca2+-ATPase bound calmodulin. Removal of the calmodulin-binding domain (about 9 kD) was not enough to obtain full activation. Trypsin proteolysis resulted in a Ca2+ concentration necessary for half-maximal activity of 0.5 [mu]M, whereas a value of about 2 [mu]M was obtained with untreated membranes in the presence of calmodulin. Without trypsin treatment or calmodulin the activity was not saturated even at 57 [mu]M free Ca2+. The data suggest that trypsin digestion and calmodulin activate the cauliflower Ca2+-ATPase by at least partly different mechanisms.  相似文献   

4.
Trypsin activation of the red cell Ca2+-pump ATPase is calcium-sensitive   总被引:2,自引:0,他引:2  
Stimulation of the calmodulin-independent activity of the red cell Ca2+-pump ATPase by trypsin treatment (of calmodulin free red cell membranes) is sensitive to Ca2+ in a concentration range near the KCa of the transport site. The Ca2+ requirement for this effect is absolute, whereas the calmodulin sensitivity of the ATPase can be abolished by sufficient trypsin attack in the absence of Ca2+, although Ca2+ accelerates inactivation. This indicates that the two effects of trypsin are due to at least two distinct cleavage sites in the pump protein.  相似文献   

5.
The kinetics of active Ca2+ transport in inside-out red cell membrane vesicles and the Ca2+-ATPase activity of the purified Ca2+ pump were studied and the effects of calmodulin, acidic phospholipids, and controlled trypsinization were compared. In the presence of calmodulin the maximal rate and the apparent affinity of the pump for Ca2+ were greatly increased in both preparations. The lowest value of Km(Ca) was between 0.5 and 0.7 microM depending on the concentration of calmodulin and on the enzyme preparation. Positive cooperativity for Ca2+ activation with a Hill coefficient of 1.6-1.7 was observed in all cases. When acidic phospholipids (phosphatidylinositol 4-phosphate was routinely used) were added to the inside-out vesicles or to the purified enzyme, maximal transport rates equal to those obtained with calmodulin were measured but the Km(Ca) decreased to 0.25 microM and the positive cooperativity disappeared (the Hill coefficient approached 1). Highly active, calmodulin-independent proteolytic fragments of molecular mass of 81 and 76 kDa were produced with controlled trypsinization. When the trypsin treatment was directed to obtain primarily the 81-kDa fragment, the preparation showed characteristics similar to those of the intact Ca2+ pump in the presence of calmodulin; that is, the same Vmax was obtained, the Km(Ca2+) was 0.5-0.6 microM, and the Hill coefficient was about 1.6. Addition of phosphatidylinositol 4-phosphate or allowing further proteolysis to produce the 76-kDa fragment, shifted the Km(Ca) to 0.25 and reduced the Hill coefficient to 1, without changes in the maximal rate. Based on these results it is suggested that the maximal velocity and the Ca2+ affinity on the erythrocyte Ca2+ pump may be regulated independently and that independent polypeptide regions of the enzyme are involved in the regulations.  相似文献   

6.
A plasma membrane-enriched fraction from rat myometrium shows ATP-Mg2+-dependent active calcium uptake which is independent of the presence of oxalate and is abolished by the Ca2+ ionophore A23187. Ca2+ loaded into vesicles via the ATP-dependent Ca2+ uptake was released by extravesicular Na+. This showed that the Na+/Ca2+ exchange and the Ca2+ uptake were both occurring in plasma membrane vesicles. In a medium containing KCl, vanadate readily inhibited the Ca2+ uptake (K1/2 5 microM); when sucrose replaced KCl, 400 microM-vanadate was required for half inhibition. Only a slight stimulation of the calcium pump by calmodulin was observed in untreated membrane vesicles. Extraction of endogenous calmodulin from the membranes by EGTA decreased the activity and Ca2+ affinity of the calcium pump; both activity and affinity were fully restored by adding back calmodulin or by limited proteolysis. A monoclonal antibody (JA3) directed against the human erythrocyte Ca2+ pump reacted with the 140 kDa Ca2+-pump protein of the myometrial plasma membrane. The Ca2+-ATPase activity of these membranes is not specific for ATP, and is not inhibited by mercurial agents, whereas Ca2+ uptake has the opposite properties. Ca2+-ATPase activity is also over 100 times that of calcium transport; it appears that the ATPase responsible for transport is largely masked by the presence of another Ca2+-ATPase of unknown function. Measurements of total Ca2+-ATPase activity are, therefore, probably not directly relevant to the question of intracellular Ca2+ control.  相似文献   

7.
Two biochemical types of Ca2+-pumping ATPases were distinguished in membranes that were isolated from carrot (Daucus carota) suspension-cultured cells. One type hydrolyzed GTP nearly as well as ATP, was stimulated by calmodulin, and was resistant to cyclopiazonic acid. This plasma membrane (PM)-type pump was associated with PMs and endomembranes, including vacuolar membranes and the endoplasmic reticulum (ER). Another pump ("ER-type") that was associated mainly with the ER hydrolyzed ATP preferentially, was insensitive to calmodulin, and was inhibited partially by cyclopiazonic acid, a blocker of the animal sarcoplasmic/ER Ca2+ pump. Oxalate stimulation of Ca2+ accumulation by ER-type, but not PM-type, pump(s) indicated a separation of the two types on distinct compartments. An endomembrane 120-kD Ca2+ pump was partially purified by calmodulin-affinity chromatography. The purified polypeptide bound calmodulin reacted with antibodies to a calmodulin-stimulated Ca2+ pump from cauliflower and displayed [32P]phosphoenzyme properties that are characteristic of PM-type Ca2+ pumps. The purified ATPase corresponded to a phosphoenzyme and a 120-kD calmodulin-binding protein on endomembranes. Another PM-type pump was suggested by a 127-kD PM-associated protein that bound calmodulin. Thus, both ER- and PM-type Ca2+ pumps coexist in most plant tissues, and each type can be distinguished from another by a set of traits, even in partially purified membranes.  相似文献   

8.
The properties of plasma membrane Ca2 + -ATPases from wheat ( Triticum aestivum L. cv. Lengchun No. 13) root and leaf were compared, and their different properties were analyzed in association with the differentia of the functions of these two organs and their relevant environments. Root plasma membrane Ca2 + -ATPase showed a high activity in a broad range of pH and an optimum reaction temperature of 45 ℃, while the leaf enzyme activated in a narrow range of pH and an optimum reaction temperature of 50 ℃. Hill coefficient of root plasma membrane Ca2 + -ATPase for ATP was 1.6, revealing an obvious positive cooperativity. In contrast, that of leaf plasma membrane Ca2 +-ATPase was 1.0, being in keeping with Michaelis-Menten dynamics. For Ca2 + activation, Hill coefficient of plasma membrane Ca2 + -ATPases from both organs were less than 1, suggesting that both had negative cooperativity. The enzymes were activated by calmodulin and inhibited by Mg2+.  相似文献   

9.
During the aggregation and differentiation of amoebae of Dictyostelium discoideum, changes in free cytosolic Ca2+ appear to regulate a number of physiological processes. To understand the mechanisms regulating free intracellular Ca2+ in this organism, we have isolated and characterized an ATP/Mg2+-dependent, high-affinity Ca2+ pump. When homogenates of 2 h starved cells were fractionated on Percoll/KCl gradients, one peak of high-affinity Ca2+-pumping activity was detected. This activity was resolved from enzyme markers of the mitochondrion and the rough endoplasmic reticulum but it cosedimented with the plasma membrane marker, alkaline phosphatase. Further studies suggested that the pump was associated with 'inside-out' plasma membrane vesicles. Like plasma membrane Ca2+-transport ATPases from other systems, this isolated Ca2+ pump: (1) was Mg2+-dependent, (2) displayed a high specificity for ATP as an energy source, (3) exhibited a high affinity for free Ca2+ with a Km of 0.3 microM, and (4) was very sensitive to inhibition by vanadate (IC50 2 microM) but was unaffected by mitochondrial inhibitors, ouabain and Ca2+-channel blockers. Unlike plasma membrane Ca2+ pumps from most other systems, this enzyme appeared not to be regulated by calmodulin. During development, non-mitochondrial, vanadate-sensitive, high-affinity Ca2+-pumping activity in crude lysates remained relatively constant for at least 15 h. These observations suggest that this plasma membrane Ca2+ pump probably functions in Dictyostelium to maintain Ca2+ homeostasis by extruding free cytosolic Ca2+ from the cells.  相似文献   

10.
The purified Ca2+ ATPase of the erythrocyte plasma membrane has been submitted to controlled trypsin proteolysis under conditions that favor either its (putative) E1 or E2 configurations. The former configuration has been forced by treating the enzyme with Ca2+-saturated calmodulin, the latter with vanadate and Mg2+. The E1 conformation leads to the accumulation of a polypeptide of Mr 85 KDa which still binds calmodulin, the E2 conformation to the accumulation of one of Mr 81 KDa which does not. Both fragments arise from the hydrolysis of a transient 90 KDa product which has Ca2+-calmodulin dependent ATPase activity, and which retains the ability to pump Ca2+ in reconstituted liposomes. Highly enriched preparations of the 85 and 81 KDa fragments have been obtained and reconstituted into liposomes. The former has limited ATPase and Ca2+ transport ability and is not stimulated by calmodulin. The latter has much higher ATPase and Ca2+ transport activity. It is proposed that the Ca2+ pumping ATPase of erythrocytes plasma membrane contains a 9 KDa domain which is essential for the interaction of the enzyme with calmodulin and for the full expression of the hydrolytic and transport activity. This putative 9 KDa sequence contains a 4 KDa "inhibitory" domain which limits the activity of the ATPase. In the presence of this 4 KDa sequence, i.e., when the enzyme is degraded to the 85 KDa product, calmodulin can still be bound, but no longer stimulates ATPase and Ca2+ transport.  相似文献   

11.
Regulation of erythrocyte Ca2+ pump activity by protein kinase C   总被引:8,自引:0,他引:8  
Using either inside-out vesicles (IOV) prepared from human erythrocytes or purified Ca2+-ATPase from the same source, the effects of protein kinase C (Ca2+/phospholipid-dependent enzyme) on Ca2+ transport and Ca2+-ATPase activity were measured. Incubation of IOV with protein kinase C in the presence, but not absence, of either 12-O-tetradecanoylphorbol-13-acetate or diolein led to a Ca2+-dependent stimulation of ATP-dependent calcium uptake. The effect was a 5-7-fold increase of Vmax without a significant change in the apparent Km for Ca2+. By comparison, the effect of calmodulin was a 14-fold stimulation of Vmax and a 4-fold reduction in apparent Km. The effect of protein kinase C and calmodulin on Ca2+ uptake were nearly additive. Stimulation of IOV Ca2+ transport by protein kinase C was entirely reversible by treatment of activated IOV with alkaline phosphatase. Incubation of purified Ca2+-ATPase with protein kinase C in the presence of 12-O-tetradecanoylphorbol-13-acetate or diolein led to a stimulation of Ca2+-dependent ATPase activity. These results indicate that protein kinase C stimulates the activity of the plasma membrane Ca2+ pump by a direct effect on the pump protein.  相似文献   

12.
The Ca2+ and calmodulin sensitivity of endogenous protein kinase activity in synaptosomal membrane fragments from rat brain was studied in medium containing Ca2+ plus EGTA using a modified computer programme to calculate free Ca2+ concentrations that took into account the effect of all competing cations and chelators. The Ca2+-dependent phosphorylation of 10 major polypeptide acceptors with Mr values ranging from 50 to 360 kilodaltons required calmodulin in reactions that were all equally sensitive to Ca2+; half-maximal phosphorylation required a free Ca2+ concentration of 45 nM and maximal phosphorylation approximately 110 nM. The significance of these values in relation to published data on the intracellular concentration of free Ca2+ in the nervous system is discussed. One acceptor of 45 kilodaltons was phosphorylated in a Ca2+-dependent reaction that did not require calmodulin. This polypeptide appeared to correspond to the B-50 protein, an established substrate of the lipid-dependent protein kinase C. Further study of this phosphorylating system showed that the reaction was only independent of calmodulin at saturating concentrations of Ca2+; at subsaturating concentrations (in the range 50-130 nM), a small but significant stimulation of the enzyme by calmodulin was demonstrated. The possible significance of this finding is discussed.  相似文献   

13.
The plasma membrane Ca2+ pump ATPase from porcine aorta was isolated by the calmodulin affinity chromatographic method of Kosk-Kosicka et al. (Kosk-Kosicka, D., Scaillet, S., and Inesi, G. (1986) J. Biol. Chem. 261, 3333-3338). Its activity was restored by adding either phosphatidylcholine or phosphatidylserine. Cyclic GMP-dependent protein kinase (G-kinase) stimulated the enzyme in a concentration-dependent manner. However, phosphatidylinositol kinase (PI-kinase) activity was not detected in the enzyme preparation, and the presence of phosphatidylinositol was not necessary for stimulation by G-kinase. Furthermore, adenosine, a potent PI-kinase inhibitor, did not affect the stimulation. The enzyme preparation contained three major proteins, with molecular masses of 240, 145, and 135 kDa, as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The 240- and 135-kDa proteins were phosphorylated in association with the stimulation by G-kinase, but only the phosphorylation of the 240-kDa protein was dependent on the G-kinase concentration. A purified enzyme without the 240-kDa protein, prepared by our previous method (Imai, S., Yoshida, Y., and Sun, H.-T. (1990) J. Biochem. (Tokyo) 107, 755-761), was not activated by G-kinase. Immunoblotting with an antibody against the human erythrocyte Ca2+ pump revealed that the 135-kDa protein corresponded to one of the isoforms of the plasma membrane Ca2+ pump. These results suggest that the phosphorylation of the 240-kDa protein is responsible for stimulation of the plasma membrane Ca2+ pump ATPase by G-kinase.  相似文献   

14.
An ATP-dependent transport system which is active at concentrations of free Ca2+ in the submicromolar range has been identified in adipocyte plasma membranes. The system appears to represent the functional component of the high affinity insulin-sensitive calcium-stimulated, magnesium-dependent adenosine triphosphatase preveiously described in the same preparation (Pershadsingh, H. A., and McDonald, J. M. (1979) Nature 281, 495-497). This ATP-dependent Ca2+ transport pump was stimulated approximately 3-fold by the Ca2+-dependent regulatory protein, calmodulin. This effect was confined to the plasma membrane since a similar effect was undetectable in the fraction enriched in endoplasmic reticulum. Calmodulin stimulation was dose-dependent but saturable with half-maximal activation occurring at 0.72 microgram/ml (43 nM). Calmodulin appeared to stimulate the system primarily by decreasing the apparent half-maximal saturation constant for free Ca2+ from 0.20 +/- 0.04 microM to 0.07 +/- 0.01 microM (n = 3). The Hill coefficient increased from 1.6 +/- 0.2 to 3.2 +/- 0.6 (n = 3), thus showing an increased positive cooperativity which allows the pump to be activated by an exceedingly narrow Ca2+ threshold in the presence of calmodulin. The calmodulin stimulation of the plasma membrane Ca2+ extrusion pump in adipocytes, working in opposition to metabolic signals which increase cytoplasmic Ca2+, could constitute a self-regulating negative feedback device for maintaining a low steady state level of intracellular Ca2+. This feedback system may be of critical importance in regulation of cellular metabolism by insulin.  相似文献   

15.
Isoform 4b of the human plasma membrane Ca2+ pump was expressed in COS cells and in the baculovirus system (Sf9 cells). A 105-kDa pump fragment lacking the first two transmembrane domains and the so-called transduction domain was also expressed. The expression level was 2-4 times the background in COS cells and at least 7 times in the baculovirus system. Tests on membranes from both systems showed that the expressed pump was active. The expressed pump and the 105-kDa fragment were isolated from Sf9 cell membranes by calmodulin affinity chromatography. The pump had Ca(2+)-dependent ATPase activity with a calmodulin stimulation factor of 3, formed a La(3+)-stabilized phosphoenzyme, and had a KM (Ca2+) in the presence of calmodulin of about 1 microM. The 105-kDa fragment, assayed by the phosphoenzyme test on COS or Sf9 cell membranes or by ATPase measurements after isolation from Sf9 cells, proved inactive. Laser confocal microscopy on Sf9 cells showed that both the pump and the 105-kDa fragment were apparently associated with the plasma membrane. The expressed pump in COS and Sf9 cells and the endogenous pump in a number of other cell lines had a slower gel mobility (i.e. a higher apparent molecular mass) than the erythrocyte pump.  相似文献   

16.
We report here characterization of calmodulin-stimulated Ca2+ transport activities in synaptic plasma membranes (SPM). The calcium transport activity consists of a Ca2+-stimulated, Mg2+-dependent ATP hydrolysis coupled with ATP-dependent Ca2+ uptake into membraneous sacs on the cytosolic face of the synaptosomal membrane. These transport activities have been found in synaptosomal subfractions to be located primarily in SPM-1 and SPM-2. Both Ca2+-ATPase and ATP-dependent Ca2+ uptake require calmodulin for maximal activity (KCm for ATPase = 60 nM; KCm for uptake = 50 nM). In the reconstituted membrane system, KCa was found to be 0.8 microM for Ca2+-ATPase and 0.4 microM for Ca2+ uptake. These results demonstrate for the first time the calmodulin requirements for the Ca2+ pump in SPM when Ca2+ ATPase and Ca2+ uptake are assayed under functionally coupled conditions. They suggest that calmodulin association with the membrane calcium pump is regulated by the level of free Ca2+ in the cytoplasm. The activation by calmodulin, in turn, regulates the cytosolic Ca2+ levels in a feedback process. These studies expand the calmodulin hypothesis of synaptic transmission to include activation of a high-affinity Ca2+ + Mg2+ ATPase as a regulator for cytosolic Ca2+.  相似文献   

17.
Increased membrane permeability (conductance) that is specific for K+ and directly activated by Ca2+ ions, has been identified in isolated adipocyte plasma membranes using the K+ analogue, 86Rb+. Activation of these K+ conductance pathways (channels) by free Ca2+ was concentration dependent with a half-maximal effect occurring at 32 +/- 4 nM free Ca2+ (n = 7). Addition of calmodulin further enhanced the Ca2+ activating effect on 86Rb+ uptake (K+ channel activity). Ca2+-dependent 86Rb+ uptake was inhibited by tetraethylammonium ion and low pH. It is concluded that the adipocyte plasma membrane possesses K+ channels that are activated by Ca2+ and amplified by calmodulin.  相似文献   

18.
A Ca2(+)-pumping ATPase has been characterized in rat hepatocyte plasma membranes. The enzyme has high Ca2+ affinity, and properties typical of a P-type ion pump. At variance with the Ca2+ pumps of other eukaryotic plasma membranes, it is not stimulated by calmodulin. The steady state concentration of the phosphoenzyme formed in the presence of ATP is increased by La3+. The enzyme cross-reacts with a monoclonal antibody (mAb-5F10) raised against the human erythrocyte Ca2+ pump. The enzyme has been purified using a mAb-5F10 antibody affinity column. CNBr digestion of the isolated protein has yielded two peptides which have been sequenced. One of them matches perfectly a sequence contained in the erythrocyte Ca2+ pump, the other is very homologous to another domain in the erythrocyte pump. In spite of the absence of calmodulin stimulation, 125I-calmodulin overlay experiments on the purified liver ATPase under denaturing conditions have revealed that the enzyme binds calmodulin even more strongly than the erythrocyte pump. Immunocytochemical experiments on liver slices using the mAb-5F10 antibody have shown that the enzyme is located predominantly in the blood sinusoidal domain of the hepatocyte plasma membrane.  相似文献   

19.
The aim of this study was to investigate (a) whether Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) participates in the regulation of plasma membrane Ca2+-ATPase and (b) its possible cross-talk with other kinase-mediated modulatory pathways of the pump. Using isolated innervated membranes of the electrocytes from Electrophorus electricus L., we found that stimulation of endogenous protein kinase A (PKA) strongly phosphorylated membrane-bound CaM kinase II with simultaneous substantial activation of the Ca2+ pump (approximately 2-fold). The addition of cAMP (5-50 pM), forskolin (10 nM), or cholera toxin (10 or 100 nM) stimulated both CaM kinase II phosphorylation and Ca2+-ATPase activity, whereas these activation processes were cancelled by an inhibitor of the PKA alpha-catalytic subunit. When CaM kinase II was blocked by its specific inhibitor KN-93, the Ca2+-ATPase activity decreased to the levels measured in the absence of calmodulin; the unusually high Ca2+ affinity dropped 2-fold; and the PKA-mediated stimulation of Ca2+-ATPase was no longer seen. Hydroxylamine-resistant phosphorylation of the Ca2+-ATPase strongly increased when the PKA pathway was activated, and this phosphorylation was suppressed by inhibition of CaM kinase II. We conclude that CaM kinase II is an intermediate in a complex regulatory network of the electrocyte Ca2+ pump, which also involves calmodulin and PKA.  相似文献   

20.
Measurements of cellular Ca2+-calmodulin concentrations have suggested that competition for limiting calmodulin may couple calmodulin-dependent activities. Here we have directly tested this hypothesis. We have found that in endothelial cells the amount of calmodulin bound to nitric-oxide synthase and the catalytic activity of the enzyme both are increased approximately 3-fold upon changes in the phosphorylation status of the enzyme. Quantitative immunoblotting indicates that the synthase can bind up to 25% of the total cellular calmodulin. Consistent with this, simultaneous determinations of the free Ca2+ and Ca2+-calmodulin concentrations in these cells performed using indo-1 and a fluorescent calmodulin biosensor (Kd = 2 nm) indicate that increased binding of calmodulin to the synthase is associated with substantial reductions in the Ca2+-calmodulin concentrations produced and an increase in the [Ca2+]50 for formation of the calmodulin-biosensor complex. The physiological significance of these effects is confirmed by a corresponding 40% reduction in calmodulin-dependent plasma membrane Ca2+ pump activity. An identical reduction in pump activity is produced by expression of a high affinity (Kd = 0.3 nm) calmodulin biosensor, and treatment to increase calmodulin binding to the synthase then has no further effect. This suggests that the observed reduction in pump activity is due specifically to reduced calmodulin availability. Increases in synthase activity thus appear to be coupled to decreases in the activities of other calmodulin targets through reductions in the size of a limiting pool of available calmodulin. This exemplifies what is likely to be a ubiquitous mechanism for coupling among diverse calmodulin-dependent activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号