首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Construction of a reference linkage map for melon.   总被引:19,自引:0,他引:19  
A map of melon (Cucumis melo L.) with 411 markers (234 RFLPs, 94 AFLPs, 47 RAPDs, 29 SSRs, five inter-SSRs, and two isozymes) and one morphological trait (carpel number) was constructed using the F2 progeny of a cross between the Korean accession P1161375 and the Spanish melon type 'Pinyonet Piel de Sapo'. RFLPs were obtained using 212 probes from different genomic and cDNA melon libraries, including 16 Arabidopsis ESTs, 13 Cucumis known genes, and three resistant gene homologues. Most loci (391) mapped to 12 major linkage groups, spanning a total genetic distance of 1197 cM, with an average map interval of 3 cM/marker. The remaining 21 loci (six RAPDs and 15 AFLPs) were not linked. A majority (66%) of the markers were codominant (RFLPs, SSRs, and isozymes), making them easily transferable to other melon crosses. Such markers can be used as a reference, to merge other melon and cucumber maps already constructed. Indeed, some of them (23 SSRs, 14 RFLPs, one isozyme, and one morphological trait) could act as anchor points with other published cucurbit maps.  相似文献   

2.
Simple sequence repeats in Cucumis mapping and map merging.   总被引:14,自引:0,他引:14  
Thirty-four polymorphic simple-sequence repeats (SSRs) were evaluated for length polymorphism in melon (Cucumis melo L.) and cucumber (Cucumis sativus L.). SSR markers were located on three melon maps (18 on the map of 'Vedrantais' and PI 161375, 23 on the map of 'Piel de Sapo' and PI 161375, and 16 on the map of PI 414723 and 'Dulce'). In addition, 14 of the markers were located on the cucumber map of GY14 and PI 183967. SSRs proved to be randomly distributed throughout the melon and cucumber genomes. Mapping of the SSRs in the different maps led to the cross-identification of seven linkage groups in all melon maps. In addition, nine SSRs were common to both melon and cucumber maps. The potential of SSR markers as anchor points for melon-map merging and for comparative mapping with cucumber was demonstrated.  相似文献   

3.
Sorghum [Sorghum bicolor (L.) Moench] is an important crop in the semi-arid tropics that also receives growing attention in genetic research. A comprehensive reference map of the sorghum genome would be an essential research tool. Here, a combined sorghum linkage map from two recombinant inbred populations was constructed using AFLP, SSR, RFLP and RAPD markers. The map was aligned with other published sorghum maps which are briefly reviewed. The two recombinant inbred populations (RIPs) analyzed in this study consisted of 225 (RIP 1) and 226 (RIP 2) F3:5 lines, developed from the crosses IS 9830 2 E 36-1 (RIP 1) and N 13 2 E 36-1 (RIP 2), respectively. The genetic map of RIP 1 had a total length of 1,265 cM (Haldane), with 187 markers (125 AFLPs, 45 SSRs, 14 RFLPs, 3 RAPDs) distributed over ten linkage groups. The map of RIP 2 spanned 1,410 cM and contained 228 markers (158 AFLPs, 54 SSRs, 16 RFLPs) in 12 linkage groups. The combined map of the two RIPs contained 339 markers (249 AFLPs, 63 SSRs, 24 RFLPs, 3 RAPDs) on 11 linkage groups and had a length of 1,424 cM. It was in good agreement with other sorghum linkage maps, from which it deviated by a few apparent inversions, deletions, and additional distal regions.  相似文献   

4.
与基因组SSR(gSSR)相比,基于EST开发的SSR(EST-SSR)成本低,物种间通用性更强,同时EST-SSR来源于基因编码区,可以作为功能基因的直接标记,因此EST-SSR的开发和应用逐渐受到人们的重视.就葫芦科主要瓜类作物(西瓜、甜瓜和黄瓜)EST-SSR的研究进展进行回总结,并预测和探讨了EST-SSR标记的发展趋势,以期为今后该种新型分子标记在瓜类作物上的应用提供参考.  相似文献   

5.
The availability of genetic maps and phenotypic data of segregating populations allows to localize and map agronomically important genes, and to identify closely associated molecular markers to be used in marker-assisted selection and positional cloning. The objective of the present work was to develop a durum wheat intervarietal genetic and physical map based on genomic microsatellite or genomic simple sequence repeats (gSSR) markers and expressed sequence tag (EST)-derived microsatellite (EST-SSR) markers. A set of 122 new EST-SSR loci amplified by 100 primer pairs was genetically mapped on the wheat A and B genome chromosomes. The whole map also comprises 149 gSSR markers amplified by 120 primer pairs used as anchor chromosome loci, two morphological markers (Black colour, Bla1, and spike glaucousness, Ws) and two seed storage protein loci (Gli-A2 and Gli-B2). The majority of SSR markers tested (182) was chromosome-specific. Out of 275 loci 241 loci assembled in 25 linkage groups assigned to the chromosomes of the A and B genome and 34 remained unlinked. A higher percentage of markers (54.4%), localized on the B genome chromosomes, in comparison to 45.6% distributed on the A genome. The whole map covered 1,605 cM. The B genome accounted for 852.2 cM of genetic distance; the A genome basic map spanned 753.1 cM with a minimum length of 46.6 cM for chromosome 5A and a maximum of 156.2 cM for chromosome 3A and an average value of 114.5 cM. The primer sets that amplified two or more loci mapped to homoeologous as well as to non-homoeologous sites. Out of 241 genetically mapped loci 213 (88.4%) were physically mapped by using the nulli-tetrasomic, ditelosomic and a stock of 58 deletion lines dividing the A and B genome chromosomes in 94 bins. No discrepancies concerning marker order were observed but the cytogenetic maps revealed in some cases small genetic distance covered large physical regions. Putative function for mapped SSRs were assigned by searching against GenBank nonredundant database using TBLASTX algorithms.  相似文献   

6.
Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.)   总被引:2,自引:1,他引:1  
We report the development of 158 primer pairs flanking SSR motifs in genomic (gSSR) and EST (EST-SSR) melon sequences, all yielding polymorphic bands in melon germplasm, except one that was polymorphic only in Cucurbita species. A similar polymorphism level was found among EST-SSRs and gSSRs, between dimeric and trimeric EST-SSRs, and between EST-SSRs placed in the open reading frame or any of the 5′- or 3′-untranslated regions. Correlation between SSR length and polymorphism was only found for dinucleotide EST-SSRs located within the untranslated regions, but not for trinucleotide EST-SSRs. Transferability of EST-SSRs to Cucurbita species was assayed and 12.7% of the primer pairs amplified at least in one species, although only 5.4% were polymorphic. A set of 14 double haploid lines from the cross between the cultivar “Piel de Sapo” and the accession PI161375 were selected for the bin mapping approach in melon. One hundred and twenty-one SSR markers were newly mapped. The position of 46 SSR loci was also verified by genotyping the complete population. A final bin-map was constructed including 80 RFLPs, 212 SSRs, 3 SNPs and the Nsv locus, distributed in 122 bins with an average bin length of 10.2 cM and a maximum bin length of 33 cM. Map density was 4.2 cM/marker or 5.9 cM/SSR. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
One hundred and ten markers were analysed for linkage in 218 F2 plants derived from two divergent cultivars (Védrantais and Songwhan Charmi) of Cucumis melo (L.). Thirty-four RFLPs, 64 RAPDs, one isozyme, four disease resistance markers and one morphological marker were used to construct a genetic map spanning 14 linkage groups covering 1390 cM of the melon genome. RAPD and RFLP markers detected similar polymorphism levels. RFLPs were largely due to base substitutions rather than insertion/deletions. Twelve percent of markers showed distorted segregation. Phenotypic markers consisted of two resistance genes against Fusarium wilt (Fom-1 and Fom-2), one gene (nsv) controlling the resistance to melon necrotic spot virus, one gene (Vat) conferring resistance to Aphis gossypii, and a recessive gene for carpel numbers (3 vs 5 carpels: p).  相似文献   

8.
Black poplar (Populus nigra L.) is a tree of ecological and economic interest. A better knowledge of P. nigra genome is needed for an effective protection and use of its genetic resources. The main objective of this study is the construction of a highly informative genetic map of P. nigra species including genes of adaptive and economic interest. Two genotypes originated from contrasted natural Italian populations were crossed to generate a F1 mapping pedigree of 165 individuals. Amplification fragment length polymorphism (AFLP), simple sequence repeat (SSR), and single nucleotide polymorphism (SNP) markers were used to genotype 92 F1 individuals, and the pseudo-test-cross strategy was applied for linkage analysis. The female parent map included 368 markers (274 AFLPs, 91 SSRs, and 3 SNPs) and spanned 2,104 cM with 20 linkage groups, and the male parent map, including 317 markers (205 AFLPs, 106 SSRs, 5 SNPs, and sex trait), spanned 2,453 cM with 23 main linkage groups. The sex, as morphological trait, was mapped on the linkage group XIX of the male parent map. The generated maps are among the most informative in SSRs when compared to the Populus maps published so far and allow a complete alignment with the 19 haploid chromosomes of Populus sequence genome. These genetic maps provide informative tools for a better understanding of P. nigra genome structure and genetic improvement of this ecologically and economically important European tree species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Four F2 mapping populations derived from crosses between rye inbred lines DS2×RXL10, 541×Ot1-3, S120×S76 and 544×Ot0-20 were used to develop a consensus map of chromosome 6R. Thirteen marker loci that were polymorphic in more than one mapping population constituted the basis for the alignment of the four maps using the JoinMap v. 3.0 software package. The consensus map consists of 104 molecular marker loci including RFLPs, RAPDs, AFLPs, SSRs, ISSRs, SCARs, STSs and isozymes. The average distance between the marker loci is 1.3 cM, and the total map length is 135.5 cM. This consensus map may be used as a source of molecular markers for the rapid development of new maps of chromosome 6R in any mapping population.  相似文献   

10.
A new linkage map of Cucumis melo, derived from the F2 progeny of a cross between PI 414723 and C. melo 'TopMark' is presented. The map spans a total of 1421 cM and includes 179 points consisting of random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), inter-simple sequence repeats (ISSRs), simple sequence repeats (SSRs), and restriction fragment length polymorphism (RFLP) markers. The map also includes an aphid resistance trait (Vat) and the sex type gene, andromonoecious (a), the two of which are important in resistance breeding and the control of hybrid seed production, as well as a seed-color gene, Wt-2. Most RFLPs represent sequence-characterized cDNA probes from C. melo and Cucumis sativus. These include resistance gene homologues and genes involved in various aspects of plant development and metabolism. A sub-set of our SSR and RFLP markers were also mapped, as part of this study, on additional mapping populations that were published for this species. This provides important reference points ("anchors"), enabling us to identify several linkage groups with respect to other melon maps.  相似文献   

11.

Background

Genetic markers and linkage mapping are basic prerequisites for marker-assisted selection and map-based cloning. In the case of the key grassland species Lolium spp., numerous mapping populations have been developed and characterised for various traits. Although some genetic linkage maps of these populations have been aligned with each other using publicly available DNA markers, the number of common markers among genetic maps is still low, limiting the ability to compare candidate gene and QTL locations across germplasm.

Results

A set of 204 expressed sequence tag (EST)-derived simple sequence repeat (SSR) markers has been assigned to map positions using eight different ryegrass mapping populations. Marker properties of a subset of 64 EST-SSRs were assessed in six to eight individuals of each mapping population and revealed 83% of the markers to be polymorphic in at least one population and an average number of alleles of 4.88. EST-SSR markers polymorphic in multiple populations served as anchor markers and allowed the construction of the first comprehensive consensus map for ryegrass. The integrated map was complemented with 97 SSRs from previously published linkage maps and finally contained 284 EST-derived and genomic SSR markers. The total map length was 742 centiMorgan (cM), ranging for individual chromosomes from 70 cM of linkage group (LG) 6 to 171 cM of LG 2.

Conclusions

The consensus linkage map for ryegrass based on eight mapping populations and constructed using a large set of publicly available Lolium EST-SSRs mapped for the first time together with previously mapped SSR markers will allow for consolidating existing mapping and QTL information in ryegrass. Map and markers presented here will prove to be an asset in the development for both molecular breeding of ryegrass as well as comparative genetics and genomics within grass species.  相似文献   

12.
AFLP markers were obtained with 12 EcoRI/ MseI primer combinations on two independent F2 populations of Lactuca sativa ×Lactuca saligna. The polymorphism rates of the AFLP products between the two different L. saligna lines was 39%, between the two different L. sativa cultivars 13% and between the L. sativa and L. saligna parents on average 81%. In both F2 populations segregation distortion was found, but only Chromosome 5 showed skewness that was similar for both populations. Two independent genetic maps of the two F2 populations were constructed that could be integrated due to the high similarity in marker order and map distances of 124 markers common to both populations. The integrated map consisted of 476 AFLP markers and 12 SSRs on nine linkage groups spanning 854 cM. The AFLP markers on the integrated map were randomly distributed with an average spacing between markers of 1.8 cM and a maximal distance of 16 cM. Furthermore, the AFLP markers did not show severe clustering. This AFLP map provides good opportunities for use in QTL mapping and marker-assisted selection. Received: 13 July 2000 / Accepted: 19 January 2001  相似文献   

13.
A composite genetic melon map was generated based on two recombinant inbred line (RI) populations. By analyzing the segregation of 346 AFLPs, 113 IMAs and phenotypic characters on a RI population of 163 individuals derived from the cross Védrantais x PI 161375, a first map was constructed. About 20% of the molecular markers were skewed, and the residual heterozygosity was estimated at 4.43% which was not significantly different from the theoretical value of 4.2%. The genome distribution of molecular markers among the 12 linkage groups was not different from a random distribution with the exception of linkage group XII which was found significantly less populated. The genome distributions of IMAs and AFLPs were complementary. AFLPs were found mainly in the middle of each linkage group and sometimes clustered, whereas IMAs were found mainly at the end. A total of 318 molecular markers, mainly AFLP and IMA markers, were mapped on 63 RIs of the second population, Védrantais x PI 414723. Comparison of the maps enables one to conclude that AFLPs and IMAs of like molecular size, amplified with the same primer combination, correspond to the same genetic locus. Both maps were joined through 116 common markers comprising 106 comigrating AFLPs/IMAs, plus five SSRs and five phenotypic markers. The integrated melon map contained 668 loci issuing from the segregation of 1,093 molecular markers in the two RI populations. The composite map spanned 1,654 cM on 12 linkage groups which is the haploid number of chromosomes in melon. Thirty two known-function probes, i.e. known-function genes (9) and morphological traits (23), were included in this map. In addition, the composite map was anchored to previously published maps through SSRs, RFLPs and phenotypic characters.  相似文献   

14.
New microsatellites markers [simple sequence repeat (SSR)] have been isolated from rose and integrated into an existing amplified fragment-length polymorphism genetic map. This new map was used to identify quantitative trait locus (QTL) controlling date of flowering and number of petals. From a rose bud expressed sequence tag (EST) database of 2,556 unigenes and a rose genomic library, 44 EST-SSRs and 20 genomic-SSR markers were developed, respectively. These new rose SSRs were used to expand genetic maps of the rose interspecific F1 progeny. In addition, SSRs from other Rosaceae genera were also tested in the mapping progeny. Genetic maps for the two parents of the progeny were constructed using pseudo-testcross mapping strategy. The maps consist of seven linkage groups of 105 markers covering 432 cM for the maternal map and 136 markers covering 438 cM for the paternal map. Homologous relationships among linkage groups between the maternal and paternal maps were established using SSR markers. Loci controlling flowering traits were localised on genetic maps as a major gene and QTL for the number of petals and a QTL for the blooming date. New SSR markers developed in this study will provide tools for the establishment of a consensus linkage map for roses that combine traits and markers in various rose genetic maps.  相似文献   

15.
Summary Recently, maize (Zea mays L.) genetic maps based primarily upon segregating restriction fragment length polymorphisms (RFLPs) have been developed by several research groups. Some of the reported maps were based upon data from a single segregating population, whereas others were based upon information from several segregating populations. Potential problems with pooling information from several segregating populations have not been reported. These include the fact that few genetic markers are polymorphic in all populations, estimates of linkage may differ among populations, and population sizes may differ. We utilize the log-likelihood statistic to genetically map partially overlapping sets of informative genetic markers, to test homogeneity of recombination among populations, and to present a composite RFLP linkage map based upon data pooled from four F2 populations.  相似文献   

16.
Several genetic linkage maps have been published in recent years on different Prunus species suggesting a high level of resemblance among the genomes of these species. One of these maps (Joobeur et al., Theor Appl Genet 97:1034–1041 [(1998); Aranzana et al., Theor Appl Genet 106:819–825 (2002b)] constructed from interspecific almond Texas × peach Earlygold F2 progeny (T×E) was considered to be saturated. We selected 142 F1 apricot hybrids obtained from a cross between P. armeniaca cvs. Polonais and Stark Early Orange for mapping. Eighty-eight RFLP probes and 20 peach SSR primer pairs used for the reference map were selected to cover the eight linkage groups. One P. davidiana and an additional 14 apricot simple sequence repeats (SSRs) were mapped for the F1 progeny. Eighty-three amplified fragment length polymorphisms were added in order to increase the density of the maps. Separate maps were made for each parent according to the double pseudo-testcross model of analysis. A total of 141 markers were placed on the map of Stark Early Orange, defining a total length of 699 cM, and 110 markers were placed on the map of Polonais, defining a total length of 538 cM. Twenty-one SSRs and 18 restriction placed in the T×E map were heterozygous in both parents (anchor loci), thereby enabling the alignment of the eight homologous linkage groups of each map. Except for 15 markers, most markers present in each linkage group in apricot were aligned with those in T×E map, indicating a high degree of colinearity between the apricot genome and the peach and almond genomes. These results suggest a strong homology of the genomes between these species and probably between Prunophora and Amygdalus sub-genera.Communicated by C. Möllers  相似文献   

17.
An integrated SSR map of grapevine based on five mapping populations   总被引:8,自引:7,他引:1  
A grapevine (mainly Vitis vinifera L., 2n = 38) composite genetic map was constructed with CarthaGene using segregation data from five full-sib populations of 46, 95, 114, 139 and 153 individuals, to determine the relative position of a large set of molecular markers. This consensus map comprised 515 loci (502 SSRs and 13 other type PCR-based markers), amplified using 439 primer pairs (426 SSRs and 13 others) with 50.1% common markers shared by at least two crosses. Out of all loci, 257, 85, 74, 69 and 30 were mapped in 1, 2, 3, 4 and 5 individual mapping populations, respectively. Marker order was generally well conserved between maps of individual populations, with only a few significant differences in the recombination rate of marker pairs between two or more populations. The total length of the integrated map was 1,647 cM Kosambi covering 19 linkage groups, with a mean distance between neighbour loci of 3.3 cM. A framework-integrated map was also built, with marker order supported by a LOD of 2.0. It included 257 loci spanning 1,485 cM Kosambi with a mean inter-locus distance of 6.2 cM over 19 linkage groups. These integrated maps are the most comprehensive SSR-based maps available so far in grapevine and will serve either for choosing markers evenly scattered over the whole genome or for selecting markers that cover particular regions of interest. The framework map is also a useful starting point for the integration of the V. vinifera physical and genetic maps.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

18.
Durum wheat (Triticum turgidum L. var. durum) is an economically and nutritionally important cereal crop in the Mediterranean region. To further our understanding of durum genome organization we constructed a durum linkage map using restriction fragment length polymorphisms (RFLPs), simple sequence repeats (SSRs) known as Gatersleben wheat microsatellites (GWMs), amplified fragment length polymorphisms (AFLPs), and seed storage proteins (SSPs: gliadins and glutenins). A population of 110 F9 recombinant inbred lines (RILs) was derived from an intraspecific cross between two durum cultivars, Jennah Khetifa and Cham 1. The two parents exhibit contrasting traits for resistance to biotic and abiotic stresses and for grain quality. In total, 306 markers have been placed on the linkage map – 138 RFLPs, 26 SSRs, 134 AFLPs, five SSPs, and three known genes (one pyruvate decarboxylase and two lipoxygenases). The map is 3598 cM long, with an average distance between markers of 11.8 cM, and 12.1% of the markers deviated significantly from the expected Mendelian ratio 1:1. The molecular markers were evenly distributed between the A and B genomes. The chromosome with the most markers is 1B (41 markers), followed by 3B and 7B, with 25 markers each. The chromosomes with the fewest markers are 2A (11 markers), 5A (12 markers), and 4B (15 markers). In general, there is a good agreement between the map obtained and the Triticeae linkage consensus maps. This intraspecific map provides a useful tool for marker-assisted selection and map-based breeding for resistance to biotic and abiotic stresses and for improvement of grain quality. Received: 14 February 2000 / Accepted: 28 April 2000  相似文献   

19.
Molecular divergence and hybrid performance in rice   总被引:42,自引:0,他引:42  
This study was undertaken to determine the relationship between genetic distance of the parents based on molecular markers and F1 performance in a set of diallel crosses involving eight commonly used parental lines in hybrid rice production. The F1s and their parents were measured for five traits including heading date, plant height, straw weight, grain yield and biomass. The parental lines were assayed for DNA polymorphisms using two classes of markers: 140 probes for restriction fragment length polymorphisms (RFLPs) and 12 simple sequence repeats (SSRs), resulting in a total of 105 polymorphic markers well spaced along the 12 rice chromosomes. SSRs detected more polymorphism than RFLPs among the eight lines. A cluster analysis based on marker genotypes separated these eight lines into three groups which agree essentially with the available pedigree information. Correlations were mostly low between general heterozygosity based on all the markers and F1 performance and heterosis. In contrast, very high correlations were detected between midparent heterosis and specific heterozygosity based on the markers that detected significant effects for all the five traits; these correlations may have practical utility in predicting heterosis. The analyses also suggest the existence of two likely heterotic groups in the rice germplasm represented by these eight lines.  相似文献   

20.
Coffee is one of the main agrifood commodities traded worldwide. In 2009, coffee accounted for 6.1% of the value of Brazilian agricultural production, generating a revenue of US$6 billion. Despite the importance of coffee production in Brazil, it is supported by a narrow genetic base, with few accessions. Molecular differentiation and diversity of a coffee breeding program were assessed with gSSR and EST-SSR markers. The study comprised 24 coffee accessions according to their genetic origin: arabica accessions (six traditional genotypes of C. arabica), resistant arabica (six leaf rust-resistant C. arabica genotypes with introgression of Híbrido de Timor), robusta (five C. canephora genotypes), Híbrido de Timor (three C. arabica x C. canephora), triploids (three C. arabica x C. racemosa), and racemosa (one C. racemosa). Allele and polymorphism analysis, AMOVA, the Student t-test, Jaccard's dissimilarity coefficient, cluster analysis, correlation of genetic distances, and discriminant analysis, were performed. EST-SSR markers gave 25 exclusive alleles per genetic group, while gSSR showed 47, which will be useful for differentiating accessions and for fingerprinting varieties. The gSSR markers detected a higher percentage of polymorphism among (35% higher on average) and within (42.9% higher on average) the genetic groups, compared to EST-SSR markers. The highest percentage of polymorphism within the genetic groups was found with gSSR markers for robusta (89.2%) and for resistant arabica (39.5%). It was possible to differentiate all genotypes including the arabica-related accessions. Nevertheless, combined use of gSSR and EST-SSR markers is recommended for coffee molecular characterization, because EST-SSRs can provide complementary information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号