首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fractions containing a high molecular weight form (Mr approximately equal to 2 X 10(6] of the activity that replicates in vitro both the 2-micron yeast DNA plasmid and the chromosomal autonomously replicating sequence ars 1 can be prepared from cells of the budding yeast Saccharomyces. Protein complexes from the fractions associate in vitro with the replication origins of these DNA elements, as determined by electron microscopy. In the present study, the high molecular weight replicative fraction has been characterized in further detail. The DNA synthetic activity in the high molecular weight fraction was bound to the DNA and could be isolated with it. This binding of the replicating activity to the DNA was greatly reduced in the absence of the 2-micron origins of replication. Association of the protein complexes with DNA depended on the amount of replicating activity added, was sensitive to 0.2 M KCl, and exhibited a requirement for rATP and deoxyribonucleoside triphosphates. It was not blocked, however, by the DNA polymerase inhibitor aphidicolin or by the RNA polymerase inhibitor alpha-amanitin. The lack of inhibition by aphidicolin suggests that the deoxyribonucleoside triphosphates may function as cofactors in the binding of protein complexes to DNA or as substrates for a polymerizing activity such as a primase. Binding of the protein complexes as well as actual DNA replication were heat sensitive in the high molecular weight fraction prepared from the temperature-sensitive mutant of the cell division cycle cdc 8. This suggests that the cdc 8 gene product is present in a replicative protein complex and strengthens the conclusion that the presence of the protein complexes on the DNA is associated with replication. Using independent enzyme assays, several other possible replication proteins (including DNA polymerase I, DNA ligase, DNA primase, and DNA topoisomerase II) have been identified directly in the high molecular weight replicative fraction. All of these results provide support for the idea that a protein complex (or replisome ) is involved in the replication of both the extrachromosomal 2-micron DNA and chromosomal DNA in yeast.  相似文献   

2.
S E Celniker  J L Campbell 《Cell》1982,31(1):201-213
An enzyme system prepared from Saccharomyces cerevisiae carries out the replication of exogenous yeast plasmid DNA. Replication in vitro mimics that in vivo in that DNA synthesis in extracts of strain cdc8, a temperature-sensitive DNA replication mutant, is thermolabile relative to the wild-type, and in that aphidicolin inhibits replication in vitro. Furthermore, only plasmids containing a functional yeast replicator, ARS, initiate replication at a specific site in vitro. Analysis of replicative intermediates shows that plasmid YRp7, which contains the chromosomal replicator ARS1, initiates bidirectional replication in a 100 bp region within the sequence required for autonomous replication in vivo. Plasmids containing ARS2, another chromosomal replicator, and the ARS region of the endogenous yeast plasmid 2 microns circle give similar results, suggesting that ARS sequences are specific origins of chromosomal replication. Used in conjunction with deletion mapping, the in vitro system allows definition of the minimal sequences required for the initiation of replication.  相似文献   

3.
Eukaryotic origin recognition complexes (ORCs) play pivotal roles in the initiation of chromosomal DNA replication. ORC from the yeast, Saccharomyces cerevisiae, recognizes and binds replication origins in the late G1 phase and the binding has profound implications in the progression of the cell cycle to the S-phase. Therefore, we have quantitatively analyzed the mechanism of recognition and interaction of the yeast ORC with various elements of a yeast origin of DNA replication, the autonomously replicating sequence 1 (ARS1). ORC bound all four individual A and B elements of ARS1 with reasonably high affinities. However, the highest affinity binding was observed with a DNA sequence containing both the A and B1 elements. In addition, ATP and ADP significantly modulated the binding of ORC to the combined elements as well as modulating the binding of ORC to the element A alone or in combination with the B1 element. However, binding of ORC to individual B1, B2, and B3 elements was not responsive to nucleotides. Thus, the consensus ARS sequence in element A appeared to play a pivotal role in the ATP-dependent binding of ORC to ARS1 and likely in other ARSs or origins of DNA replication.  相似文献   

4.
Aging in the yeast Saccharomyces cerevisiae is under the control of multiple pathways. The production and accumulation of extrachromosomal rDNA circles (ERCs) is one pathway that has been proposed to bring about aging in yeast. To test this proposal, we have developed a plasmid-based model system to study the role of DNA episomes in reduction of yeast life span. Recombinant plasmids containing different replication origins, cis-acting partitioning elements, and selectable marker genes were constructed and analyzed for their effects on yeast replicative life span. Plasmids containing the ARS1 replication origin reduce life span to the greatest extent of the plasmids analyzed. This reduction in life span is partially suppressed by a CEN4 centromeric element on ARS1 plasmids. Plasmids containing a replication origin from the endogenous yeast 2 mu circle also reduce life span, but to a lesser extent than ARS1 plasmids. Consistent with this, ARS1 and 2 mu origin plasmids accumulate in approximately 7-generation-old cells, but ARS1/CEN4 plasmids do not. Importantly, ARS1 plasmids accumulate to higher levels in old cells than 2 mu origin plasmids, suggesting a correlation between plasmid accumulation and life span reduction. Reduction in life span is neither an indirect effect of increased ERC levels nor the result of stochastic cessation of growth. The presence of a fully functional 9.1-kb rDNA repeat on plasmids is not required for, and does not augment, reduction in life span. These findings support the view that accumulation of DNA episomes, including episomes such as ERCs, cause cell senescence in yeast.  相似文献   

5.
The DNA replication origins of the yeast Saccharomyces cerevisiae require several short functional elements, most of which are not conserved in sequence. To better characterize ARS305, a replicator from a chromosomal origin, we swapped functional DNA elements of ARS305 with defined elements of ARS1. ARS305 contains elements that are functionally exchangeable with ARS1 A and B1 elements, which are known to bind the origin recognition complex; however, the ARS1 A element differs in that it does not require a 3' box adjacent to the essential autonomously replicating sequence consensus. At the position corresponding to ARS1 B3, ARS305 has a novel element, B4, that can functionally substitute for every type of short element (B1, B2, and B3) in the B domain. Unexpectedly, the replacement of element B4 by ARS1 B3, which binds ABF1p and is known as a replication enhancer, inhibited ARS305 function. ARS305 has no short functional element at or near positions corresponding to the B2 elements in ARS1 and ARS307 but contains an easily unwound region whose functional importance was supported by a broad G+C-rich substitution mutation. Surprisingly, the easily unwound region can functionally substitute for the ARS1 B2 element, even though ARS1 B2 was found to possess a distinct DNA sequence requirement. The functionally conserved B2 element in ARS307 contains a known sequence requirement, and helical stability analysis of linker and minilinker mutations suggested that B2 also contains a DNA unwinding element (DUE). Our findings suggest that yeast replication origins employ a B2 element or a DUE to mediate a common function, DNA unwinding during initiation, although not necessarily through a common mechanism.  相似文献   

6.
ARS replication during the yeast S phase   总被引:43,自引:0,他引:43  
A 1.45 kb circular plasmid derived from yeast chromosome IV contains the autonomous replication element called ARS1. Isotope density transfer experiments show that each plasmid molecule replicates once each S phase, with initiation depending on two genetically defined steps required for nuclear DNA replication. A density transfer experiment with synchronized cells demonstrates that the ARS1 plasmid population replicates early in the S phase. The sequences adjacent to ARS1 on chromosome IV also initiate replication early, suggesting that the ARS1 plasmid contains information which determines its time of replication. The times of replication for two other yeast chromosome sequences, ARS2 and a sequence referred to as 1OZ, indicate that the temporal order of replication is ARS1 leads to ARS2 leads to 1OZ. These experiments show directly that specific chromosome regions replicate at specific times during the yeast S phase. If ARS elements are origins of chromosome replication, then the experiment reveals times of activation for two origins.  相似文献   

7.
The recombinant plasmids containing autonomously replicating sequence (ARS) of yeast rDNA repeat are characterized by a high instability in transformed yeast cells. The instability of chimaric plasmids in yeast may result from improper replication and/or irregular mitotic segregation. To study the replication properties alone we have constructed series of hybrid plasmids containing centromeric DNA (CEN3), a selective marker (leu2) and ARS of rDNA. Each of these plasmids with the functional centromere should exhibit chromosomal i. e. regular type of mitotic segregation. The study of mitotic segregation of constructed plasmids has shown that the ARS rDNA from yeast is distinguished from other ARSs described in literature: ARS1, ARS2, ARS o-micron DNA. 1. The activation of replication of ARS rDNA is accidental, i. e. probability of ARS rDNA in the cell cycle is much less than one. 2. Some nuclear mutations as well as rho- mutation result in the increase of replicative activity of ARS rDNA. In some yeast strains the activity of ARS rDNA can reach the activity of ARS1, i. e. was close to one. The features of ARS rDNA may account for the phenomenon of amplification of rDNA genes.  相似文献   

8.
While many of the proteins involved in the initiation of DNA replication are conserved between yeasts and metazoans, the structure of the replication origins themselves has appeared to be different. As typified by ARS1, replication origins in Saccharomyces cerevisiae are <150 bp long and have a simple modular structure, consisting of a single binding site for the origin recognition complex, the replication initiator protein, and one or more accessory sequences. DNA replication initiates from a discrete site. While the important sequences are currently less well defined, metazoan origins appear to be different. These origins are large and appear to be composed of multiple, redundant elements, and replication initiates throughout zones as large as 55 kb. In this report, we characterize two S. cerevisiae replication origins, ARS101 and ARS310, which differ from the paradigm. These origins contain multiple, redundant binding sites for the origin recognition complex. Each binding site must be altered to abolish origin function, while the alteration of a single binding site is sufficient to inactivate ARS1. This redundant structure may be similar to that seen in metazoan origins.  相似文献   

9.
In budding yeast, the eukaryotic initiator protein ORC (origin recognition complex) binds to a bipartite sequence consisting of an 11 bp ACS element and an adjacent B1 element. However, the genome contains many more matches to this consensus than actually bind ORC or function as origins in vivo. Although ORC-dependent loading of the replicative MCM helicase at origins is enhanced by a distal B2 element, less is known about this element. Here, we analyzed four highly active origins (ARS309, ARS319, ARS606 and ARS607) by linker scanning mutagenesis and found that sequences adjacent to the ACS contributed substantially to origin activity and ORC binding. Using the sequences of four additional B2 elements we generated a B2 multiple sequence alignment and identified a shared, degenerate 8 bp sequence that was enriched within 228 known origins. In addition, our high-resolution analysis revealed that not all origins exist within nucleosome free regions: a class of Sir2-regulated origins has a stably positioned nucleosome overlapping or near B2. This study illustrates the conserved yet flexible nature of yeast origin architecture to promote ORC binding and origin activity, and helps explain why a strong match to the ORC binding site is insufficient to identify origins within the genome.  相似文献   

10.
11.
B B Amati  S M Gasser 《Cell》1988,54(7):967-978
We describe here for the first time the isolation of a yeast nuclear scaffold that maintains specific interactions with yeast genomic DNA sequences. The scaffold-DNA interaction is reversible and saturable, and some binding sites are conserved between yeast and Drosophila KC cells. Second, we find that the specific sequences bound to the yeast nuclear scaffold are the putative origins of replication (ARS elements) and a chromosomal centromere, CENIII. The scaffold association has been closely mapped at the ARS1 locus, and appears to include the 11 bp ARS consensus, but not the ABF-1 binding site. Competition studies show that ARS1 does not compete for CENIII binding, allowing us to distinguish two classes of scaffold attachment sites by functional and structural criteria.  相似文献   

12.
Using oligonucleotide affinity chromatography with DNase I footprinting as an assay we have looked for proteins that interact with sequence elements within the yeast origin of replication, autonomously replicating sequence 1 (ARS1). In this work we describe a protein that binds with high affinity to DNA but displays only moderate sequence specificity. It is eluted at 0.7 M salt from an ARS1 oligonucleotide column. Footprinting analysis on ARS1 at a high protein concentration revealed at least three sites of protection flanking element A and its repeats. Element A itself is rendered hypersensitive to DNase I digestion upon protein binding. This pattern is also observed for the H4 and HMR-E ARSs, suggesting that the protein alters the DNA conformation at element A and its repeats. The affinity-purified fraction is also capable of supercoiling a relaxed, covalently closed plasmid in the presence of topoisomerase. Highly purified preparations of the protein are enriched in an 18-kDa polypeptide which can be renatured from a denaturing gel and shown to bind ARS1 DNA. We have designated this protein DBF-A, DNA-binding factor A.  相似文献   

13.
The function of the relatively well-studied DNA replication origins in the yeast Saccharomyces cerevisiae is dependent upon interactions between origin replication complex (ORC) proteins and several defined origin sequence elements, including the 11 bp ARS consensus sequence (ACS). Although the ORC proteins, as well as numerous other protein components required for DNA replication initiation, are largely conserved between yeast and mammals, DNA sequences within mammalian replication origins are highly variable and sequences homologous to the yeast ACS elements are generally not present. We have previously identified several replication initiation sites within the nontranscribed spacer region of the human ribosomal RNA gene, and found that two highly utilized sites each contain a homologue of the yeast ACS embedded within a DNA unwinding element and a matrix attachment region. Here we examine protein binding within these initiation sites, and demonstrate that these ACS homologues specifically bind the alternate splicing factor SF2/ASF as well as GAPDH in vitro, and present evidence that the SF2/ASF interaction also occurs within the nuclei of intact cells. As the moderate upregulation of SF2/ASF has been linked to oncogenesis through the promotion of alternatively spliced forms of several regulatory proteins, our results suggest an additional mechanism by which SF2/ASF may influence the transformed cell phenotype.  相似文献   

14.
Minichromosome maintenance protein 1 (Mcm1) is required for efficient replication of autonomously replicating sequence (ARS)-containing plasmids in yeast cells. Reduced DNA binding activity in the Mcm1-1 mutant protein (P97L) results in selective initiation of a subset of replication origins and causes instability of ARS-containing plasmids. This plasmid instability in the mcm1-1 mutant can be overcome for a subset of ARSs by the inclusion of flanking sequences. Previous work showed that Mcm1 binds sequences flanking the minimal functional domains of ARSs. Here, we dissected two conserved telomeric X ARSs, ARS120 (XARS6L) and ARS131a (XARS7R), that replicate with different efficiencies in the mcm1-1 mutant. We found that additional Mcm1 binding sites in the C domain of ARS120 that are missing in ARS131a are responsible for efficient replication of ARS120 in the mcm1-1 mutant. Mutating a conserved Mcm1 binding site in the C domain diminished replication efficiency in ARS120 in wild-type cells, and increasing the number of Mcm1 binding sites stimulated replication efficiency. Our results suggest that threshold occupancy of Mcm1 in the C domain of telomeric ARSs is required for efficient initiation. We propose that origin usage in Saccharomyces cerevisiae may be regulated by the occupancy of Mcm1 at replication origins.  相似文献   

15.
In the quest to define autonomously replicating sequences (ARSs) in eukaryotic cells, an ARS consensus sequence (ACS) has emerged for budding yeast. This ACS is recognized by the replication initiator, the origin recognition complex (ORC). However, not every match to the ACS constitutes a replication origin. Here, we investigated the requirements for ORC binding to origins that carry multiple, redundant ACSs, such as ARS603. Previous studies raised the possibility that these ACSs function as individual ORC binding sites. Detailed mutational analysis of the two ACSs in ARS603 revealed that they function in concert and give rise to an initiation pattern compatible with a single bipartite ORC binding site. Consistent with this notion, deletion of one base pair between the ACS matches abolished ORC binding at ARS603. Importantly, loss of ORC binding in vitro correlated with the loss of ARS activity in vivo. Our results argue that replication origins in yeast are in general comprised of bipartite ORC binding sites that cannot function in random alignment but must conform to a configuration that permits ORC binding. These requirements help to explain why only a limited number of ACS matches in the yeast genome qualify as ORC binding sites.  相似文献   

16.
Mcm10 is a conserved eukaryotic DNA replication factor whose function has remained elusive. We report here that Mcm10 binding to replication origins in budding yeast is cell cycle regulated and dependent on the putative helicase, Mcm2-7. Mcm10 is also an essential component of the replication fork. A fraction of Mcm10 binds to DNA, as shown by histone association assays that allow for the study of chromatin binding in vivo. However, Mcm10 is also required to maintain steady-state levels of DNA polymerase-alpha (polalpha). In temperature-sensitive mcm10-td mutants, depletion of Mcm10 during S phase results in degradation of the catalytic subunit of polalpha, without affecting other fork components such as Cdc45. We propose that Mcm10 stabilizes polalpha and recruits the complex to replication origins. During elongation, Mcm10 is required for the presence of polalpha at replication forks and may coordinate DNA synthesis with DNA unwinding by the Mcm2-7 complex.  相似文献   

17.
18.
Origin recognition complex binding to a metazoan replication origin   总被引:8,自引:0,他引:8  
The initiation of DNA replication in eukaryotic cells at the onset of S phase requires the origin recognition complex (ORC) [1]. This six-subunit complex, first isolated in Saccharomyces cerevisiae [2], is evolutionarily conserved [1]. ORC participates in the formation of the prereplicative complex [3], which is necessary to establish replication competence. The ORC-DNA interaction is well established for autonomously replicating sequence (ARS) elements in yeast in which the ARS consensus sequence [4] (ACS) constitutes part of the ORC binding site [2, 5]. Little is known about the ORC-DNA interaction in metazoa. For the Drosophila chorion locus, it has been suggested that ORC binding is dispersed [6]. We have analyzed the amplification origin (ori) II/9A of the fly, Sciara coprophila. We identified a distinct 80-base pair (bp) ORC binding site and mapped the replication start site located adjacent to it. The binding of ORC to this 80-bp core region is ATP dependent and is necessary to establish further interaction with an additional 65-bp of DNA. This is the first time that both the ORC binding site and the replication start site have been identified in a metazoan amplification origin. Thus, our findings extend the paradigm from yeast ARS1 to multicellular eukaryotes, implicating ORC as a determinant of the position of replication initiation.  相似文献   

19.
Autonomously replicating sequence (ARS) elements function as plasmid replication origins. Our studies of the H4 ARS and ARS307 have established the requirement for a DNA unwinding element (DUE), a broad easily-unwound sequence 3' to the essential consensus that likely facilitates opening of the origin. In this report, we examine the intrinsic ease of unwinding a variety of ARS elements using (1) a single-strand-specific nuclease to probe for DNA unwinding in a negatively-supercoiled plasmid, and (2) a computer program that calculates DNA helical stability from the nucleotide sequence. ARS elements that are associated with replication origins on chromosome III are nuclease hypersensitive, and the helical stability minima correctly predict the location and hierarchy of the hypersensitive sites. All well-studied ARS elements in which the essential consensus sequence has been identified by mutational analysis contain a 100-bp region of low helical stability immediately 3' to the consensus, as do ARS elements created by mutation within the prokaryotic M13 vector. The level of helical stability is, in all cases, below that of ARS307 derivatives inactivated by mutations in the DUE. Our findings indicate that the ease of DNA unwinding at the broad region directly 3' to the ARS consensus is a conserved property of yeast replication origins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号