首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many bacterial toxins target small Rho GTPases in order to manipulate the actin cytoskeleton. The depolymerization of the actin cytoskeleton by the Vibrio cholerae RTX toxin was previously identified to be due to the unique mechanism of covalent actin cross-linking. However, identification and subsequent deletion of the actin cross-linking domain within the RTX toxin revealed that this toxin has an additional cell rounding activity. In this study, we identified that the multifunctional RTX toxin also disrupts the actin cytoskeleton by causing the inactivation of small Rho GTPases, Rho, Rac and Cdc42. Inactivation of Rho by RTX was reversible in the presence of cycloheximide and by treatment of cells with CNF1 to constitutively activate Rho. These data suggest that RTX targets Rho GTPase regulation rather than affecting Rho GTPase directly. A novel 548-amino-acid region of RTX was identified to be responsible for the toxin-induced inactivation of the Rho GTPases. This domain did not carry GAP or phosphatase activities. Overall, these data show that the RTX toxin reversibly inactivates Rho GTPases by a mechanism distinct from other Rho-modifying bacterial toxins.  相似文献   

2.
3.
Vibrio cholerae RTX is a large multifunctional bacterial toxin that causes actin crosslinking. Due to its size, it was predicted to undergo proteolytic cleavage during translocation into host cells to deliver activity domains to the cytosol. In this study, we identified a domain within the RTX toxin that is conserved in large clostridial glucosylating toxins TcdB, TcdA, TcnA, and TcsL; putative toxins from V. vulnificus, Yersinia sp., Photorhabdus sp., and Xenorhabdus sp.; and a filamentous/hemagglutinin-like protein FhaL from Bordetella sp. In vivo transfection studies and in vitro characterization of purified recombinant protein revealed that this domain from the V. cholerae RTX toxin is an autoprocessing cysteine protease whose activity is stimulated by the intracellular environment. A cysteine point mutation within the RTX holotoxin attenuated actin crosslinking activity suggesting that processing of the toxin is an important step in toxin translocation. Overall, we have uncovered a new mechanism by which large bacterial toxins and proteins deliver catalytic activities to the eukaryotic cell cytosol by autoprocessing after translocation.  相似文献   

4.
Enteric pathogens often export toxins that elicit diarrhea as a part of the etiology of disease, including toxins that affect cytoskeletal structure. Recently, we discovered that the intestinal pathogen Vibrio cholerae elicits rounding of epithelial cells that is dependent upon a gene we designated rtxA. Here we investigate the association of rtxA with the cell-rounding effect. We find that V. cholerae exports a large toxin, RTX (repeats-in-toxin) toxin, to culture supernatant fluids and that this toxin is responsible for cell rounding. Furthermore, we find that cell rounding is not due to necrosis, suggesting that RTX toxin is not a typical member of the RTX family of pore-forming toxins. Rather, RTX toxin causes depolymerization of actin stress fibers and covalent cross-linking of cellular actin into dimers, trimers and higher multimers. This RTX toxin-specific cross-linking occurs in cells previously rounded with cytochalasin D, indicating that G-actin is the toxin target. Although several models explain our observations, our simultaneous detection of actin cross-linking and depolymerization points toward a novel mechanism of action for RTX toxin, distinguishing it from all other known toxins.  相似文献   

5.
The objective of this study was to analyze multifunctional autoprocessing repeats-in-toxin (MARTX) toxin domain organization within the aquatic species Vibrio vulnificus as well as to study the evolution of the rtxA1 gene. The species is subdivided into three biotypes that differ in host range and geographical distribution. We have found three different types (I, II, and III) of V. vulnificus MARTX (MARTX(Vv)) toxins with common domains (an autocatalytic cysteine protease domain [CPD], an α/β-hydrolase domain, and a domain resembling that of the LifA protein of Escherichia coli O127:H6 E2348/69 [Efa/LifA]) and specific domains (a Rho-GTPase inactivation domain [RID], a domain of unknown function [DUF], a domain resembling that of the rtxA protein of Photorhabdus asymbiotica [rtxA(PA)], and an actin cross-linking domain [ACD]). Biotype 1 isolates harbor MARTX(Vv) toxin types I and II, biotype 2 isolates carry MARTX(Vv) toxin type III, and biotype 3 isolates have MARTX(Vv) toxin type II. The analyzed biotype 2 isolates harbor two identical copies of rtxA1, one chromosomal and the other plasmidic. The evolutionary history of the gene demonstrates that MARTX(Vv) toxins are mosaics, comprising pieces with different evolutionary histories, some of which have been acquired by intra- or interspecific horizontal gene transfer. Finally, we have found evidence that the evolutionary history of the rtxA1 gene for biotype 2 differs totally from the gene history of biotypes 1 and 3.  相似文献   

6.
Vibrio cholerae is a Gram-negative bacterial pathogen that exports enterotoxins to alter host cells and to elicit diarrheal disease. Among the secreted toxins is the multifunctional RTX toxin, which causes cell rounding and actin depolymerization by covalently cross-linking actin monomers into dimers, trimers, and higher multimers. The region of the toxin responsible for cross-linking activity is the actin cross-linking domain (ACD). In this study, we further investigated the role of the ACD in the actin cross-linking reaction. We show that the RTX toxin cross-links actin independently of tissue transglutaminase, thus eliminating an indirect model of ACD activity. We demonstrate that a fusion protein of the ACD and the N-terminal portion of lethal factor from Bacillus anthracis (LF(N)ACD) has cross-linking activity in vivo and in crude cell extracts. Furthermore, we determined that LF(N)ACD directly catalyzes the formation of covalent linkages between actin molecules in vitro and that Mg(2+) and ATP are essential cofactors for the cross-linking reaction. In addition, G-actin is proposed as a cytoskeletal substrate of the RTX toxin in vivo. Future studies of the in vitro cross-linking reaction will facilitate characterization of the enzymatic properties of the ACD and contribute to our knowledge of the novel mechanism of covalent actin cross-linking.  相似文献   

7.
The bacterial protein toxin of Vibrio cholerae, cholera toxin, is a major agent involved in severe diarrhoeal disease. Cholera toxin is a member of the AB toxin family and is composed of a catalytically active heterodimeric A-subunit linked with a homopentameric B-subunit. Upon binding to its receptor, GM0(1), cholera toxin is internalized and transported in a retrograde manner through the Golgi to the ER, where it is retrotranslocated to the cytosol. Here, cholera toxin reaches its intracellular target, the basolaterally located adenylate cyclase which becomes constitutively activated after toxin-induced mono-ADP-ribosylation of the regulating G(S)-protein. Elevated intracellular cAMP levels provoke loss of water and electrolytes which is manifested as the typical diarrhoea. The cholera toxin B-subunit displays the capacity to fortify immune responses to certain antigens, to act as a carrier and to be competent in inducing immunological tolerance. These unique features make cholera toxin a promising tool for immunologists.  相似文献   

8.
This study shows that the Vibrio cholerae RTX toxin is secreted by a four-component type I secretion system (TISS) encoded by rtxB, rtxD, rtxE, and tolC. ATP-binding site mutations in both RtxB and RtxE blocked secretion, demonstrating that this atypical TISS requires two transport ATPases that may function as a heterodimer.  相似文献   

9.
Regulation of toxin biosynthesis by plasmids in Vibrio cholerae   总被引:2,自引:0,他引:2  
Vibrio cholerae strain 569B Inaba harbouring P plasmid produced less toxin than the parent strain. To examine the effect of plasmid loss on toxin production, temperature-sensitive (ts) mutants of P, unable to replicate at 42 degrees C, were isolated. One ts plasmid was unstable at 42 degrees C and its loss yielded a cured strain that resumed a normal level of toxin biosynthesis characteristic of the plasmid-free parent strain. Toxin production was again suppressed in the cured strain after reacquisition of P plasmid. This suggested a role for plasmid-borne genes in the regulation of toxin biosynthesis. A mutant of strain 569B Inaba that produced mutant toxin was isolated by transfer of P and V plasmids. The mutant toxin was similar to choleragenoid because it did not give rise to symptoms of cholera but induced antitoxin immunity in rabbits.  相似文献   

10.
Duplication and amplification of toxin genes in Vibrio cholerae   总被引:60,自引:0,他引:60  
J J Mekalanos 《Cell》1983,35(1):253-263
Vibrio cholerae strains of the classical biotype all contain two widely separated copies of the cholera toxin operon ctxAB. In contrast, EI Tor strains containing multiple copies of ctx have their copies arranged on large tandem repeats which are either 7 or 9.7 kb in length. The variation in size among these large tandem duplications was due to a difference in the copy number of a smaller, 2.7 kb, tandemly repeated sequence (RS1) that is located at the novel joint of these duplications, as well as upstream and downstream of ctx. Southern blot hybridization analysis indicated that amplification of a DNA region carrying ctx and flanked by direct repeats of RS1 may be responsible for the hypertoxinogenic phenotype of EI Tor variants selected by intraintestinal growth in rabbits.  相似文献   

11.
V. cholerae multiple-labeled mutants 569B with altered toxin production have been obtained by the method of induced mutagenesis with the use of nitrosoguonidine. These mutants can be used for the genetic mapping of tox genes on the chromosome of V. cholerae.  相似文献   

12.
Vibrio cholerae hemolysin (HlyA) is a pore-forming toxin that exists in two stable forms: a hemolytically active water-soluble monomer with a native molecular weight of 65,000 and a hemolytically inactive SDS-stable heptamer with the configuration of a transmembrane diffusion channel. Transformation of the monomer into the oligomer is spontaneous but very slow in the absence of interaction with specific membrane components like cholesterol and sphingolipids. In this report, we show that mild disruption of the native tertiary structure of HlyA by 1.75 M urea triggered rapid and quantitative conversion of the monomer to an oligomer. Furthermore, the HlyA monomer when unfolded in 8 M urea refolded and reconstituted on renaturation into the oligomer biochemically and functionally similar to the heptamer formed in target lipid bilayer, suggesting that the HlyA polypeptide had a strong propensity to adopt the oligomer as the stable native state in preference to the monomer. On the basis of our results, we propose that (a) the hemolytically active HlyA monomer represents a quasi-stable conformation corresponding to a local free energy minimum and the transmembrane heptameric pore represents a stable conformation corresponding to an absolute free energy minimum and (b) any perturbation of the native tertiary structure of the HlyA monomer causing relaxation of conformational constraints tends to promote self-assembly to the oligomer with membrane components playing at most an accessory role.  相似文献   

13.
Cholera is a global disease that has persisted for millennia. The cholera toxin (CT) from Vibrio cholerae is responsible for the clinical symptoms of cholera. This toxin is a hetero-hexamer (AB(5)) complex consisting of a subunit A (CTA) with a pentamer (B(5)) of subunit B (CTB). The importance of the AB(5) complex for pathogenesis is established for the wild type O1 serogroup using known structural and functional data. However, its role is not yet documented in other known serogroups harboring sequence level residue mutations. The sequences for the toxin from different serogroups are available in GenBank (release 177). Sequence analysis reveals mutations at several sequence positions in the toxin across serogroups. Therefore, it is of interest to locate the position of these mutations in the AB(5) structure to infer complex assembly for its functional role in different serogroups. We show that mutations in the CTA are at the solvent exposed regions of the AB(5) complex, whereas those in the CTB are at the CTB/CTB interface of the homo-pentamer complex. Thus, the role of mutations at the CTB/CTB interface for B(5) complex assembly is implied. It is observed that these mutations are often non-synonymous (e.g. polar to non-polar or vice versa). The formation of the AB(5) complex involves inter-subunit residue-residue interactions at the protein-protein interfaces. Hence, these mutations, at the structurally relevant positions, are of importance for the understanding of pathogenesis by several serogroups. This is also of significance in the improvement of recombinant CT protein complex analogs for vaccine design and their use against multiple serogroups.  相似文献   

14.
We have mapped a regulatory site mediating the hyperproduction of cholera toxin in mutants of Vibrio cholerae strain 569B. Mutations in this locus, called htx, result in the hypertoxinogenic phenotype, as measured by the ganglioside filter assay and immunoradial diffusion. Transposon-facilitated recombination was used to construct improved genetic donors in 569B parental and hypertoxinogenic mutant strains. Subsequent mapping by conjugation indicated that the htx locus was closely linked to the rif, str, and ilv loci of V. cholerae. Analysis of recombinants from these crosses suggested the following gene order: thy str htx rif ilv arg. The close genetic linkage of htx to rif (as high as 98%) resulted in a high comutation frequency of these two loci by nitrosoguanidine mutagenesis. Transfer of the htx mutant locus from a hypertoxinogenic donor to several unrelated Tox+ strains of V. cholerae caused a detectable elevation of toxin production in the recipients. These results suggest that toxin production in diverse strains of V. cholerae is controlled by a common regulatory mechanism in which the htx gene product plays a significant role.  相似文献   

15.
The ADP-ribosyltransferases are a class of enzymes that display activity in a variety of bacterial pathogens responsible for causing diseases in plants and animals, including those affecting mankind, such as diphtheria, cholera, and whooping cough. We report the characterization of a novel toxin from Vibrio cholerae, which we call cholix toxin. The toxin is active against mammalian cells (IC(50) = 4.6 +/- 0.4 ng/ml) and crustaceans (Artemia nauplii LD(50) = 10 +/- 2 mug/ml). Here we show that this toxin is the third member of the diphthamide-specific class of ADP-ribose transferases and that it possesses specific ADP-ribose transferase activity against ribosomal eukaryotic elongation factor 2. We also describe the high resolution crystal structures of the multidomain toxin and its catalytic domain at 2.1- and 1.25-A resolution, respectively. The new structural data show that cholix toxin possesses the necessary molecular features required for infection of eukaryotes by receptor-mediated endocytosis, translocation to the host cytoplasm, and inhibition of protein synthesis by specific modification of elongation factor 2. The crystal structures also provide important insight into the structural basis for activation of toxin ADP-ribosyltransferase activity. These results indicate that cholix toxin may be an important virulence factor of Vibrio cholerae that likely plays a significant role in the survival of the organism in an aquatic environment.  相似文献   

16.
A complete three-dimensional model (RCSB001169; PDB code 1qqz ) for the Vibrio cholerae toxin coregulated pilus protein (TcpA), including residues 1-197, is presented. We have used the crystal structure of the Neisseria gonorrhoeae pilin (PilE), available biochemical data about TcpA, variations in the primary sequences of TcpA among various Vibrio cholerae strains and secondary structure prediction, hydrophilicity, surface probability and antigenicity plots for TcpA to build our model. In our TcpA model, the first 137 residues possess a structure similar to the PilE, but the remainder is different. Though the ladle shape is still preserved, TcpA possesses a larger ladle head or globular domain compared to PilE. Using this model, it has been possible to identify two kinds of conserved residues: (i) those forming the core of the TcpA monomer and (ii) those involved in the monomer-monomer interactions leading to fibre formation. Residues on the fibre exterior, important in the mediation of bacterium (pilus)-bacterium (pilus) and bacterium (pilus)-host interactions, show more variability in comparison to those of (i) and (ii).  相似文献   

17.
The recombinant plasmid RP4 omega elt carrying Escherichia coli heat-labile enterotoxin elt genes with 70-80% homology with genes vct of Vibrio cholerae has been constructed. We used this plasmid to determine localization of the cholerae toxin genes vct on the map of Vibrio cholerae cholerae. Two types of the donors were revealed in matings of 10 strains of V. cholerae cholerae 569B/RP4 omega elt with the polyauxotrophic recipients RV31 and RV175: some strains had enhanced frequency of mobilization of ilv-1 and lys-6 markers, the others--of trp-1. Our data suggest that structural vct genes are located within two regions of V. cholerae cholerae 569B chromosome: trp-1 and ilv-1--lys-6.  相似文献   

18.
Vibrio cholerae choleragenoid. Mechanism of inhibition of cholera toxin action   总被引:16,自引:0,他引:16  
P Cuatrecasas 《Biochemistry》1973,12(18):3577-3581
  相似文献   

19.
Abstract Two strains of cholera toxin (CT) gene-positive Vibrio cholerae O1, Ogawa, isolated from patients with diarrhoea and the hypertoxigenic V. cholerae O1, Inaba (569B), were found to produce the new cholera toxin that has earlier been demonstrated to be elaborated by CT gene-negative human and environmental isolates of V. cholerae O1. The CT gene-positive strains produce the new cholera toxin simultaneously with CT, indicating that they contain the gene coding for the new cholera toxin in addition to that of CT.  相似文献   

20.
Abstract The sequence of the ctxB gene encoding the B subunit of cholera toxin has been determined for a strain of Vibrio cholerae of the novel O139 serotype associated with recent outbreaks of severe cholera throughout South-East Asia and found to be identical to the ctxB gene in V. cholerae O1 of the E1 Tor biotype. Analyses by Southern hybridization and PCR showed that all strains of the O139 serotype V. cholerae tested carried cholera toxin genes and other gene associated with a virulence cassette DNA region at two loci identical or homologous to those identified in the Classical rather than the E1 Tor biotype of V. cholerae serotype O1 although these loci in O139 could reside on restriction fragments of variable size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号