首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The carboxyl-terminal residues of mammalian fibrinogens of six different species and the chain peptides, alpha(A), beta(B) and gamma, isolated from these fibrinogens were determined by hydrazinolysis, digestion with carboxypeptidases and selective tritium labelling. The C-terminal ends of bovine fibrinogen and fibrin were identified as proline and valine, in the molar ratio of approximately 1:2. Proline was identified as the C-terminus of the alpha(A)-chain, and C-terminal valine was found on both the beta(B)- and gamma-chains. On hydrazinolysis after selective tritium labelling of fibrinogen, radioactive C-terminal valine was also identified. The same C-terminal ends as those of bovine fibrinogen were found on the corresponding chain peptides isolated from sheep fibrinogen. The C-terminal residues of all the chain peptides of human and horse fibrinogens, however, were valine. In hog and dog fibrinogens, proline was identified at the C-termini of the alpha(A)-chains, and C-terminal valine and isoleucine were found on the beta(B)- and gamma-chains, respectively. Thus, the C-terminal amino acid residues of the fibrinogens of all mammalian species tested were very similar. It should be noted that hydrophobic amino acids, like isoleucine, valine and proline, are mainly located in the C-terminal ends of all three chain peptides in the fibrinogen molecule.  相似文献   

2.
Complementary DNA sequence of lamprey fibrinogen beta chain   总被引:6,自引:0,他引:6  
The cDNA sequence of the beta chain of lamprey fibrinogen has been determined. To that end, an oligonucleotide probe was synthesized that corresponded to an amino acid sequence from the carboxy-terminal region of the lamprey fibrinogen beta chain. The insert actually began with residue 3 of the fibrin beta chain; it ran through to a terminator codon following the carboxy-terminal residue at position 443 and then continued for an additional 606 nucleotides of noncoding sequence to its 3' end. The inferred amino acid sequence was verified by comparison with assorted cyanogen bromide fragments isolated from the beta-chain protein, including two carbohydrate-containing peptides that corresponded to segments containing the carbohydrate-attachment consensus sequence. Overall, the lamprey chain is 49% identical with the beta chain from human fibrinogen. This is the same degree of resemblance as was found for the lamprey and human gamma chains. Moreover, the principal regions of conservation are the same in both the beta and gamma chains. Differences and similarities in the physiological behavior of the two fibrinogens are assessed in terms of the observed amino acid replacements.  相似文献   

3.
Structural analyses of fibrinogens from patients with congenital dysfibrinogenemia, designated as fibrinogens Kawaguchi and Osaka, have been performed to identify the difference responsible for the lack of fibrinopeptide A release. For the structural studies, a new strategy was employed. Amino acid sequence analysis of one of the lysyl endopeptidase-peptides isolated from the abnormal fibrinogens indicated that in both fibrinogens, arginine-16 of the A alpha chain had been replaced by cysteine. To characterize the chemical nature of the sulfhydryl group of cysteine-16, a tryptic peptide containing cysteine-16 of the A alpha chain was prepared from intact fibrinogen Kawaguchi. The amino acid composition and the molecular weight determination of this aberrant peptide revealed that it was a dimeric NH2-terminal peptide corresponding to residues 1-19 derived from the abnormal A alpha chain. These results indicate that the half-cystine at position 16 in the abnormal A alpha chain forms an intramolecular disulfide bridge with the same residue in the other abnormal A alpha chain and that fibrinogen Kawaguchi is a homo dimer composed of two identical abnormal halves.  相似文献   

4.
Binding of hyaluronic acid to mammalian fibrinogens   总被引:2,自引:0,他引:2  
We have postulated that the interaction of hyaluronic acid (HA), an extracellular matrix glycosaminoglycan, with fibrin is important during the early stages of wound healing and inflammation (J. Theor. Biol. 119:219; 1986), and have demonstrated the specific binding of 125I-labeled HA to human fibrinogen (J. Biol. Chem. 261:12 586; 1986). To determine whether HA binding is limited to human fibrinogen, we tested the ability of fibrinogens from various mammalian species to bind 125I-HA using a dot-blot assay. Increasing amounts of fibrinogen were adsorbed to nitrocellulose, and incubated with 125I-HA in the presence or absence of a 100-fold excess of nonradiolabeled HA to assess specific binding. In three independent experiments, the amount of 125I-HA bound/mg fibrinogen was determined from the slope derived by linear regression analysis of specifically bound 125I-HA versus protein concentration. A Student's t-test was performed to determine whether the slopes were statistically greater than zero. HA binding was considered statistically significant when P less than 0.05 was obtained by this analysis. Rabbit and dog fibrinogens significantly bound HA in all three trials. Baboon fibrinogen demonstrated significant HA binding in two of three trials. Pig, sheep and goat fibrinogens bound HA significantly in only one of three trials, whereas horse, rat and cow fibrinogens did not bind HA significantly at all. We conclude that fibrinogen from mammalian species other than human can specifically bind HA. The ability of fibrinogen to bind HA appears to correlate with an evolutionary divergence that separated human, baboon, dog, rabbit and rat from cow, pig, horse, goat and sheep.  相似文献   

5.
Yokoyama K  Zhang XP  Medved L  Takada Y 《Biochemistry》1999,38(18):5872-5877
Integrin alpha v beta 3, a widely distributed fibrinogen receptor, recognizes the RGD572-574 motif in the alpha chain of human fibrinogen. However, this motif is not conserved in other species, nor is it required for alpha v beta 3-mediated fibrin clot retraction, suggesting that fibrinogen may have other alpha v beta 3 binding sites. Fibrinogen has conserved C-terminal domains in its alpha (E variant), beta, and gamma chains (designated alpha EC, beta C, and gamma C, respectively), but their function in cell adhesion is not known, except that alpha IIb beta 3, a platelet fibrinogen receptor, binds to the gamma C HHLGGAKQAGDV400-411 sequence. Here we used mammalian cells expressing recombinant alpha v beta 3 to show that recombinant alpha EC and gamma C domains expressed in bacteria specifically bind to alpha v beta 3. Interaction between alpha v beta 3 and gamma C or alpha EC is blocked by LM609, a function-blocking anti-alpha v beta 3 mAb, and by RGD peptides. alpha v beta 3 does not require the HHLGGAKQAGDV400-411 sequence of gamma C for binding, and alpha EC does not have such a sequence, indicating that the alpha v beta 3 binding sites are distinct from those of alpha IIb beta 3. A small fragment of gamma C (residues 148-226) supports alpha v beta 3 adhesion, suggesting that an alpha v beta 3 binding site is located within the gamma chain 148-226 region. We have reported that the CYDMKTTC sequence of beta 3 is responsible for the ligand specificity of alpha v beta 3. gamma C and alpha EC do not bind to wild-type alpha v beta 1, but do bind to the alpha v beta 1 mutant (alpha v beta 1-3-1), in which the CYDMKTTC sequence of beta 3 is substituted for the corresponding beta 1 sequence CTSEQNC. This suggests that gamma C and alpha EC contain determinants for fibrinogen's specificity to alpha v beta 3. These results suggest that fibrinogen has potentially significant novel alpha v beta 3 binding sites in gamma C and alpha EC.  相似文献   

6.
Human fibrinogen exposed to protease III from Crotalus atrox venom is cleaved near the NH2 terminus of the B beta chain yielding a species of Mr 325,000 (Fg325) with impaired thrombin clottability. The derivative was compared with intact fibrinogen in a number of ways to determine whether the functional defect resulted from a conformational change or from the loss of a polymerization site. NH2-terminal amino acid sequencing of isolated A alpha, B beta, and gamma chains showed that Fg325 contained intact A alpha and gamma chains, but differed from fibrinogen by the absence of the first 42 residues of the B beta chain. Fibrinopeptide A was present and was cleaved at the same rate in both fibrinogen and Fg325. The rate and extent of A alpha and gamma cross-linking by factor XIIIa was also indistinguishable. In contrast, the thrombin-catalyzed coagulation of Fg325 was 46% less in extent and 180-fold slower than observed for intact fibrinogen. A conformational comparison of Fg325 and fibrinogen was made using immunochemical and spectroscopic approaches. Antisera specific for different regions of the fibrinogen molecule were used to characterize the epitopes in Fg325. The only significant differences were found in the NH2-terminal region of the B beta chain, probed with antiserum to B beta 1-118. The conformational similarity of Fg325 and fibrinogen was confirmed by the identity of both near and far UV CD spectra of the two proteins. Structural, functional, and immunochemical results imply that cleavage of 42 NH2-terminal residues from the B beta chain is not accompanied by a measurable conformational change. The residues of this B beta chain segment, which are evidently located on the surface of the molecule, in conjunction with the NH2-terminal part of the A alpha chain appear to play an important role in the expression of a fibrin polymerization site.  相似文献   

7.
Recombinant human fibrinogen and sulfation of the gamma' chain   总被引:2,自引:0,他引:2  
Human fibrinogen and the homodimeric gamma'-chain-containing variant have been expressed in BHK cells using cDNAs coding for the alpha, beta, and gamma (or gamma') chains. The fibrinogens were secreted at levels greater than 4 micrograms (mg of total cell protein)-1 day-1 and were biologically active in clotting assays. Recombinant fibrinogen containing the gamma' chain incorporated 35SO4 into its chains during biosynthesis, while no incorporation occurred in the protein containing the gamma chain. The identity of the sulfated gamma' chain was verified by its ability to form dimers during clotting. In addition, carboxypeptidase Y digestion of the recombinant fibrinogen containing the gamma' chain released 96% of the 35S label from the sulfated chain, and the radioactive material was identified as tyrosine O-sulfate. These results clarify previous findings of the sulfation of tyrosine in human fibrinogen.  相似文献   

8.
Hemostasis and thrombosis (blood clotting) involve fibrinogen binding to integrin alpha(IIb)beta(3) on platelets, resulting in platelet aggregation. alpha(v)beta(3) binds fibrinogen via an Arg-Asp-Gly (RGD) motif in fibrinogen's alpha subunit. alpha(IIb)beta(3) also binds to fibrinogen; however, it does so via an unstructured RGD-lacking C-terminal region of the gamma subunit (gammaC peptide). These distinct modes of fibrinogen binding enable alpha(IIb)beta(3) and alpha(v)beta(3) to function cooperatively in hemostasis. In this study, crystal structures reveal the integrin alpha(IIb)beta(3)-gammaC peptide interface, and, for comparison, integrin alpha(IIb)beta(3) bound to a lamprey gammaC primordial RGD motif. Compared with RGD, the GAKQAGDV motif in gammaC adopts a different backbone configuration and binds over a more extended region. The integrin metal ion-dependent adhesion site (MIDAS) Mg(2+) ion binds the gammaC Asp side chain. The adjacent to MIDAS (ADMIDAS) Ca(2+) ion binds the gammaC C terminus, revealing a contribution for ADMIDAS in ligand binding. Structural data from this natively disordered gammaC peptide enhances our understanding of the involvement of gammaC peptide and integrin alpha(IIb)beta(3) in hemostasis and thrombosis.  相似文献   

9.
10.
1. A kallikrein-like enzyme from the venom of Crotalus ruber ruber (red rattlesnake) had been isolated and characterized by Mori and Sugihara. The enzyme was active upon the kallikrein substrates, Pro-Phe-Arg-MCA and z-Phe-Arg-MCA, and slightly hydrolyzed Boc-Val-Leu-Lys-MCA, and Boc-Phe-Ser-Arg-MCA. 2. Unlike thrombin, the newly isolated kallikrein-like enzyme did not cause formation of a fibrin clot when fibrinogen was mixed with the enzyme. 3. The B beta chain of fibrinogen was first split and A alpha chain was cleaved later. Pancreatic kallikrein hydrolyzed only the A alpha chain without affecting the B beta chain. 4. The kallikrein-like enzyme produced kallidin (Lys-bradykinin) by splitting the Met-Lys bond instead of producing bradykinin. 5. The kallikrein analog JSI-450 (Ac-Phe-Ser-Pro-Phe-Arg-Ser-Val-Gln-Val-Ser-NH2) was also cleaved at the site of the Arg-Ser bond. 6. Its NH2-terminal amino acid sequence (Val-Ile-Gly-Gly-Asp-Glu-Cys-Asn-Ile-Asn-Glu-Arg-Pro-Phe-Leu-Val-Ala-Leu-Tyr- Asp-Ser-) is homologous to the rat pancreatic kallikrein and other snake venom proteases.  相似文献   

11.
Lounes KC  Ping L  Gorkun OV  Lord ST 《Biochemistry》2002,41(16):5291-5299
The C-terminal domain of the fibrinogen gamma-chain includes multiple functional sites that have been defined in high-resolution structures and biochemical assays. Calcium binds to this domain through the side chains of gammaD318 and gammaD320 and the backbone carbonyls of gammaF322 and gammaG324. We have examined variant fibrinogens with alanine at position gamma318 and/or gamma320 and found that calcium binding, fibrin polymerization, and fibrinogen-mediated platelet aggregation, but not FXIIIa-catalyzed cross-linking, were abnormal. When measured by turbidity, thrombin-catalyzed polymerization was severely reduced, and batroxobin-catalyzed polymerization was completely obliterated. Moreover, thrombin-catalyzed polymerization was abolished by the peptide GHRP, which binds to the polymerization site in the beta-chain but does not inhibit polymerization of normal fibrinogen. ADP-induced platelet aggregation was also severely impaired. In contrast, as measured by SDS-PAGE, FXIIIa introduced cross-links between gamma-chains for all three variants, as expected if the gamma-chain C-terminal sites were normal. In addition, binding of the monoclonal antibody 4A5, which recognizes the C-terminal residues, was not different from normal. These data suggest two specific conclusions: (1) a site in the gamma-module other than the C-terminus is critical for platelet aggregation and (2) "B-b" interactions have a role in protofibril formation.  相似文献   

12.
Dysfunctional fibrinogens occurring in three unrelated families were studied. Fibrinogen Erfurt I consists of B beta chains with a slightly lower molecular mass than normal. The same structural abnormality was also detected in fibrin beta chains. The variant is present in platelets too. Fibrinogen Erfurt II is characterized by the absent thrombin-induced release of FPA. With fibrinogen Berlin cleavage of the B beta chains by thrombin is slow but complete. All carriers of the three abnormal fibrinogens seem to be heterozygous for the underlying mutant gene.  相似文献   

13.
A genomic library was constructed from sperm DNA from an individual of the inbred chicken line G-B2, MHC haplotype B6. The library was screened with a chicken class II probe (beta 2 exon specific) and three MHC class II beta chain genomic clones were isolated. The restriction maps of the three clones showed that each of the three clones was unique. The position of the beta chain sequence was located in each of the three genomic clones by Southern blot hybridization. Subclones containing the beta chain gene were produced from each of the genomic clones and the orientation of the leader peptide, beta 1, beta 2, transmembrane, and cytoplasmic exons was determined by Southern blot hybridization and nucleotide sequencing. The complete nucleotide sequence of two of the three subclones was determined. Comparison of the nucleotide and predicted amino acid sequences of the two subclones with other class II beta chain sequences showed that the B6 chicken beta chain genes are evolutionarily related to the class II beta chain genes from chickens of other MHC haplotypes, and to class II beta chain genes from other species. Analysis of Southern blots of B6 chicken DNA, as well as the isolation of the three beta chain genes, suggests that chickens of the B6 haplotype possess at least three MHC class II beta chain genes.  相似文献   

14.
15.
Complete sequence of the lamprey fibrinogen alpha chain   总被引:5,自引:0,他引:5  
The complete amino acid sequence of the lamprey fibrinogen alpha chain has been determined by a combination of peptide sequencing and cDNA and genomic cloning. The chain, which has an apparent molecular weight by dodecyl sulfate-polyacrylamide gel electrophoresis of ca. 100,000, is composed of 961 amino acid residues and has a calculated molecular weight of 96,722. It is distinguished by a large number of 18-residue repeats in a region where mammalian fibrinogens have 13-residue repeats. The data are in accord with our previous finding that the lamprey alpha chain has a distinctive amino acid composition, almost half the residues being glycine, serine, or threonine. The chain differs from mammalian alpha chains in that there are no cysteines in the carboxy-terminal half, and thus no intrachain loop, nor are there any RGD sequences in the lamprey alpha chain. Taken together with previous data on the sequences of the beta and gamma chains, the findings bear significantly on our understanding of fibrin formation. The alpha chain also provides an interesting case of structural convergence during evolution.  相似文献   

16.
17.
Integrin alpha(v)beta(3) recognizes fibrinogen gamma and alpha(E) chain C-terminal domains (gammaC and alpha(E)C) but does not require the gammaC dodecapeptide sequence HHLGGAKQAGDV(400-411) for binding to gammaC. We have localized the alpha(v)beta(3) binding sites in gammaC using gammaC-derived synthetic peptides. We found that two peptides GWTVFQKRLDGSV(190-202) and GVYYQGGTYSKAS(346-358) block the alpha(v)beta(3) binding to gammaC or alpha(E)C, block the alpha(v)beta(3)-mediated clot retraction, and induce the ligand-induced binding site 2 (LIBS2) epitope in alpha(v)beta(3). Neither peptide affects fibrinogen binding to alpha(IIb)beta(3). Scrambled or inverted peptides were not effective. These results suggest that the two gammaC-derived peptides directly interact with alpha(v)beta(3) and specifically block alpha(v)beta(3)-gammaC or alpha(E)C interaction. The two sequences are located next to each other in the gammaC crystal structure, although they are separate in the primary structure. Asp-199, Ser-201, Gln-350, Thr-353, Lys-356, Ala-357, and Ser-358 residues are exposed to the surface. This suggests that the two sequences are part of alpha(v)beta(3) binding sites in fibrinogen gammaC domain. We also found that tenascin C C-terminal fibrinogen-like domain specifically binds to alpha(v)beta(3). Notably, a peptide WYRNCHRVNLMGRYGDNNHSQGVNWFHWKG from this domain that includes the sequence corresponding to gammaC GVYYQGGTYSKAS(346-358) specifically binds to alpha(v)beta(3), suggesting that fibrinogen and tenascin C C-terminal domains interact with alpha(v)beta(3) in a similar manner.  相似文献   

18.
S C Martin  I Bj?rk 《FEBS letters》1990,272(1-2):103-105
The far-ultraviolet circular dichroism spectra of fibrinogens phosphorylated by protein kinase C or casein kinase II indicated a conformational change corresponding to an increase in ordered secondary structure. The spectra of protein kinase A- or casein kinase I-phosphorylated fibrinogens did not differ substantially from the control. Fluorescence studies indicated changes in the tertiary structure around tryptophan residues for protein kinase A- or C-phosphorylated fibrinogens, but failed to show any such change for fibrinogen phosphorylated by either of the casein kinases. This latter result was also confirmed by circular dichroism measurements in the near-ultraviolet region. The apparent increase in ordered structure was proposed as an explanation for the slower rate of plasmin degradation seen in fibrinogens after phosphorylation by protein kinase C [6], and casein kinase II, especially as both spectral changes and plasmin degradation rate were unaffected by alkaline phosphatase.  相似文献   

19.
We purified and characterized the mRNAs coding for each of the three subunits of Xenopus fibrinogen. Purification was accomplished by electrophoretic separation of liver polyadenylated RNA in a fully denaturing gel, followed by recovery of the RNA from the gel via transfer to an ion-exchange membrane. This procedure yielded fractions which were highly enriched for the mRNAs for each of the fibrinogen chains. The fibrinogen mRNAs were identified by two methods: (i) in vitro translation followed by subunit-specific cleavage with the proteases thrombin and batroxobin; and (ii) cross-hybridization with cDNA clones for individual subunits of rat fibrinogen. The results demonstrate that the A alpha and gamma chains of frog fibrinogen are each coded by a single mRNA species. The A alpha mRNA is ca. 3,100 nucleotides in length, which is nearly twice the minimum size required to code for the A alpha precursor polypeptide. The gamma chain mRNA comprises about 1,600 bases and includes only a small untranslated region. In contrast, the B beta subunit is synthesized from two mRNAs, one of which is 2,500 and the other 1,800 nucleotides long. The 2,500-base mRNA includes a large noncoding region, whereas the smaller one is near the minimum required size. The larger B beta mRNA is ca, fivefold more abundant that the smaller species.  相似文献   

20.
The COOH-terminal portion of the A alpha chain of human fibrinogen is highly susceptible to proteolytic degradation. This property has prevented isolation of the COOH-terminal domain of fibrinogen for the direct investigation of its functional characteristics. Human fibrinogen was degraded with hementin, a fibrinogen-olytic protease from the posterior salivary glands of the leech, Haementeria ghilianii. Two initial fragments, Yhem1 and Dhem1, produced by cleavage through the three polypeptide chains in the connector region, were characterized and shown to retain the entire A alpha COOH-terminal domain. Late cleavages by hementin occurred in the A alpha chain COOH-terminal region to produce fragments Yhem and Dhem with shorter A alpha chain remnants. Fragments Dhem were isolated from an intermediate hementin digest of fibrinogen using anion-exchange chromatography. Fragment Dhem1 was separated further from Dhem fragments with shorter alpha chain remnants by affinity chromatography on immobilized plasma fibronectin. Fragment Dhem1 represents a unique proteolytic fragment of fibrinogen containing an intact A alpha chain COOH-terminal region. NH2-terminal sequence analysis of isolated chains from fragment Dhem1 located hementin cleavage sites in the connector region to A alpha Asn102-Asn103, B beta Lys130-Gln131, and gamma Pro76-Asn77. The specific interaction of fragment Dhem1 with immobilized fibronectin indicated that the binding site probably was located within the COOH-terminal 111 amino acids of the A alpha chain. The overall pattern of fibrinogen cleavage by hementin is similar to that of plasmin, yet hementin cleaves preferably in the coiled-coil connector, sparing the A alpha COOH-terminal domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号