首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Similarly to the effect of T3, the tail absorption of frog larvae (Rana arvalis) was stimulated in vitro by the sympathomimetic agents adrenaline, isoproterenol, ephedrine and the adrenaline analogue MMT. The effect of T3 administration was not inhibited by adrenaline, isoproterenol and MMT, but it was by ephedrine and T3 pretreatment. The adrenaline and isoproterenol effect manifested itself after early administration, but not after late and while ephedrine and MMT were effective at long-term administration, even it administered at a later time. Our experiments draw attention to the metamorphotic effect of substances capable of binding to beta-receptors. Their effect may be explained partly by the increase in the cAMP level, partly by a relationship existing between the beta-receptor and the T3 receptor.  相似文献   

2.
Cyclic GMP (cGMP) and cyclic AMP (cAMP) were determined in bullfrog tadpole liver and tail fin using 125I-RIA. cGMP increased approx. 100% 1-6 h after the injection of T3 (3 X 10(-10) mol/g body wt.). Reducing the dose of T3 to 1, 3, and 10 X 10(-11) mol/g body wt. provided increases in cGMP of 50-100% above the control value after 2 h. In contrast, only small increases (less than 20%) in cAMP were observed 2-24 h after T3 injection. We conclude that T3 produces a rapid and significant increase in cGMP in the liver and tail fins of premetamorphic tadpoles. These results suggest that thyroid hormones in amphibia may not be an exclusively nucleus-mediated hormone.  相似文献   

3.
4.
Cyclic AMP and the vascular action of parathyroid hormone   总被引:2,自引:0,他引:2  
The involvement of tissue cAMP in the vasodilating action of parathyroid hormone (PTH) was investigated. The bovine active fragment bPTH-(1-34) was used in all studies. In anesthetized dogs, theophylline, a phosphodiesterase inhibitor, potentiated the hypotensive action of bPTH-(1-34) at the dose of 1 microgram/kg. The potentiation was related to the dose of theophylline infused. In an in vitro rat tail artery helical strip assay, dibutyryl cAMP produced dose-related relaxation in arginine vasopressin (AVP) constricted blood vessels. bPTH-(1-34) also produced dose-related relaxation in the tail artery constricted by AVP. In the presence of isobutylmethylxanthine, another phosphodiesterase inhibitor, the bPTH-(1-34) dose--response curve was shifted to the left, indicating potentiation. Imidazole, which has phosphodiesterase stimulating activity, significantly decreased the in vitro vasorelaxing effect of bPTH-(1-34). In addition, bPTH-(1-34) increased significantly the rat tail artery cAMP content. b-PTH-(1-34) oxidized with hydrogen peroxide lost its vasorelaxing activity and was also ineffective in increasing the tail artery cAMP content. All these data strongly suggest that cAMP may be involved in eliciting the vasorelaxing action of bPTH-(1-34).  相似文献   

5.
Various saturated and unsaturated fatty acids were included in the culture medium to test their effects on lipolysis in 3T3-L1 adipocytes. Following prolonged incubation, only oleate was found to exert enhancing effect on basal and isoproterenol-stimulated lipolysis. The effect of oleate was concentration-dependent and was accompanied with increased intracellular cAMP content. Furthermore, the lipolytic response induced by isobutyl-methylxanthine, forskolin or dibutyryl cAMP was also increased in adipocytes treated with oleate. Thus, it appears that in addition to an increased cAMP accumulation, a step distal to cAMP production in the cells may be involved in inducing enhanced lipolysis in 3T3-L1 adipocytes by prolonged exposure to oleate.  相似文献   

6.
Cyclic AMP in relation to proliferation of the epidermal cell: a new view.   总被引:38,自引:0,他引:38  
H Green 《Cell》1978,15(3):801-811
Four agents known to increase the level of cellular cAMP by different means (cholera toxin, dibutyryl cAMP, methyl isobutyl xanthine and isoproterenol) increase the growth of colonies of cultured human epidermal cells and of keratinocytes derived from other stratified squamous epithelia. This effect is due to an increase in the overall rate of cell proliferation in the colonies. When added to cultures under hitherto optimum conditions for epidermal cell growth [in the presence of supporting 3T3 cells and epidermal growth factor (EGF)], most of the agents exert an effect of considerable magnitude, the toxin being the most potent. Since the toxin exerts an effect in the absence of supporting 3T3 cells, it must be able to act directly on the keratinocytes. It can also act in the absence of ECF and of medium conditioned by 3T3 cells, although proliferation is greatest when supporting 3T3 cells and EGF are present. The increased proliferation in the presence of the toxin is associated with an increased proportion of small cells known to include the multiplying fraction. The use of toxin makes the cultivation of keratinocytes from epidermis and other stratified squamous epithelia much easier and prolong the culture life of the cells. Whether cell proliferation in the intact epidermis is regulated through agents affecting cAMP (in a direction opposite to that suggested by much of the earlier literature) remains to be elucidated, but the existence of such a mechanism in cultured cells suggests that it may function in the intact epithelium.  相似文献   

7.
8.
As spermatozoa mature within the epididymis they acquire the potential for capacitation and ultimately fertilization. In biochemical terms, the former is reflected in the progressive activation of a signal transduction pathway characterized by cAMP-mediated induction of phosphotyrosine expression on the sperm tail. In this study, we have examined the cellular mechanisms controlling this maturational event. Caput epididymal spermatozoa exhibited tyrosine phosphorylation on the sperm head that was largely unresponsive to cAMP and not significantly impaired by removal of extracellular HCO(3) (-). In contrast, caudal epididymal spermatozoa exhibited low levels of phosphorylation on the sperm head, yet responded dramatically to cAMP by phosphorylating a new set of proteins on the sperm tail via mechanisms that were highly dependent on extracellular HCO(3) (-). The impact of extracellular HCO(3) (-) depletion on caudal cells was not associated with a significant change in the redox regulation of cAMP but could be fully reversed by buffering the intracellular pH with N-Tris[Hydroxymethyl]methyl-3-amino-propanesulfonic acid (TAPS). The pattern of tyrosine phosphorylation was also profoundly influenced by the presence or absence of added extracellular calcium. In the presence of this cation, only caudal spermatozoa could respond to increased extracellular cAMP with tyrosine phosphorylation of the sperm tail. However, in calcium-depleted medium, this difference completely disappeared. Under these conditions, caput and caudal spermatozoa were equally competent to exhibit phosphotyrosine expression on the sperm tail in response to cAMP. These results emphasize the pivotal role played by calcium and HCO(3) (-) in modulating the changes in tyrosine phosphorylation observed during epididymal maturation.  相似文献   

9.
The capacity of PGE2 to inhibit human T cell responses was examined by investigating its effect on mitogen-induced IL-2 production and proliferation of highly purified CD4+ T cells. PGE2 inhibited both PHA and anti-CD3 induced proliferation and IL-2 production by an action directly on the responding T cell. Inhibition of IL-2 production reflected decreased accumulation of mRNA for IL-2. A variety of other cAMP elevating agents exerted similar inhibitory effects. Inhibition of proliferation could be overcome by supplemental IL-2, PMA, or the anti-CD28 mAb 9.3. Although PMA and 9.3 markedly increased the amount of IL-2 produced by mitogen-stimulated T cells, the percentage inhibition of IL-2 secretion caused by PGE2 and other cAMP elevating agents remained comparable in these costimulated cultures. Rescue of T cell DNA synthesis by these agents appeared to reflect the finding that, although PGE2 markedly inhibited IL-2 production, the absolute amount of IL-2 produced was increased sufficiently to sustain mitogen-induced proliferation. As anticipated, PGE2, forskolin, and cholera toxin increased T cell cAMP levels. The quantity of cellular cAMP generated in response to PGE2, cholera toxin, and forskolin could be inhibited by PMA or 2',5'-dideoxyadenosine. Using these reagents, the inhibitory effects of PGE2 were found to reflect intracellular cAMP levels, but only within a very narrow range. The results indicate that by elevating cAMP levels, PGE2 inhibits human T cell IL-2 production at a point that is common to both the CD3 and CD28 signaling pathways.  相似文献   

10.
Urocortin, a peptide hormone related to the corticotropin releasing factor, is suggested to be involved in blood pressure regulation by dilating the peripheral blood vessels. In rat tail arteries, urocortin-induced vasodilation is due to a decrease in myofilament Ca2+ sensitivity the mechanism of which is still unclear. In this study, the hypothesis was tested that the decrease in Ca2+ sensitivity in mouse tail arteries results from the activation of myosin light chain phosphatase. The relaxation of KCl-precontracted (42 mM) intact mouse tail arteries by urocortin (1 nM and 10 nM) was significantly inhibited by 1 microM antisauvagine30, a CRF-2 receptor antagonist (p < 0.05, n = 3). The addition of 1 microM KT 5720, an inhibitor of PKA, to intact rat tail arteries did not affect the KCl-induced force but significantly attenuated the urocortin-induced relaxation (n = 5). In alpha-toxin permeabilized mouse tail arteries, urocortin relaxed submaximally activated preparations at constant pCa 6.1 by 37.6 +/- 8.2% (n = 5) as compared to control vessels (n = 5, p < 0.001). The relaxation in permeabilized vessels was inhibited by pre-treatment with 30 microM Rp-8-CPT-cAMPS, an inactive analogue of cAMP. In permeabilized mouse tail arteries, treatment with 100 nM urocortin was associated with dephosphorylation of MLC20(Ser19) and MYPT1(Thr696/Thr850). The effect of urocortin on MYPTI dephosphorylation was completely abolished by 30 M Rp-8-CPT-cAMPS and mimicked by the cAMP analogue Sp-5,6-DCI-cBiMPS. Based on these findings, we propose that the urocortin-induced relaxation is due to a decrease in calcium sensitivity mediated by a cAMP-dependent increase in the activity of MLCP.  相似文献   

11.
The mechanism of thyroid hormone-induced and glucocorticoid-modulated death of tail epidermal cells from tadpoles of bullfrog, Rana catesbeiana, was investigated by comparing tail epidermal cells with dorsal body epidermal cells. From morphological and biochemical criteria, there were two types of epidermal cells: basal cells and skein cells. The abundance of these cells was different between the tail and the body skin. Fifty percent of body cells and more than 95% of tail cells were skein cells. Effects of 3,3',5-triiodo-L-thyronine (T3, 10(-8) M) and cortisol (5 X 10(-7) M) were investigated with cultured epidermal cells. T3 differently regulated the keratinization of the tail and body cells. The keratinization of the tail epidermal cells was not observed without T3. T3 induced the keratinization dramatically. On the other hand, body epidermal cells were constantly undergoing keratinization without the hormone: T3 merely accelerated the rate of keratinization. Cortisol generally did not show any significant effect on keratinization. T3 showed opposite effects on DNA synthesis of the tail and body cells: suppression of tail cells and stimulation of body cells. Cortisol weakened the inhibitory effect of T3 on DNA synthesis in tail cells. Immunofluorescent micrographs with anti-BrdU showed that T3 decreased the number of cells in the S phase of the cell cycle in the case of tail cells but not of body cells. Thus, thyroid hormone plays dual roles for the tadpole epidermal cells: one is an induction and a promotion of keratinization in tail and body cells, respectively, and the other is an opposite regulation for the proliferation of both epidermal cells. These roles seem to have crucial connections to a tail-specific cell death induced by thyroid hormone.  相似文献   

12.
Bicarbonate and butyrate stimulate electroneutral Na absorption via apical membrane Na-H exchange (NHE) in rat distal colon. cAMP downregulates NHE-3 isoform and inhibits HCO3-dependent, but not butyrate-dependent, Na absorption. This study sought to determine whether 1) the apical membrane NHE-2 and NHE-3 isoforms differentially mediated HCO3- and butyrate-dependent Na absorption, and 2) cAMP had different effects on NHE-2 and NHE-3 isoforms. The effect of specific inhibitors of NHE-2 and NHE-3 isoforms (50 microM HOE 694 and 2 microM S3226, respectively) on unidirectional 22Na transepithelial fluxes performed across isolated mucosa from rat distal colon under voltage-clamp conditions was examined. HCO3 stimulation of Na absorption was inhibited by EIPA, a nonspecific inhibitor of all NHE isoforms, by S3226 and dibutyryl cAMP but not by HOE 694. In contrast, butyrate stimulation of Na absorption was not altered by dibutyryl cAMP and was not inhibited by HOE 694 in the absence of dibutyryl cAMP, but in the presence of dibutyryl cAMP was HOE694 sensitive. In contrast, S3226 inhibited butyrate-stimulated Na absorption in the absence of dibutyryl cAMP, but not in its presence. We conclude that 1) HCO3-stimulated Na absorption is mediated solely by NHE-3 isoform, whereas butyrate-stimulated Na absorption is mediated by either NHE-3 or NHE-2 isoform, and 2) dibutyryl cAMP selectively inhibits NHE-3 isoform but stimulates NHE-2 isoform. Dibutyryl cAMP does not inhibit butyrate-stimulated Na absorption as a result of its differential effects on NHE-2 and NHE-3 isoforms.  相似文献   

13.
Cholera toxin was used in an attempt to inhibit epidermal growth factor stimulated 3T3 cell division. Instead, cholera toxin alone at low concentrations (10(-10) M), was able to stimulate cell division and could augment EGF stimulated cell division. The mitogenic effect of cholera toxin can occur despite a dramatic increase in the intracellular levels of cAMP in 3T3 cells. Cholera toxin stimulated mitogenesis could not be mimicked by choleragenoid, the binding but inactive subunit of cholera toxin, or by other agents which elevate cAMP levels in 3T3 cells.  相似文献   

14.
The red tail of the absorption spectrum of the D1-D2-cytb559 complex, defined as the absorption signal not described by the two Gaussian sub-bands associated with the intense electronic transitions at 680 and 683 nm, exhibits anomalous temperature behavior. This tail was analyzed in the temperature interval between 80 and 300 K in terms of the mean square deviation (sigma2) of the total Qy absorption band and by Gaussian sub-band decomposition. The value of the average optical reorganization energy (Snum) obtained from the temperature dependence of sigma2 for the whole absorption band was 32 cm(-1), and changed to 16-20 cm(-1) after subtraction of the sub-bands describing the red tail. This latter value is in agreement with the hole burning literature data for chlorophyll bound to proteins, and indicates that the rather high value for the apparent optical reorganization energy obtained by analysis of the total Qy band of the D1-D2-cytb559 complex is determined by the temperature sensitivity of the red tail. This suggests that the long wavelength absorption tail might be due to vibrational transitions associated with vibrational modes in the range of 80-150 cm(-1) which are thermally accessible and give rise to an absorption signal on the low-energy side of the (0,0) transition. On the basis of this assumption, the electron-phonon coupling strength (S) for these modes is estimated to be in the range 0.028-0.18. This interpretation furthermore supports the idea that the electronic transition near 683 nm is that of a monomer chlorophyll.  相似文献   

15.
In order to try to characterize the sequence of processes leading to hormone secretion from the stimulated thyroid, the effect of cyclic 3'5' adenosine monophosphate (cAMP) and related compounds were examined in 15 two-sided perfusions of canine thyroids isolated in situ. T4 and T3 concentrations in the effluent were measured radioimmunologically. cAMP 5 mM and TSH 100 muU per ml induced the same pattern of hormone release from the thyroid. After a latency period of 15--25 minutes a steep increase occurred in both T4 and T3 release. During the initial part of the stimulation the rise in T4 relase was somewhat slower than that of T3 release. The prolonged latency period before response earlier recorded in the same preparation during infusions of low concentrations of TSH was not observed during infusions of decreasing concentrations of cAMP (1, 0.8, 0.5 and 0.2 mM) or theophylline (5 and 1 mM). Either there was no response or the latency period was of the same length as that observed after a strong stimulus. These findings suggest that the latency period can be divided in two parts: () a variable, dose dependent satency period confined to the early part of the process sequence leading to secretion--i.e. before cAMP exerts its effect, and 2) an obligatory latency period related to the processes taking place after the formation of pseudopods. The duration of these late processes seems to be independent of the degree of stimulation.  相似文献   

16.
Proline transport in Kirsten sarcoma virus-transformed BALB 3T3 (Ki-3T3) cells was increased approximately twofold by 0.5 mm dibutyryl cAMP (dbcAMP), and the increase was observed whether transport was assayed in the presence or absence of cycloheximide. Two days of exposure to the analog was required for maximum stimulation. Increased proline transport contributed almost entirely to the increased incorporation of [14C]proline into noncollagen protein but for only 13% of the increased incorporation into collagen of dbcAMP-treated Ki-3T3 cells. Proline transport was further characterized using an assay system containing 0.1 mm cycloheximide, which did not affect transport over a 30-min period. The Km for proline was decreased from 6.5 to 3.4 mm by dbcAMP treatment of Ki-3T3. Proline transport in Ki-3T3 proceeds almost entirely via the A system, and the effect of dbcAMP appears to be on this system specifically since glycine and glutamine transport, which are heterogeneous, were not affected but transport of N-methylaminoisobutyrate, a specific A system substrate, was increased by dbcAMP treatment. Although 0.5 mm butyrate increased proline transport in Ki-3T3 cells to a similar degree as dbcAMP, the effect of the latter appeared related to its action as a cAMP analog since N6-monobutyryl cAMP, having a stable butyryl group, and 8-bromo-cAMP also increased proline transport while dbcGMP did not. The rate of proline transport in normal BALB 3T3 cells was only 30–40% lower than that of Ki-3T3 cells at various growth stages, and dbcAMP and 8-bromo-cAMP treatment also increased proline transport in the normal cells. The results of these studies suggest that dbcAMP and other cAMP analogs induce the synthesis of an altered component of the A system for amino acid transport and that the effect of these compounds is unrelated to the effect of transformation on proline transport.  相似文献   

17.
Because cAMP exerts opposite effects on cell proliferation in different cell types, we undertook to study its effect on the mitogen-activated protein kinase (MAPK) pathway in three cell lines (Rat-1, Swiss-3T3, and COS-7) chosen for their different mitogenic responses to cAMP. We measured the effect of cAMP on MAPK, MEK, and Raf-1 activities after stimulation by agonists acting through a tyrosine kinase receptor (epidermal growth factor) or a G protein-coupled receptor (lysophosphatidic acid). In Rat-1 cells we found that cAMP strongly inhibited all three activities (MAPK, MEK, and Raf-1), in good agreement with its effect on cell proliferation in these cells. In Swiss-3T3 and COS-7 cells, on the contrary, cAMP did not inhibit epidermal growth factor- and lysophosphatidic acid-induced stimulation of MAPK and MEK activities, and even stimulated MAPK activity slightly on its own. Again these results are in good agreement with the proliferative effect of cAMP in Swiss-3T3 cells. Raf-1 activity on the hand, was inhibited by cAMP in Swiss-3T3 and COS-7 as it was in Rat-1 cells. This result indicates that signaling pathways in Swiss-3T3 and COS-7 cells can activate MEK and MAPK in a Raf-1-independent and cAMP-insensitive manner. Our results add to growing evidence for the existence of Ras- and/or Raf-1-independent pathways leading to MEK and MAPK activation.  相似文献   

18.
Bombesin is a potent mitogen for Swiss 3T3 cells and can stimulate DNA synthesis in the absence of any other growth factor. This effect is mediated by multiple synergistic signaling pathways, including an accumulation of intracellular cyclic AMP (cAMP) and an increase in c-fos mRNA expression. The cyclooxygenase inhibitor indomethacin abolished prostaglandin E2 release and substantially depressed cAMP levels induced by bombesin (EC50 congruent to 10 nM). In contrast, indomethacin at 1 microM did not affect 80K phosphorylation or Ca2+ mobilization by bombesin, indicating that cAMP synthesis can occur through a phospholipase C-independent pathway. Indomethacin caused a 30 to 35% decrease in c-fos induction and DNA synthesis in cells treated with bombesin (EC50 congruent to 40 nM). Significantly, the inhibitory effect of indomethacin was reversed in the presence of forskolin, a direct activator of adenylate cyclase. We conclude that cAMP plays a regulatory role in c-fos induction and mitogenesis in Swiss 3T3 cells treated with bombesin.  相似文献   

19.
Site-selective cAMP analogs, depending on the position of their substituents on the adenine ring, selectively bind to either site 1 or site 2 of the known cAMP binding sites of protein kinase. Treatment of Harvey murine sarcoma virus-transformed NIH/3T3 cells with such site-selective analogs results in growth inhibition and phenotypic reversion, and the combination of a C-8 thio or halogen analog (site 1 selective) with an N6 analog (site 2 selective) produces a synergistic effect. We report here that the growth inhibitory effect of the analogs correlates with the nuclear translocation of the RII cAMP receptor protein, the regulatory subunit of protein kinase type II. The transformed NIH/3T3 cells contained no detectable level of RII in the nucleus, whereas nontransformed NIH/3T3 cells exhibited a high level of nuclear RII. Within 30 min after treatment of the transformed cells with the site-selective analogs, immunofluorescence against the RII protein markedly increased in the cell nucleus. The nuclear translocation of the RII cAMP receptor protein is an early event in the reverse transformation of the fibroblasts treated with site-selective cAMP analogs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号