首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Equilibrium and kinetic aspects of protein-DNA recognition.   总被引:1,自引:1,他引:0       下载免费PDF全文
The specificity of regulatory protein binding to DNA is due to a complementarity between the sequence of reaction centres on the protein and the base pair sequence in the specific DNA site allowing the formation of a number of specific noncovalent bonds between the interacting entities. In the present communication the thermodynamic and kinetic aspects of these interactions are considered. The extent of binding specificity is shown to increase with an increase of the bond stability constants and with an increase in the number of ligand reaction centres. Kinetic analysis is carried out assuming that association process is very fast and that dissociation of nonspecific complexes is a rate-limiting step in the recognition of a specific binding site on DNA. The calculations show that a ligand can recognize its specific binding site on DNA within a reasonably limited time interval if the number of its reaction centres and the corresponding stability constants are strongly limited.  相似文献   

2.
The regulation of gene expression is a basic problem of biology. In some cases, the gene activity is regulated by specific binding of regulatory proteins to DNA. In terms of statistical mechanics, this binding is described as the process of adsorption of ligands on the one-dimensional lattice and has a probability nature. As a random physical process, the adsorption of regulatory proteins on DNA introduces a noise to the regulation of gene activity. We derived equations, which make it possible to estimate this noise in the case of the binding of the lac repressor to the operator and showed that these estimates correspond to experimental data. Many ligands are able to bind nonspecifically to DNA. Nonspecific binding is characterized by a lesser equilibrium constant but a greater number of binding sites on the DNA, as compared with specific binding. Relations are presented, which enable one to estimate the probability of the binding of a ligand on a specific site and on nonspecific sites on DNA. The competition between specific and nonspecific binding of regulatory proteins plays a great role in the regulation of gene activity. Similar to the one-dimensional "lattice gas" of particles, ligands adsorbed on DNA produce "one-dimensional" pressure on proteins located at the termini of free regions of DNA. This pressure, an analog of osmotic pressure, may be of importance in processes leading to changes in chromatin structure and activation of gene expression.  相似文献   

3.
Interactions between the Escherichia coli primary replicative helicase DnaB protein and nucleotide cofactors have been studied using several fluorescent nucleotide analogs and unmodified nucleotides. The thermodynamically rigorous fluorescent titration technique has been used to obtain true binding isotherms, independently of the assumptions of any relationships between the observed quenching of protein fluorescence and the degree of nucleotide binding. Fluorescence titrations using several MANT derivatives of nucleoside diphosphates (MANT-ADP, 3',2'-O-(N-methylantraniloyl)adenosine-5'-diphosphate; MANT-GDP, 3',2'-O(N-methylantraniloyl)guanosine-5'-diphosphate; MANT-CDP, 3',2'-O-(N-methylantraniloyl)cytidine-5'-diphosphate; MANT-UDP, 3',2'-O-(N-methylantraniloyl)uridine-5'-diphosphate) have shown that the DnaB helicase has a preference for purine nucleotides. Binding of all modified nucleotides is characterized by similar negative cooperativity, indicating that negative cooperative interactions are base-independent. Thermodynamic parameters for the interactions of the unmodified nucleotides (ADP, GDP, CDP, and UDP) and inorganic phosphate (P(i)) have been obtained by using the competition titration approach. To analyze multiple ligand binding to a finite circular lattice, for a general case in which each lattice binding site can exist in different multiple states, we developed a matrix method approach to derive analytical expressions for the partition function and the average degree of binding for such cases. Application of the theory to competition titrations has allowed us to extract the intrinsic binding constants and cooperativity parameters for all unmodified ligands. This is the first quantitative estimate of affinities and the mechanisms of binding of different unmodified nucleotides and inorganic phosphate for a hexameric helicase. The intrinsic affinities of all of the studied ATP analogs are lower than the intrinsic affinities of the corresponding ADP analogs. The implications of these results for the mechanism of helicase action are discussed.  相似文献   

4.
M Sanzo  B Stevens  M J Tsai  B W O'Malley 《Biochemistry》1984,23(26):6491-6498
We have fractionated oviduct tissue extracts by using a combination of ion-exchange and DNA-Sephadex chromatography. By comparing the electrophoretic patterns of proteins eluted from competing specific and nonspecific DNA columns, we isolated a fraction which bound with specificity to columns containing the chicken middle repetitive sequence "CR1". This fraction showed a clear preference for binding to separate, cloned CR1 fragments derived from either the 5' or the 3' transition region of the ovalbumin gene domain when examined by using nitrocellulose filter binding assays. To localize the protein binding site, a CR1 clone was digested with various restriction enzymes, and the resulting fragments were examined for preferential protein binding. Results suggest that the binding site lies within a 39-nucleotide sequence which is highly conserved among different CR1 elements. This finding represents the first isolation of a protein which demonstrates a preference for binding to a middle repetitive sequence and suggests that this interaction may have a biological role. The DNA column competition adsorption method should have general application to the isolation of other gene-regulating proteins possessing DNA sequence preference.  相似文献   

5.
K M Weeks  D M Crothers 《Biochemistry》1992,31(42):10281-10287
RNA recognition by the HIV Tat protein is mediated in part by an arginine- and lysine-rich basic subdomain implicated as a signature element in proteins that bind RNA. Relative RNA binding affinities for a 14-residue peptide derived from Tat that spans the basic region are determined using a competition protocol. Binding specificity is compared with complexation by a 38-residue model for the RNA binding domain of Tat using the same approach. Binding strength for the minimal (14 residue) peptide is correlated with that for the longer peptide: both peptides recognize a short, bulged duplex. However, the shorter peptide dissociates more rapidly from the wild-type site and discriminates less well between nonspecific (double-stranded RNA) and specific sites. Relative dissociation constants for 38-residue peptide determined from direct partition and competition assays differ; the former assay consistently predicts stronger discrimination against RNAs with mutations in the stems flanking the bulge. Differences between the two assays are reconciled in terms of contributions from labile binding which is unstable to native gel electrophoresis. Kinetic stability may constitute a major specificity determinant for basic subdomain-mediated recognition of RNA.  相似文献   

6.
Generalized binding phenomena in an allosteric macromolecule   总被引:2,自引:0,他引:2  
A general macromolecular partition function is developed in terms of chemical ligand activity, temperature and pressure for systems described by an array of species which are characterized by their state of allosteric conformation and ligand stoichiometry. The effects of chemical ligand binding, enthalpy change, and volume change are treated in a parallel manner. From a broad viewpoint all of these effects can be regarded as specific cases of generalized binding phenomena. This approach provides a general method for analyzing calorimetric and ligand binding experiments. Several applications are given: (1) Thermal scanning data for tRNAphe (P.L. Privalov and V.V. Filimonov, J. Mol. Biol. 122 (1978) 447) are shown to fit a general model with six conformational states. By application of linkage theory it is shown that sodium chloride is expelled as the molecule denatures. (2) The results of calorimetric titrations on the arabinose binding protein (H. Fukada, J.M. Sturtevant and F.A. Quiocho, J. Mol. Biol. 258 (1983) 13193) are shown to fit a simple two-state allosteric model. (3) A thermal binding curve is simulated for an unusual respiratory protein, trout I hemoglobin (B.G. Barisas and S.J. Gill, Biophys. Chem. 9 (1979) 235), in order to illustrate both the similarities and differences between enthalpy and chemical ligand binding processes.  相似文献   

7.
Shkel IA  Ballin JD  Record MT 《Biochemistry》2006,45(27):8411-8426
For nonspecific binding of oligopeptides and other cationic ligands, including proteins, to nucleic acid oligomers, we develop a model capable of quantifying and predicting the salt concentration dependence of the binding free energy (deltaG(o)obs) by way of an analytic treatment of the Coulombic end effect (CEE). Ligands, nucleic acids, and their complexes (species j of valence Zj) are modeled as finite lattices with absolute value(Zj) charged residues; the CEE is quantified by its characteristic length Ne (specified in charged residues) and its consequences for the free energy and ion association of the oligomer. Expressions are developed for the individual site binding constants Ki as a function of position (site number i) of a bound ligand on a nucleic acid and for the observed binding constant Kobs as an ensemble average of Ki. Analysis of deltaG(o)obs = -RT ln Kobs and Sa Kobs identical with (partial differential ln Kobs)/(partial differential ln a(+/-)) for binding of the oligopeptide KWK6 (ZL = +8) to single-stranded (ss) dT(pdT)(absolute value(ZD) oligomers (dT-mers) where ZD = {-6, -10, -11, -14, -15} in the range 0.1-0.25 M Na+ yields Ne = 9.0 +/- 0.8 residues at each end, demonstrating that both KWK6 and the above dT-mers are sufficiently short so that the CEE extends over the entire molecule. The dependences of Kobs and of Sa Kobs on absolute value(ZD) for a given ZL are determined by the difference between 2Ne and the net number of charged residues Q in the complex (Q identical with absolute value(ZD) - ZL). For Q < 2Ne, characteristic of complexes of KWK6 with this set of dT-mers, the distribution of binding free energies deltaG(o)obs = -RT ln Ki for sites along the DNA oligomer is parabolic, and Kobs and Sa Kobs are strongly dependent on absolute value(ZD). For Q > or = 2Ne, the distribution of binding free energies deltaG(o)obs is trapezoidal, and the dependence of Kobs and Sa Kobs on absolute value(ZD) is weaker. Application of the model to nonspecific binding of human DNA polymerase beta to ssDNA demonstrates the significance of the CEE in determining Kobs and Sa Kobs of binding of a cationic site on a protein to a DNA oligomer.  相似文献   

8.
Simultaneous binding of two drugs to human serum albumin (HSA) was studied by flow microcalorimetry. The following drug pairs were used: sulfadimethoxine and cefazolin. Sulfadimethoxine and dicloxacillin, sulfadimethoxine and chlortetracycline. A procedure for estimating the calorimetric titration curves in competing binding of the drugs to the HSA homogeneous active site is described. Comparison of the theoretical and experimental titration curves enabled detection of the ligand competition for the biopolymer binding site. It was shown that sulfadimethoxine displaced cefazolin in the HSA active site, the nature of the HSA association with dicloxacillin and sulfadimethoxine was independent and binding of doxycycline or chlortetracycline to HSA had no influence on sulfadimethoxine interaction with protein.  相似文献   

9.
The energetics for binding of a diphenyl diamidine antitrypanosomal agent CGP 40215A to DNA have been studied by spectroscopy, isothermal titration calorimetry, and surface plasmon resonance biosensor methods. Both amidines are positively charged under experimental conditions, but the linking group for the two phenyl amidines has a pK(a) of 6.3 that is susceptible to a protonation process. Spectroscopic studies indicate an increase of 2.7 pK(a) units in the linking group when the compound binds to an A/T minor-groove site. Calorimetric titrations in different buffers and pH conditions support the proton-linkage process and are in a good agreement with spectroscopic titrations. The two methods established a proton-uptake profile as a function of pH. The exothermic enthalpy of complex formation varies with different pH conditions. The observed binding enthalpy increases as a function of temperature indicating a negative heat capacity change that is typical for DNA minor-groove binders. Solvent accessible surface area calculations suggest that surface burial accounts for about one-half of the observed intrinsic negative heat capacity change. Biosensor and calorimetric experiments indicate that the binding affinities vary with pH values and salt concentrations due to protonation and electrostatic interactions. The surface plasmon resonance binding studies indicate that the charge density per phosphate in DNA hairpins is smaller than that in polymers. Energetic contributions from different factors were also estimated for the ligand/DNA complex.  相似文献   

10.
Measurements of binding equilibria of EcoRV endonuclease to DNA, for a series of base-analogue substrates, demonstrate that expression of sequence selectivity is strongly enhanced by the presence of Ca2+ ions. Binding constants were determined for short duplex oligodeoxynucleotides containing the cognate DNA site, three cleavable noncognate sites, and a fully nonspecific site. At pH 7.5 and 100 mM NaCl, the full range of specificity from the specific (tightest binding) to nonspecific (weakest binding) sites is 0.9 kcal/mol in the absence of metal ions and 5.8 kcal/mol in the presence of Ca2+. Precise determination of binding affinities in the presence of the active Mg2+ cofactor was found to be possible for substrates retaining up to 1.6% of wild-type activity, as determined by the rate of phosphoryl transfer. These measurements show that Ca2+ is a near-perfect analogue for Mg2+ in binding reactions of the wild-type enzyme with DNA base-analogue substrates, as it provides identical DeltaDeltaG degrees bind values among the cleavable noncognate sites. Equilibrium dissociation constants of wild-type and base-analogue sites were also measured for the weakly active EcoRV mutant K38A, in the presence of either Mg2+ or Ca2+. In this case, Ca2+ allows expression of a greater degree of specificity than does Mg2+. DeltaDeltaG degrees bind values of K38A toward specific versus nonspecific sites are 6.1 kcal/mol with Ca2+ and 3.9 kcal/mol with Mg2+, perhaps reflecting metal-specific conformational changes in the ground-state ternary complexes. The enhancement of binding specificity provided by divalent metal ions is likely to be general to many restriction endonucleases and other metal-dependent nucleic acid-modifying enzymes. These results strongly suggest that measurements of DNA binding affinities for EcoRV, and likely for many other restriction endonucleases, should be performed in the presence of divalent metal ions.  相似文献   

11.
A method using binding site "neighbor-effect" parameters (NEPs) is introduced to evaluate the effects of interaction between adjacent ligands on their binding to an infinite linear lattice. Binding site overlap is also taken into account. This enables the conditional probability approach of McGhee & von Hippel to be extended to more complex situations. The general equation for the isotherm is v/LF = SFKF, where v is the ratio of bound ligands to lattice residues, LF is the free ligand concentration, SF is the fraction of binding sites that are free, and KF is the average association constant of a free site. Solutions are derived for three cases: symmetric ligands, and asymmetric ligands on isotropic or anisotropic lattices. For symmetric ligands there is one NEP, E, which is the ratio of the average binding affinity of a free site if the status of the lattice residue neighboring one end of the site is unspecified (left to chance) to the affinity when this residue is free (holding the other neighbor constant). Thus KF is KE2, where K is the affinity of an isolated site. If a site is n residues long, SF is f ffn-1, where f = 1 - nv is the fraction of residues that are free and ff is the conditional probability that a free residue is bordered on a given side by another free residue. The expression for ff is 1/(1 + x/E), where x is v/f, E is (1 - x + [(1 - x)2 + 4x omega]1/2)/2, and omega is the co-operativity parameter. The binding of asymmetric ligands to an isotropic lattice is described by two NEPs; the last case involves four NEPs and a bound ligand orientation parameter. For each case, the expected length distribution of clusters of bound ligands can be calculated as a function of v. When Scatchard plots with the same intercepts and initial slope are compared, it is found that ligand asymmetry lowers the isotherm (relative to the corresponding symmetric ligand isotherm), whereas lattice anisotrophy raises it.  相似文献   

12.
13.
The oxygenase domains of nitric oxide synthases are unusual in that they contain at least three ligand binding sites; these correspond to the axial heme ligand position, the substrate binding site, and the pterin binding site. Ligands can occupy portions of a site or extend into regions of adjacent sites. Depending on the size, shape, and binding mode of ligands to these positions, cooperative and anticooperative interactions mediated conformationally and by binding domain overlap can be observed. In the present study we describe competition between arginine and imidazole at the axial heme ligand position; a second imidazole, which occupies part of the arginine site in some crystal structures, is too weak to contribute to the equilibria. All spectroscopic titrations using imidazole competition depend on displacement of the heme axial imidazole ligand, which drives the ferriheme low spin. Aminoguanidine, a partial arginine analog, has multiple binding modes. It is somewhat competitive with arginine; a ternary complex forms, but the K(d) for arginine increases from 1 to 15 microM in the presence of saturating aminoguanidine. Aminoguanidine competition with imidazole is very weak, amounting to approximately a factor of two increase in K(d). This implies that aminoguanidine has multiple binding modes and is not well described as an arginine analog. The major binding mode occupies part of the binding site but does not extend into the imidazole axial ligand binding domain and probably corresponds to the crystal structure. The other binding mode is not significantly overlapped with the arginine site.  相似文献   

14.
I have examined the role of phosphorylation of D2-T antigen in its DNA-binding properties and ATPase activity. Treatment of partially purified D2-T antigen with alkaline phosphatase resulted in removal of maximally 90% of the phosphate label associated with the radio-labeled protein. The specific and nonspecific DNA-binding properties of partially dephosphorylated D2-T antigen were identical to those of the untreated control. In contrast, acid phosphatase was able to dephosphorylate D2-T antigen quantitatively. The general affinity for DNA of the completely dephosphorylated protein was unchanged or eventually slightly increased. However, its specific affinity for a restriction fragment containing the canonical T-antigen-binding sites was drastically reduced as shown by competition with unlabeled salmon sperm DNA. The results imply that nonspecific DNA binding of D2-T antigen is unaffected by phosphorylation whereas a specific phosphorylation site seems to be involved in the formation and/or stabilization of the specific protein-DNA complex. On the other hand, the ATPase activity of D2-T antigen seems to be unaffected by the degree of phosphorylation.  相似文献   

15.
X-ray analysis does not provide quantitative estimates of the relative importance of the molecular contacts it reveals or of the relative contributions of specific and nonspecific interactions to the total affinity of specific DNA to enzymes. Stepwise increase of DNA ligand complexity has been used to estimate the relative contributions of virtually every nucleotide unit of 8-oxoguanine-containing DNA to its total affinity for Escherichia coli 8-oxoguanine DNA glycosylase (Fpg protein). Fpg protein can interact with up to 13 nucleotide units or base pairs of single- and double-stranded ribo- and deoxyribo-oligonucleotides of different lengths and sequences through weak additive contacts with their internucleotide phosphate groups. Bindings of both single-stranded and double-stranded oligonucleotides follow similar algorithms, with additive contributions to the free energy of binding of the structural components (phosphate, sugar, and base). Thermodynamic models are provided for both specific and nonspecific DNA sequences with Fpg protein. Fpg protein interacts nonspecifically with virtually all of the base-pair units within its DNA-binding cleft: this provides approximately 7 orders of magnitude of affinity (Delta G degrees approximately equal to -9.8 kcal/mol) for DNA. In contrast, the relative contribution of the 8-oxoguanine unit of the substrate (Delta G degrees approximately equal to -0.90 kcal/mol) together with other specific interactions is <2 orders of magnitude (Delta G degrees approximately equal to -2.8 kcal/mol). Michaelis complex formation of Fpg protein with DNA containing 8-oxoguanine cannot of itself provide the major part of the enzyme specificity, which lies in the k(cat) term; the rate is increased by 6-8 orders of magnitude on going from nonspecific to specific oligodeoxynucleotides.  相似文献   

16.
DNA topoisomerase I from Mycobacterium smegmatis unlike many other type I topoisomerases is a site specific DNA binding protein. We have investigated the sequence specific DNA binding characteristics of the enzyme using specific oligonucleotides of varied length. DNA binding, oligonucleotide competition and covalent complex assays show that the substrate length requirement for interaction is much longer ( approximately 20 nucleotides) in contrast to short length substrates (eight nucleotides) reported for Escherichia coli topoisomerase I and III. P1 nuclease and KMnO(4) footprinting experiments indicate a large protected region spanning about 20 nucleotides upstream and 2-3 nucleotides downstream of the cleavage site. Binding characteristics indicate that the enzyme interacts efficiently with both single-stranded and double-stranded substrates containing strong topoisomerase I sites (STS), a unique property not shared by any other type I topoisomerase. The oligonucleotides containing STS effectively inhibit the M. smegmatis topoisomerase I DNA relaxation activity.  相似文献   

17.
The EcoRV mutant D90A which carries an amino acid substitution in its active center does not cleave DNA. Therefore, it is possible to perform DNA binding experiments with the EcoRV-D90A mutant both in the absence and in the presence of Mg2+. Like wild-type EcoRV [Taylor et al. (1991) Biochemistry 30, 8743-8753], it does not show a pronounced specificity for binding to its recognition site in the absence of Mg2+ as judged by the appearance of multiple shifted bands in an electrophoretic mobility shift assay with a 377-bp DNA fragment carrying a single EcoRV recognition sequence. In the presence of Mg2+, however, only one band corresponding to a 1:1 complex appears even with a high excess of protein over DNA. This complex most likely is the specific one, because its formation is suppressed much more effectively by a 13-bp oligodeoxynucleotide with an EcoRV site than by a corresponding oligodeoxynucleotide without an EcoRV site. The preferential interaction of the EcoRV-D90A mutant with specific DNA in the presence of Mg2+ was also demonstrated directly: a 20-bp oligodeoxynucleotide with an EcoRV site is bound with KAss = 4 x 10(8) M-1, while a corresponding oligodeoxynucleotide without an EcoRV site is bound with KAss less than or equal to 1 x 10(5) M-1. From these data it appears that Mg2+ confers DNA binding specificity to this mutant by lowering the affinity to nonspecific sites and raising the affinity to specific sites as compared to binding in the absence of Mg2+. It is concluded that this is also true for wild-type EcoRV.  相似文献   

18.
19.
The binding of ligands with DNA is a key moment in a whole range of cellular processes that provide not only the normal cell vital activity but also the development of some pathological processes. Depending on ligand type, structure of DNA adsorption centers, and physical–chemical conditions of the surrounding, the ligand may bind to DNA by several modes [1]. Particularly, adsorption isotherm of multimodal ligands binding to DNA in Scatchard’s coordinates has a concave shape with two brightly expressed linear areas in the region of small fillings. The analysis of such type of adsorption isotherm for determining of important binding parameters such as binding constant and number of adsorption centers (the part of DNA polymer with which one ligand molecule binds) presents difficulties. Practically in all cases, the analysis of such adsorption isotherm is carried out by linear parts of curves. Such analysis mode of experimental points is approximate method, since all registered of experimental points are roughly divided into two groups and they are treated by linear binding isotherm and therefore the binding parameters are determined. In the present work, the non-linear adsorption isotherm in Scatchard‘s coordinates is obtained which allowed, provided, the more precise treatment of all experimental points by unique curve which includes linear regions as well. Such mode of treatment of experimental points makes more precise the determination of not only binding constant and number of adsorption centers that correspond to the one ligand molecule binding, but also additional binding parameter – a proportion of adsorption centers of each binding to DNA type of multimodal ligand.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号