首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Removal of the plant hormone ethylene (C2H4) is often required by horticultural storage facilities, which are operated at temperatures below 10°C. The aim of this study was to demonstrate an efficient, biological C2H4 removal under such low-temperature conditions. Peat-soil, acclimated to degradation of C2H4, was packed in a biofilter (687 cm3) and subjected to an airflow (~73 ml min−1) with 2 ppm (μl liter−1) C2H4. The C2H4 removal efficiencies achieved at 20, 10, and 5°C, respectively, were 99.0, 98.8, and 98.4%. This corresponded to C2H4 levels of 0.022 to 0.032 ppm in the biofilter outlet air. At 2°C, the average C2H4 removal efficiency dropped to 83%. The detailed temperature response of C2H4 removal was tested under batch conditions by incubation of 1-g soil samples in a temperature gradient ranging from 0 to 29°C with increments of 1°C. The C2H4 removal rate was highest at 26°C (0.85 μg of C2H4 g [dry weight]−1 h−1), but remained at levels of 0.14 to 0.28 μg of C2H4 g (dry weight)−1 h−1 at 0 to 10°C. At 35 to 40°C, the C2H4 removal rate was negligible (0.02 to 0.06 μg of C2H4 g [dry weight]−1 h−1). The Q10 (i.e., the ratio of rates 10°C apart) for C2H4 removal was 1.9 for the interval 0 to 10°C. In conclusion, the present results demonstrated microbial C2H4 removal, which proceeded at 0 to 2°C and produced a moderately psychrophilic temperature response.  相似文献   

2.
Hydrogen production by incubated cyanobacterial epiphytes occurred only in the dark, was stimulated by C2H2, and was inhibited by O2. Addition of NO3 inhibited dark, anaerobic H2 production, whereas the addition of NH4+ inhibited N2 fixation (C2H2 reduction) but not dark H2 production. Aerobically incubated cyanobacterial aggregates consumed H2, but light-incubated rates (3.6 μmol of H2 g−1 h−1) were statistically equivalent to dark uptake rates (4.8 μmol of H2 g−1 h−1), which were statistically equivalent to dark, anaerobic production rates (2.5 to 10 μmol of H2 g−1 h−1). Production rates of H2 were fourfold higher for aggregates in a more advanced stage of decomposition. Enrichment cultures of H2-producing fermentative bacteria were recovered from freshly harvested, H2-producing cyanobacterial aggregates. Hydrogen production in these cyanobacterial communities appears to be caused by the resident bacterial flora and not by the cyanobacteria. In situ areal estimates of dark H2 production by submerged epiphytes (6.8 μmol of H2 m−2 h−1) were much lower than rates of light-driven N2 fixation by the epiphytic cyanobacteria (310 μmol of C2H4 m−2 h−1).  相似文献   

3.
Nitrogenase activity in mangrove forests at two locations in the North Island, New Zealand, was measured by acetylene reduction and 15N2 uptake. Nitrogenase activity (C2H2 reduction) in surface sediments 0 to 10 mm deep was highly correlated (r = 0.91, n = 17) with the dry weight of decomposing particulate organic matter in the sediment and was independent of light. The activity was not correlated with the dry weight of roots in the top 10 mm of sediment (r = −0.01, n = 13). Seasonal and sample variation in acetylene reduction rates ranged from 0.4 to 50.0 μmol of C2H4 m−2 h−1 under air, and acetylene reduction was depressed in anaerobic atmospheres. Nitrogen fixation rates of decomposing leaves from the surface measured by 15N2 uptake ranged from 5.1 to 7.8 nmol of N2 g (dry weight)−1 h−1, and the mean molar ratio of acetylene reduced to nitrogen fixed was 4.5:1. Anaerobic conditions depressed the nitrogenase activity in decomposing leaves, which was independent of light. Nitrogenase activity was also found to be associated with pneumatophores. This activity was light dependent and was probably attributable to one or more species of Calothrix present as an epiphyte. Rates of activity were generally between 100 and 500 nmol of C2H4 pneumatophore−1 h−1 in summer, but values up to 1,500 nmol of C2H4 pneumatophore−1 h−1 were obtained.  相似文献   

4.
Hydrogen sulfide (H2S) is a major malodorous compound emitted from wastewater treatment plants. In this study, the performance of three pilot-scale immobilized-cell biotrickling filters (BTFs) spacked with combinations of bamboo charcoal and ceramsite in different ratios was investigated in terms of H2S removal. Extensive tests were performed to determine the removal characteristics, pressure drops, metabolic products, and removal kinetics of the BTFs. The BTFs were operated in continuous mode at low loading rates varying from 0.59 to 5.00 g H2S m−3 h−1 with an empty bed retention time (EBRT) of 25 s. The removal efficiency (RE) for each BTF was >99% in the steady-state period, and high standards were met for the exhaust gas. It was found that a multilayer BTF had a slight advantage over a perfectly mixed BTF for the removal of H2S. Furthermore, an impressive amount >97% of the H2S was eliminated by 10% of packing materials near the inlet of the BTF. The modified Michaelis–Menten equation was adopted to describe the characteristics of the BTF, and Ks and Vm values for the BTF with pure bamboo charcoal packing material were 3.68 ppmv and 4.26 g H2S m−3 h−1, respectively. Both bamboo charcoal and ceramsite demonstrated good performance as packing materials in BTFs for the removal of H2S, and the results of this study could serve as a guide for further design and operation of industrial-scale systems.  相似文献   

5.
A perfusion method for assaying nitrogenase activity (acetylene reduction) in marine sediments was developed. The method was used to assay sediment cores from Spartina alterniflora (salt marsh), Zostera marina (sea grass), and Thalassia testudinum (sea grass) communities, and the results were compared with those of conventional sealed-flask assays. Rates of ethylene production increased progressively with time in the perfusion assays, reaching plateau values of 2 to 3 nmol · g of dry sediment−1 · h−1 by 10 to 20 h. Depletion of interstitial NH4+ was implicated in this stimulation of nitrogenase activity. Initial acetylene reduction rates determined by the perfusion assay of cores from the Spartina community ranged from 0.15 to 0.60 nmol of C2H4 · g of dry sediment−1 · h−1. These rates were similar to those for sediments assayed in sealed flasks without seawater when determined over linear periods of C2H4 production. Initial values obtained by using the perfusion method were 0.66 nmol of C2H4 · g of dry sediment−1 · h−1 for sediments from Zostera communities and 0.70 nmol of C2H4 · g of dry sediment−1 · h−1 for sediments from Thalassia communities. In all cases, rates determined by simultaneous slurry assays were lower than those determined by the perfusion method.  相似文献   

6.
Rapid Methane Oxidation in a Landfill Cover Soil   总被引:28,自引:5,他引:28       下载免费PDF全文
Methane oxidation rates observed in a topsoil covering a retired landfill are the highest reported (45 g m−2 day−1) for any environment. This microbial community had the capacity to rapidly oxidize CH4 at concentrations ranging from <1 ppm (microliters per liter) (first-order rate constant [k] = −0.54 h−1) to >104 ppm (k = −2.37 h−1). The physiological characteristics of a methanotroph isolated from the soil (characteristics determined in aqueous medium) and the natural population, however, were similar to those of other natural populations and cultures: the Q10 and optimum temperature were 1.9 and 31°C, respectively, the apparent half-saturation constant was 2.5 to 9.3 μM, and 19 to 69% of oxidized CH4 was assimilated into biomass. The CH4 oxidation rate of this soil under waterlogged (41% [wt/vol] H2O) conditions, 6.1 mg liter−1 day−1, was near rates reported for lake sediment and much lower than the rate of 116 mg liter−1 day−1 in the same soil under moist (11% H2O) conditions. Since there are no large physiological differences between this microbial community and other CH4 oxidizers, we attribute the high CH4 oxidation rate in moist soil to enhanced CH4 transport to the microorganisms; gas-phase molecular diffusion is 104-fold faster than aqueous diffusion. These high CH4 oxidation rates in moist soil have implications that are important in global climate change. Soil CH4 oxidation could become a negative feedback to atmospheric CH4 increases (and warming) in areas that are presently waterlogged but are projected to undergo a reduction in summer soil moisture.  相似文献   

7.
Cut carnations (Dianthus caryophyllus L. cv. `Improved White Sim') were exposed to ultra high purity 14C2H4 (20 μl/1) during flower opening and senescence to study its incorporation and metabolism. During treatment precautions were taken to exclude inhibitory volatiles from rubber serum stoppers which were identified as CS2 and COS. As with the pea seedling (Nature 1975, 255:144-147), cut carnations incorporated 14C2H4 into ethanol-soluble tissue metabolites and oxidized the hormone to 14CO2. Oxidation increased from 0.5 to 3 dpm · mg dry wt−1·6 hr−1 during the period of flower opening and early petal wilt. As severe petal wilt set in, and the ovary increased in size and dry weight, oxidation increased to a peak of nearly 29 dpm · mg dry wt−1·6 hr−1. Concomitant with this peak was a similar rise in the rate of 14C2H4 incorporation into the petals, peduncle, bracts, and sepals. Much higher rates of incorporation were found for the reproductive and receptacle tissues. Incorporation into these tissues steadily increased during flower opening reaching a peak of over 160 dpm · mg dry wt−1 · 6 hr−1 just before full bloom. This peak preceded a peak of endogenous ethylene production while the 14C2H4 oxidation peak followed it.  相似文献   

8.
Samples of sediment from Lake St. George, Ontario, Canada, were incubated in the laboratory under an initially aerobic gas phase and under anaerobic conditions. In the absence of added nitrate (NO3) there was O2-dependent production of nitrous oxide (N2O), which was inhibited by acetylene (C2H2) and by nitrapyrin, suggesting that coupled nitrification-denitrification was responsible. Denitrification of added NO3 was almost as rapid under an aerobic gas phase as under anaerobic conditions. The N2O that accumulated persisted in the presence of 0.4 atm of C2H2, but was gradually reduced by some sediment samples at lower C2H2 concentrations. Low rates of C2H2 reduction were observed in the dark, were maximal at 0.2 atm of C2H2, and were decreased in the presence of O2, NO3, or both. High rates of light-dependent C2H2 reduction occurred under anaerobic conditions. Predictably, methane (CH4) production, which occurred only under anaerobiosis, was delayed by added NO3 and inhibited by C2H2. Consumption of added CH4 occurred only under aerobic conditions and was inhibited by C2H2.  相似文献   

9.
Wych RD  Rains DW 《Plant physiology》1978,62(3):443-448
An apparatus was designed for simultaneous measurement of rates of N2 fixation estimated by C2H2-C2H4 assay (N2[C2H2] fixation) and NO3 absorption by roots of intact, nodulated soybeans (Glycine max [L.] Merr.). The principal design features include: (a) a gas-tight mist chamber in which nodulated roots can be exposed simultaneously to C2H2 in the gas phase and to a liquid phase containing NO3 sprayed in a fine mist; and (b) provision for sampling the gas phase for C2H4 determination, and the liquid phase for NO3 determination.  相似文献   

10.
N2 fixation by bacteria in associative symbiosis with washed roots of 13 Poaceae and 8 other noncultivated plant species in Finland was demonstrated by the acetylene reduction method. The roots most active in C2H2 reduction were those of Agrostis stolonifera, Calamagrostis lanceolata, Elytrigia repens, and Phalaris arundinacea, which produced 538 to 1,510 nmol of C2H4·g−1 (dry weight)· h−1 when incubated at pO2 0.04 with sucrose (pH 6.5), and 70 to 269 nmol of C2H4· g−1 (dry weight)·h−1 without an added energy source and unbuffered. Azospirillum lipferum, Enterobacter agglomerans, Klebsiella pneumoniae, and a Pseudomonas sp. were the acetylene-reducing organisms isolated. The results demonstrate the presence of N2-fixing organisms in associative symbiosis with plant roots found in a northern climatic region in acidic soils ranging down to pH 4.0.  相似文献   

11.
Nitrogen fixation (C2H2 reduction) in a sediment-water system was studied under anaerobic incubation conditions. Sodium sulfide at low concentrations stimulated activity, with a twofold increase in C2H4 production occurring in the presence of 8 μmol of S2− per ml of stream water. Sodium sulfide at concentrations of 16 μmol of S2− per ml or greater inhibited nitrogen fixation, with 64 μmol of S2− per ml being completely inhibitory. Sulfide at levels of 16 μmol/ml or above inhibited CO2 production, and the degree of inhibition increased with increasing concentration of sulfide. Titanium (III) citrate (used to modify Eh levels) stimulated both nitrogen fixation and CO2 production, but could not duplicate, at any concentration tested, the twofold increase in nitrogen fixation caused by 8 μmol of S2− per ml. Sulfide additions caused pH changes in the sediment, and when the sediment was adjusted and maintained at pH 7.0 all concentrations of sulfide inhibited nitrogen fixation activity. From considerations of the redox equilibria of H2, H2S, and other sulfur species at various pH values, it appeared that H2S was the toxic entity and that HS was less toxic. The observed stimulation of activity was apparently due to a pH change coupled with the concurrent production of HS from H2S.  相似文献   

12.
Hydrogen peroxide (H2O2) not only is an oxidant but also is an important signaling molecule in vascular biology, mediating several physiological functions. Red blood cells (RBCs) have been proposed to be the primary sink of H2O2 in the vasculature because they are the main cellular component of blood with a robust antioxidant defense and a high membrane permeability. However, the exact permeability of human RBC to H2O2 is neither known nor is it known if the mechanism of permeation involves the lipid fraction or protein channels. To gain insight into the permeability process, we measured the partition constant of H2O2 between water and octanol or hexadecane using a novel double-partition method. Our results indicated that there is a large thermodynamic barrier to H2O2 permeation. The permeability coefficient of H2O2 through phospholipid membranes containing cholesterol with saturated or unsaturated acyl chains was determined to be 4 × 10−4 and 5 × 10−3 cm s−1, respectively, at 37 °C. The permeability coefficient of human RBC membranes to H2O2 at 37 °C, on the other hand, was 1.6 × 10−3 cm s−1. Different aquaporin-1 and aquaporin-3 inhibitors proved to have no effect on the permeation of H2O2. Moreover, human RBCs devoid of either aquaporin-1 or aquaporin-3 were equally permeable to H2O2 as normal human RBCs. Therefore, these results indicate that H2O2 does not diffuse into RBCs through aquaporins but rather through the lipid fraction or a still unidentified membrane protein.  相似文献   

13.
Nitrite was able to strongly inhibit C2H2 reduction by nitrogenase from soybean bacteroids, whereas H2 evolution was unaffected under the same conditions. NO inhibited both C2H2 reduction and H2 evolution; during C2H2 reduction, sensitivity of nitrogenase to NO was higher than to NO2, and the Ki values were, respectively, 0.056 and 0.52 mM. Production of NO resulting from a reduction of NO2 by dithionite in nitrogenase incubations was observed. However, the characteristics of inhibitions and the low level of NO generated by nitrite reduction ruled out the suggestion concerning a direct role of NO to explain the inhibitory effect of NO2 on nitrogenase.  相似文献   

14.
Microzonation of denitrification was studied in stream sediments by a combined O2 and N2O microsensor technique. O2 and N2O concentration profiles were recorded simultaneously in intact sediment cores in which C2H2 was added to inhibit N2O reduction in denitrification. The N2O profiles were used to obtain high-resolution profiles of denitrification activity and NO3 distribution in the sediments. O2 penetrated about 1 mm into the dark-incubated sediments, and denitrification was largely restricted to a thin anoxic layer immediately below that. With 115 μM NO3 in the water phase, denitrification was limited to a narrow zone from 0.7 to 1.4 mm in depth, and total activity was 34 nmol of N cm−2 h−1. With 1,250 μM NO3 in the water, the denitrification zone was extended to a layer from 0.9 to 4.8 mm in depth, and total activity increased to 124 nmol of N cm−2 h−1. Within most of the activity zone, denitrification was not dependent on the NO3 concentration and the apparent Km for NO3 was less than 10 μM. Denitrification was the only NO3-consuming process in the dark-incubated stream sediment. Even in the presence of C2H2, a significant N2O reduction (up to 30% of the total N2O production) occurred in the reduced, NO3-free layers below the denitrification zone. This effect must be corrected for during use of the conventional C2H2 inhibition technique.  相似文献   

15.
An investigation was conducted into the feasibility of using enzymically isolated protoplasts from suspension-cultured cells of Nicotiana glutinosa L. to study ion transport. Transport of K+ (86Rb), 36Cl, H232PO4 and 45Ca2+ from 1 millimolar salt solutions was determined after separation of intact protoplasts from nonabsorbed tracers by centrifugation through a Ficoll step gradient. Influx of K+, Cl, and H2PO4 measured over a 30-minute period was reduced (up to 99%) by respiratory inhibitors such as 5 micrograms per milliliter oligomycin, 0.1 millimolar dinitrophenol, 0.1 millimolar cyanide, or N2 gas. In contrast, Ca2+ influx was not tightly coupled to respiratory energy production. The influx of K+ was highest between pH 6.5 and 7.5 whereas the influx of H2PO4 and Cl was greatest between pH 4.5 and 5.5. Influx of K+ and Cl was maximal at 35 and 45 C, respectively, and was almost completely inhibited below 10 C. Fusicoccin (0.01 millimolar) stimulated K+ influx by more than 200% but had no effect on the influx of either Cl or H2PO4. Apparent H+ efflux, as measured by decrease in solution pH, was enhanced by K+, stimulated further by 0.01 millimolar fusicoccin, and inhibited by 0.1 millimolar dinitrophenol or 5 micrograms per milliliter oligomycin. The measured ionic fluxes into protoplasts were similar to those obtained with intact cultured cells. The results indicate that enzymic removal of the cell wall produced no significant alteration in the transport properties of the protoplast, and that it is feasible to use isolated protoplasts for studies on ion transport.  相似文献   

16.
Formate-dependent proton reduction to H2 (HCOO + H2O → HCO3 + H2) has been reported for hyperthermophilic Thermococcus strains. In this study, a hyperthermophilic archaeon, Thermococcus onnurineus strain NA1, yielded H2 accumulation to a partial pressure of 1 × 105 to 7 × 105 Pa until the values of Gibbs free energy change (ΔG) reached near thermodynamic equilibrium (−1 to −3 kJ mol−1). The bioenergetic requirement for the metabolism to conserve energy was demonstrated by ΔG values as small as −5 kJ mol−1, which are less than the biological minimum energy quantum, −20 kJ mol−1, as calculated by Schink (B. Schink, Microbiol. Mol. Biol. Rev. 61:262-280, 1997). Considering formate as a possible H2 storage material, the H2 production potential of the strain was assessed. The volumetric H2 production rate increased linearly with increasing cell density, leading to 2,820 mmol liter−1 h−1 at an optical density at 600 nm (OD600) of 18.6, and resulted in the high specific H2 production rates of 404 ± 6 mmol g−1 h−1. The H2 productivity indicates the great potential of T. onnurineus strain NA1 for practical application in comparison with H2-producing microbes. Our result demonstrates that T. onnurineus strain NA1 has a highly efficient metabolic system to thrive on formate in hydrothermal systems.  相似文献   

17.
The addition of 20 mM MoO42− (molybdate) to a reduced marine sediment completely inhibited the SO42− reduction activity by about 50 nmol g−1 h−1 (wet sediment). Acetate accumulated at a constant rate of about 25 nmol g−1 h−1 immediately after MoO42− addition and gave a measure of the preceding utilization rate of acetate by the SO42−-reducing bacteria. Similarly, propionate and butyrate (including isobutyrate) accumulated at constant rates of 3 to 7 and 2 to 4 nmol g−1 h−1, respectively. The rate of H2 accumulation was variable, and a range of 0 to 16 nmol g−1 h−1 was recorded. An immediate increase of the methanogenic activity by 2 to 3 nmol g−1 h−1 was apparently due to a release of the competition for H2 by the absence of SO42− reduction. If propionate and butyrate were completely oxidized by the SO42−-reducing bacteria, the stoichiometry of the reactions would indicate that H2, acetate, propionate, and butyrate account for 5 to 10, 40 to 50, 10 to 20, and 10 to 20%, respectively, of the electron donors for the SO42−-reducing bacteria. If the oxidations were incomplete, however, the contributions by propionate and butyrate would only be 5 to 10% each, and the acetate could account for as much as two-thirds of the SO42− reduction. The presence of MoO42− seemed not to affect the fermentative and methanogenic activities; an MoO42− inhibition technique seems promising in the search for the natural substrates of SO42− reduction in sediments.  相似文献   

18.
Interstitial water profiles of SeO42−, SeO32−, SO42−, and Cl in anoxic sediments indicated removal of the seleno-oxyanions by a near-surface process unrelated to sulfate reduction. In sediment slurry experiments, a complete reductive removal of SeO42− occurred under anaerobic conditions, was more rapid with H2 or acetate, and was inhibited by O2, NO3, MnO2, or autoclaving but not by SO42− or FeOOH. Oxidation of acetate in sediments could be coupled to selenate but not to molybdate. Reduction of selenate to elemental selenium was determined to be the mechanism for loss from solution. Selenate reduction was inhibited by tungstate and chromate but not by molybdate. A small quantity of the elemental selenium precipitated into sediments from solution could be resolublized by oxidation with either nitrate or FeOOH, but not with MnO2. A bacterium isolated from estuarine sediments demonstrated selenate-dependent growth on acetate, forming elemental selenium and carbon dioxide as respiratory end products. These results indicate that dissimilatory selenate reduction to elemental selenium is the major sink for selenium oxyanions in anoxic sediments. In addition, they suggest application as a treatment process for removing selenium oxyanions from wastewaters and also offer an explanation for the presence of selenite in oxic waters.  相似文献   

19.
Holden MJ  Sze H 《Plant physiology》1987,84(3):670-676
We have tested directly the effect of Helminthosporium maydis T (Hmt) toxin and various analogs on the membrane potential formed in mitochondria isolated from a Texas (T) cytoplasmic male-sterile and a normal (N) corn. ATP, malate or succinate generated a membrane potential (negative inside) as monitored by the absorbance change of a cationic dye, safranine. The relative membrane potential (Δψ) could also be detected indirectly as 45Ca2+ uptake. Hmt toxin added to T mitochondria dissipated the steady state Δψ similar to addition of a protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP). Toxin analogs (Cpd XIII: C41H68O12 and Cpd IV: C25H44O6), reduced native toxin (RT2C: C41H84O13) and Pm toxin (band A: C33H60O8, produced by the fungus, Phyllosticta maydis) were effective in dissipating Δψ and decreasing Ca2+ uptake with the following order: Pm (100) » HmT (23-30) > Cpd XIII (11-25) » RT2C (0-4−1.8) > Cpd IV (0.2−1.0). In contrast, the toxins and analogs had no effect on Δψ formed in N mitochondria. The striking similarities of the HmT toxin (band 1: C41H68O13) and Cpd XIII on T mitochondrial activities provide strong evidence supporting the correctness of the polyketol structure assigned to the native toxin. Since the Δψ in energized mitochondria is caused mainly by the electrogenic extrusion of H+, the results support the idea that HmT toxin increases membrane permeability of T mitochondria to H+. The host specificity of the toxin suggests that an interaction with unique target site(s) on the inner mitochondrial membrane of T corn causes H+ leakage.  相似文献   

20.
Protoplasts were enzymically isolated from suspension cultured cells of Nicotiana glutinosa L. and aspects of transport selectivity and kinetics were studied. In the presence of Ca2+, transport was selective for K+ (86Rb) over Na+. 36Cl transport was inhibited by Br or I but not by H2PO4. The kinetic data for short term (30 minutes) K+ influx over the range of 0.05 to 100 millimolar KCl were complex but similar to those observed in other plant tissues. In contrast, the kinetic data for Cl and H232PO4 over the same concentration range were different from those observed for K+, and could be accounted for by a single isotherm in the range of 0.05 to 4 millimolar and by an almost linear increase in influx rate above 4 millimolar. The kinetic data for Cl transport into intact cultured cells were identical in character to those observed for isolated protoplasts. The results support the view that enzymic removal of the cell wall produced no significant alteration in the transport properties of the protoplast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号