首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Irwin JJ  Raushel FM  Shoichet BK 《Biochemistry》2005,44(37):12316-12328
Molecular docking uses the three-dimensional structure of a receptor to screen databases of small molecules for potential ligands, often based on energetic complementarity. For many docking scoring functions, which calculate nonbonded interactions, metalloenzymes are challenging because of the partial covalent nature of metal-ligand interactions. To investigate how well molecular docking can identify potential ligands of metalloenzymes using a "standard" scoring function, we have docked the MDL Drug Data Report (MDDR), a functionally annotated database of 95,000 small molecules, against the X-ray crystal structures of five metalloenzymes. These enzymes included three zinc proteases, the nickel analogue of an iron enzyme, and a molybdenum metalloenzyme. The ability of the docking program to retrospectively enrich the annotated ligands as high-scoring hits for each enzyme and to calculate proper geometries was evaluated. In all five systems, the annotated ligands within the MDDR were enriched at least 20 times over random. To test the approach prospectively, a sixth target, the zinc beta-lactamase from Bacteroides fragilis, was screened against the fragment-like subset of the ZINC database. We purchased and tested 15 compounds from among the top 50 top-ranked ligands from docking, and found 5 inhibitors with apparent K(i) values less than 120 microM, the best of which was 2 microM. A more ambitious test still was predicting actual substrates for a seventh target, a Zn-dependent phosphotriesterase from Pseudomonas diminuta. Screening the Available Chemicals Directory (ACD) identified 25 thiophosphate esters as potential substrates within the top 100 ranked compounds. Eight of these, all previously uncharacterized for this enzyme, were acquired and tested, and all were confirmed experimentally as substrates. These results suggest that a simple, noncovalent scoring function may be used to identify inhibitors of at least some metalloenzymes.  相似文献   

2.
The phosphoryl transferring enzymes pyruvate kinase, cAMP-dependent protein kinase and the pyrophosphoryl transferring enzyme PP-Rib-P synthetase utilize the beta, gamma bidentate metal--ATP chelate (delta-isomer) as substrate, as determined with substitution-insert CrIIIATP or CoIII(NH3)4ATP complexes. In addition, these enzymes bind a second divalent cation, which is an essential activator for pyruvate kinase and PP-Rib-P synthetase and an inhibitor of protein kinase. The enzyme-bound metal has been used as a paramagnetic reference point in T1 measurements to determine distances to the protons and phosphorus atoms of the bound nucleotide and acceptor substrates. These distances have been used to construct models of the conformations of the bound substrates. The activating metal forms a second sphere complex of the metal-nucleotide substrate on pyruvate kinase and PP-Rib-P synthetase while the inhibitory metal directly coordinates the polyphosphate chain of the metal-nucleotide substrate on protein kinase. Essentially no change is found in the dihedral angle at the glycosidic bond of ATP upon binding to pyruvate kinase (chi = 30 degrees), an enzyme of low base specificity, but significant changes in the torsional angle of ATP occur on binding to protein kinase (chi = 84 degrees) and PP-Rib-P synthetase (chi = 62 degrees), enzymes with high adenine-base specificity. Intersubstrate distances, measured with tridentate CrATP or beta, gamma bidentate CrAMPPCP as paramagnetic reference points, have been used to deduce the distance along the reaction coordinate on each enzyme. The reaction coordinate distances on pyruvate kinase (# +/- 1 A) and PP-Rib-P synthetase (not less than 3.8 A) are consistent with associative mechanisms, while that on protein kinase (5 +/- 0.7 A) allows room for a dissociative mechanism.  相似文献   

3.
A method of screening of proteolytic enzyme's substrates is proposed. An equimolar mixture of substrates consisting of peptide and easily detectable chromophore moieties (all chromophores in the mixture must be different) is subjected to enzymatic treatment. The cleaved chromophore groups, which are products of the substrate proteolysis, are quantitatively determined by chromatography. The Kcat/Km ratio is greater for substrates with higher initial rate accumulation of proteolysis products. The method is illustrated by screening of peptide derivatives of aminonaphtalene sulphonamides for trypsin assay. Proteolysis products are determined by HPLC with absorption detection or by TLC with fluorescence detection.  相似文献   

4.
A software suite, SABER (Selection of Active/Binding sites for Enzyme Redesign), has been developed for the analysis of atomic geometries in protein structures, using a geometric hashing algorithm (Barker and Thornton, Bioinformatics 2003;19:1644–1649). SABER is used to explore the Protein Data Bank (PDB) to locate proteins with a specific 3D arrangement of catalytic groups to identify active sites that might be redesigned to catalyze new reactions. As a proof‐of‐principle test, SABER was used to identify enzymes that have the same catalytic group arrangement present in o‐succinyl benzoate synthase (OSBS). Among the highest‐scoring scaffolds identified by the SABER search for enzymes with the same catalytic group arrangement as OSBS were L ‐Ala D/L ‐Glu epimerase (AEE) and muconate lactonizing enzyme II (MLE), both of which have been redesigned to become effective OSBS catalysts, demonstrated by experiments. Next, we used SABER to search for naturally existing active sites in the PDB with catalytic groups similar to those present in the designed Kemp elimination enzyme KE07. From over 2000 geometric matches to the KE07 active site, SABER identified 23 matches that corresponded to residues from known active sites. The best of these matches, with a 0.28 Å catalytic atom RMSD to KE07, was then redesigned to be compatible with the Kemp elimination using RosettaDesign. We also used SABER to search for potential Kemp eliminases using a theozyme predicted to provide a greater rate acceleration than the active site of KE07, and used Rosetta to create a design based on the proteins identified.  相似文献   

5.
6.
We have applied the calculation of mechanical properties to a dataset of almost 100 enzymes to determine the extent to which catalytic residues have distinct properties. Specifically, we have calculated force constants describing the ease of moving any given amino acid residue with respect to the other residues in the protein. The results show that catalytic residues are invariably associated with high force constants. Choosing an appropriate cutoff enables the detection of roughly 80% of catalytic residues with only 25% of false positives. It is shown that neither multidomain structures, nor the presence or absence of bound ligands hinder successful detections. It is however noted that active sites near the protein surface are more difficult to detect and that non-catalytic, but structurally key residues may also exhibit high force constants.  相似文献   

7.
Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1,072 Å3. The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes.  相似文献   

8.
An enzyme catalysing the reaction of a substrate with multiple reaction sites may display steady state kinetics described by a Michaels-Menten equation. The Km is identical for all sites considered individually and all sites together. The maximum velocity for a single site depends on the rate constants for reaction at that site and at all of other sites.  相似文献   

9.
10.
Acivicin, a chlorinated amino acid antibiotic, is found to be remarkably effective in killing both the vector and the host form of the parasitic protozoa, Leishmania donovani, the causative agent for visceral leishmaniasis or Kala-azar. The ED50 (50 nM) for the pathogenic amastigote form in in vitro screening system is significantly lower than the reported values for other drugs under trial. The drug irreversibly inactivates both in vitro and in vivo carbamyl phosphate synthetase II, the first enzyme of the pyrimidine biosynthetic pathway. The irreversible inactivation of this sensitive target enzyme and lack of effective reversal by glutamine makes acivicin a preferred candidate for potential chemotherapy against increasing number of Kala-azar cases that are reported to be unresponsive to pentavalent antimonials.  相似文献   

11.
Artemisia argyi (AA) is one of the renowned herbs in China often used in the treatment of gastric ulcer (GU). Aiming to predict the active compounds and systematically investigate the mechanisms of Artemisia argyi for GU treatment, the approach of network pharmacology, molecular docking, gene ontology (GO) analysis, and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis were adopted, respectively, in present study. A total of 13 predicted targets of the 103 compounds in Artemisia argyi were obtained. Sorted by pathogenic mechanisms of targets and structure types of compounds, it was revealed that flavonoids and sesquiterpenes had better performance than monoterpenes. The network analysis showed that Phospholipase a2 (PA21B), Sulfotransferase family cytosolic 2b member 1 (ST2B1), Nitric-oxide synthase, endothelial (NOS3), Gastrin (GAST), neutrophil collagenase (MMP-8), Leukotriene A-4 hydrolase (LKHA4), Urease maturation factor HypB (HYPB), and Periplasmic serine endoprotease DegP (HtrA) were the key targets with intensely interaction. The functional enrichment analysis indicated that AA probably produced the gastric mucosa protection effects by synergistically regulating many biological pathways, such as NF-κB signaling pathway, HIF-1 signaling pathway, TNF signaling pathway, VEGF signaling pathway, and Toll-like receptor signaling pathway, etc. In addition, C73 and C15 might be promising leading compounds with good molecular docking score. As a consequence, this study holistically illuminates the active constituents and mechanisms based on data analysis, which contributes to searching for leading compounds and the development of new drugs for gastric ulcer.  相似文献   

12.
Spin-labeled fluorophosphonates react with serine proteinases and esterases in a manner analogous to the common active phosphate ester inhibitors. The reporter group properties of the spin-labeled inhibitors enable a comparative study of the micro structure of the active sites of these enzymes as well as a facile determination of rates of inhibition. The effect of various environmental perturbations on the conformation of these active sites has also been probed.  相似文献   

13.
The radical intermediates generated during the catalytic cycles of adenosylcobalamin-dependent enzymes occur in pairs. The positions of radicals residing on the cofactor, substrate or protein, relative to the position of the low-spin Co(2+) from the cob(II)alamin intermediate, can be extracted from electron paramagnetic resonance (EPR) spectra of the spin-coupled pairs. Examples of radical-Co(2+) pairs that span a range of interspin distances from 3 to 13A have been presented. Interspin distances greater than 5A require motion of one or more of the participating species. EPR spectroscopy provides a convenient means to determine the structures of these transient intermediates.  相似文献   

14.
Hexacyanochromate ion, (Cr(CN)6)3-, was applied to ribonuclease T1 (RNase T1), which specifically cleaves RNA chains at guanylic acid residues. From kinetic studies, this anion was shown to bind to the active site of RNase T1 as a competitive inhibitor. Therefore, the line broadening effect of NMR resonances due to binding of (Cr(CN)6)3- was analyzed for the mapping of the active site of RNase T1. His-40 C2 proton resonance was significantly broadened, following His-92 C2 proton resonance upon binding of (Cr(CN)6)3-, while His-27 C2 proton resonance did not show any appreciable line broadening. Moreover, from the pH dependence of the line broadening effect, the binding of (Cr(CN)6)3- was shown to be controlled by the ionic state of Glu-58. Based on the present NMR results and x-ray crystal structure, the active site structure of RNase T1 is discussed.  相似文献   

15.
Degradation tags are short peptide sequences that target proteins for destruction by housekeeping proteases. We previously utilized the C-terminal SsrA tag in directed evolution experiments to decrease the intracellular lifetime of a growth-limiting enzyme and thereby facilitate selection of highly active variants. In this study, we examine the N-terminal RepA tag as an alternative degradation signal for laboratory evolution. Although RepA proved to be less effective than SsrA at lowering protein concentrations in the cell, its N-terminal location dramatically reduced the occurrence of truncation and frameshift artifacts in selection experiments. We exploited this improvement to evolve a topologically redesigned chorismate mutase that is intrinsically disordered but already highly active for the conversion of chorismate to prephenate. After three rounds of mutagenesis and high-stringency selection, a robust and more nativelike variant was obtained that exhibited a catalytic efficiency (k(cat)/K(M) = 84000 M(-1) s(-1)) comparable to that of a natural dimeric chorismate mutase. Because of concomitant increases in catalyst yield, the level of intracellular prephenate production increased approximately 30-fold overall over the course of evolution.  相似文献   

16.
Cheriyan M  Toone EJ  Fierke CA 《Biochemistry》2012,51(8):1658-1668
The substrate specificity of enzymes is frequently narrow and constrained by multiple interactions, limiting the use of natural enzymes in biocatalytic applications. Aldolases have important synthetic applications, but the usefulness of these enzymes is hampered by their narrow reactivity profile with unnatural substrates. To explore the determinants of substrate selectivity and alter the specificity of Escherichia coli 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase, we employed structure-based mutagenesis coupled with library screening of mutant enzymes localized to the bacterial periplasm. We identified two active site mutations (T161S and S184L) that work additively to enhance the substrate specificity of this aldolase to include catalysis of retro-aldol cleavage of (4S)-2-keto-4-hydroxy-4-(2'-pyridyl)butyrate (S-KHPB). These mutations improve the value of k(cat)/K(M)(S-KHPB) by >450-fold, resulting in a catalytic efficiency that is comparable to that of the wild-type enzyme with the natural substrate while retaining high stereoselectivity. Moreover, the value of k(cat)(S-KHPB) for this mutant enzyme, a parameter critical for biocatalytic applications, is 3-fold higher than the maximal value achieved by the natural aldolase with any substrate. This mutant also possesses high catalytic efficiency for the retro-aldol cleavage of the natural substrate, KDPG, and a >50-fold improved activity for cleavage of 2-keto-4-hydroxy-octonoate, a nonfunctionalized hydrophobic analogue. These data suggest a substrate binding mode that illuminates the origin of facial selectivity in aldol addition reactions catalyzed by KDPG and 2-keto-3-deoxy-6-phosphogalactonate aldolases. Furthermore, targeting mutations to the active site provides a marked improvement in substrate selectivity, demonstrating that structure-guided active site mutagenesis combined with selection techniques can efficiently identify proteins with characteristics that compare favorably to those of naturally occurring enzymes.  相似文献   

17.
This review outlines recent developments in electrochemical investigations of proteins adsorbed on electrodes. The important point about 'protein film voltammetry' is that it addresses the rates of reactions that occur in enzymes - catalysis, inhibition, electron flow - as a function of potential; in other words, it introduces the 'potential dimension' into enzyme kinetics. Some surprisingly subtle, yet significant observations are made, including demonstration of a special role for Mo(V) in the catalytic cycle of Mo enzymes, quantitation of the catalytic bias in multi-centred enzymes such as mitochondrial Complex I, insight into mechanisms of proton transfer in enzymes, and properties of proteins that are covalently attached directly to a gold surface.  相似文献   

18.
Flavocytochrome b2 (or L-lactate dehydrogenase) from baker's yeast is thought to operate by the initial formation of a carbanion, as do the evolutionarily related alpha-hydroxy acid-oxidizing FMN-dependent oxidases. Previous work has shown that, in the active site of the unligated reduced flavocytochrome b2, the group that has captured the substrate alpha-proton has a high pKapp, calculated to lie around 15 through the use of Eigen's equation. A detailed inspection of the now known three-dimensional structure of the enzyme leads to the conclusion that the high pKa belongs to His 373, an active site group that plays the role of general base in the forward reaction and of general acid in the reverse direction. Moreover, consideration of the kinetics of proton transfer during the catalytic cycle suggests that the pKa of the reduced FMN N5 position should be lowered by several pH units compared to its pKa of 20 or more when free. The features of the three-dimensional structure possibly responsible for these pK shifts are analyzed; they are proposed to consist of a network of hydrogen bonds with the solvent and of a mutual electrostatic stabilization of anionic reduced flavin and the imidazolium ion. Finally, it is suggested that similar pK shifts affect the active sites of the alpha-hydroxy acid-oxidizing flavooxidases, which are homologous to flavocytochrome b2. The functional significance of these pK shifts in terms of catalysis and semiquinone stabilization is discussed.  相似文献   

19.
Alignment of 23 branching enzyme (BE) amino acid sequences from various species showed conservation of two arginine residues. Phenylglyoxal (PGO) was used to investigate the involvement of arginine residues of maize BEI and BEII in catalysis. BE was significantly inactivated by PGO in triethanolamine buffer at pH 8.5. The inactivation followed a time- and concentration-dependent manner and showed pseudo first-order kinetics. Slopes of 0.73 (BEI) and 1.05 (BEII) were obtained from double log plots of the observed rates of inactivation against the concentrations of PGO, suggesting that loss of BE activity results from as few as one arginine residue modified by PGO. BE inactivation was positively correlated with [14C]PGO incorporation into BE protein and was considerably protected by amylose and/or amylopectin, suggesting that the modified arginine residue may be involved in substrate binding or located near the substrate-binding sites of maize branching enzymes I and II.Abbreviations BE branching enzyme - BCA bicinchoninic acid - BSA bovine serum albumin - Glc-1-P glucose-1-phosphate - IPTG isopropyl-d-thiogalactoside - PGO phenylglyoxal - PMSF phenylmethylsulfonyl fluoride - SDS-PAGE sodium docecyl sulfate-polyacrylamide gel electrophoresis - TCA trichloroacetic acid - TEA triethanolamine  相似文献   

20.
Restriction enzymes produced by bacteria serve as a defense against invading bacteriophages, and so phages without other protection would be expected to undergo selection to eliminate recognition sites for these enzymes from their genomes. The observed frequencies of all restriction sites in the genomes of all completely sequenced DNA phages (T7, lambda, phi X174, G4, M13, f1, fd, and IKe) have been compared to expected frequencies derived from trinucleotide frequencies. Attention was focused on 6-base palindromes since they comprise the typical recognition sites for type II restriction enzymes. All of these coliphages, with the exception of lambda and G4, exhibit significant avoidance of the particular sequences that are enterobacterial restriction sites. As expected, the sequenced fraction of the genome of phi 29, a Bacillus subtilis phage, lacks Bacillus restriction sites. By contrast, the RNA phage MS2, several viruses that infect eukaryotes (EBV, adenovirus, papilloma, and SV40), and three mitochondrial genomes (human, mouse, and cow) were found not to lack restriction sites. Because the particular palindromes avoided correspond closely with the recognition sites for host enzymes and because other viruses and small genomes do not show this avoidance, it is concluded that the effect indeed results from natural selection.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号