首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The miniaturization of gene transfer assays to either 384- or 1536-well plates greatly economizes the expense and allows much higher throughput when transfecting immortalized and primary cells compared with more conventional 96-well assays. To validate the approach, luciferase and green fluorescent protein (GFP) reporter gene transfer assays were developed to determine the influence of cell seeding number, transfection reagent to DNA ratios, transfection time, DNA dose, and luciferin dose on linearity and sensitivity. HepG2, CHO, and NIH 3T3 cells were transfected with polyethylenimine (PEI)–DNA in both 384- and 1536-well plates. The results established optimal transfection parameters in 384-well plates in a total assay volume of 35 μl and in 1536-well plates in a total assay volume of 8 μl. A luciferase assay performed in 384-well plates produced a Z′ score of 0.53, making it acceptable for high-throughput screening. Primary hepatocytes were harvested from mouse liver and transfected with PEI DNA and calcium phosphate DNA nanoparticles in 384-well plates. Optimal transfection of primary hepatocytes was achieved on as few as 250 cells per well in 384-well plates, with CaPO4 proving to be 10-fold more potent than PEI.  相似文献   

3.
This article discusses the development of homogeneous, miniaturized assays for the identification of novel kinase inhibitors from very large compound collections. In particular, the suitability of time-resolved fluorescence resonance energy transfer (TR-RET) based on phospho-specific antibodies, an antibody-independent fluorescence polarization (FP) approach using metal-coated beads (IMAP technology), and the determination of adenosine triphosphate consumption through chemiluminescence is evaluated. These readouts are compared with regard to assay sensitivity, compound interference, reagent consumption, and performance in a 1536-well format, and practical considerations for their application in primary screening or in the identification of kinase substrates are discussed. All of the tested technologies were found to be suitable for miniaturized high-throughput screening (HTS) in principle, but each of them has distinct limitations and advantages. Therefore, the target-specific selection of the most appropriate readout technology is recommended to ensure maximal relevance of HTS campaigns.  相似文献   

4.
Lin K  Sadée W  Quillan JM 《BioTechniques》1999,26(2):318-22, 324-6
Intracellular calcium is a universal second messenger that can serve as a broad-based measure of receptor activity. Recent developments in multi-well plate fluorescence readers facilitate measurement of intracellular free-calcium levels and reduce reliance on slower, more cumbersome or expensive data collection methods. In this report, we describe a rapid and sensitive method to assay intracellular calcium ions in human embryonic kidney (HEK293) and Chinese hamster ovary (CHO) cells from multi-well plates using a fluorometer equipped with on-line injectors. We examine the compatibility of visible-light excitable dyes Calcium Green-1 and Oregon Green 488 BAPTA-1. Using this assay, we were able to detect and quantify activity from muscarinic and beta-adrenergic receptors endogenous to HEK293 cells and detect calcium signals generated by activation of Gi-coupled recombinant mu-opioid and dopamine D2L receptors, and the Gs-coupled melanocortin subtype 4 (MC4) receptor. Fluorescence signals, stable in HEK293 cells, required the use of Oregon Green 488 BAPTA-1 and an inhibitor of organic anion transport in CHO cells. Under appropriate conditions, both cell types can be used to collect complete concentration-response data for a variety of receptors (including a recombinant muscarinic M1 receptor expressed in CHO cells) from a single plate of dye-loaded cells.  相似文献   

5.
The cyclic nucleotide phosphodiesterases (PDEs) are intracellular enzymes that catalyze the hydrolysis of 3,'5'-cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), to their corresponding 5'nucleotide monophosphates. These enzymes play an important role in controlling cellular concentrations of cyclic nucleotides and thus regulate a variety of cellular signaling events. PDEs are emerging as drug targets for several diseases, including asthma, cardiovascular disease, attention-deficit hyperactivity disorder, Parkinson's disease, and Alzheimer's disease. Although biochemical assays with purified recombinant PDE enzymes and cAMP or cGMP substrate are commonly used for compound screening, cell-based assays would provide a better assessment of compound activity in a more physiological context. The authors report the development and validation of a new cell-based PDE4 assay using a constitutively active G-protein-coupled receptor as a driving force for cAMP production and a cyclic nucleotide-gated cation channel as a biosensor in 1536-well plates.  相似文献   

6.
Three carbohydrate analyses (reducing value by copper-bicinchoninate, total carbohydrate by phenol-sulfuric acid, and D-glucose by glucose oxidase) have been miniaturized using a microsample plate reader. The use of the reducing-value procedure to measure the hydrolysis of starch by alpha-amylase and the use of the glucose oxidase method to measure the hydrolysis of lactose by lactase are illustrated.  相似文献   

7.
p56(lck) is a lymphocyte-specific tyrosine kinase that plays an important role in both T-cell maturation and activation. We have developed a homogeneous assay in which p56(lck) catalyzes the transfer of the gamma-phosphate group from [gamma-(33)P]ATP to a biotinylated peptide substrate. The labeled peptide is then captured on a streptavidin-coated scintillation proximity assay (SPA) bead or imaging proximity bead. The SPA is counted in a microplate scintillation counter and the imaging proximity assay is counted in a charge-coupled device-based imaging system called LEADseekertrade mark, recently launched as a homogeneous imaging system by Amersham Pharmacia Biotech. We show, via time-dependence assays and inhibitor studies, that this assay can be performed in 1536-well microplate format using imaging proximity as the method of detection. The results compare favorably with the same assay performed in 384-well microplate format using both SPA and imaging proximity as the detection methods. From this study, we conclude that a kinase assay can be performed in 384- and 1536-well format using imaging as the detection method, with significant time savings over standard scintillation counting. In addition, we show cost saving advantages of 1536- over 384-well format in terms of reagent usage, higher throughput, and waste disposal.  相似文献   

8.
Calcium signaling in platelets is an important physiological response to various aggregation stimuli. Loading platelets with various fluorescent dyes and measuring the change in calcium concentration using a spectrofluorometer has been the traditional approach to studying calcium signaling. This method suffers from the need for large platelet samples and a decrease in total fluorescence signal with time due to photobleaching. Therefore, it is rarely used to measure the quantitative effect of an agonist or antagonist on calcium signaling. Adaptation of these measurements to a fluorescent imaging plate reader (FLIPR) format allows the sample size to be reduced by 5- to 10-fold, and the microplate format allows a significant increase in throughput. Addition of the agonists to all wells simultaneously serves to normalize the total response. This article describes the first use of a FLIPR to study the calcium flux in human platelets. The IC(50) values showed a linear correlation with the K(i) for receptor binding in washed platelets. The generality of the methodology was shown by measuring EC(50) values for agonists and IC(50) values for antagonists of the platelet G protein-coupled receptor P2Y(1) and for the ion channel P2X(1).  相似文献   

9.
High-throughput screening in the 1536-well format has been largely restricted to solution-based and cell-based screens. In this article, we show the feasibility of a completely automated, robust scintillation proximity assay in the 1536-well format that is suitable to identify inhibitors for a serine/threonine kinase from a compound library. The introduction of [(33)P]phosphate into a biotinylated peptide substrate mirrors the activity of the kinase. The peptide is immobilized on streptavidin-coated LEADseeker imaging beads and [(33)P]phosphate incorporation is detected with the LEADseeker imaging system of Amersham Pharmacia Biotech. To improve the liquid handling procedures for imaging bead suspensions in the low microliter range, we developed a novel trough with an integrated stirring function. A comparison of the 1536-well assay to a 384-well assay revealed a comparable assay quality with Z' factors of about 0.7 for the 384-well format and 0.6 for the 1536-well format. In an automated screen of a random compound collection, 94.4% of the inhibitory compounds could be identified with both assay formats. Dose-response curves were performed for a selection of identified kinase inhibitors and revealed similar IC(50) values for both assay formats.  相似文献   

10.
Results of a complete survey of the more than 2-million-member Pharmacopeia compound collection in a 1536-well microvolume screening assay format are reported. A complete technology platform, enabling the performance of ultra-high throughput screening in a miniaturized 1536-well assay format, has been assembled and utilized. The platform consists of tools for performing microvolume assays, including assay plates, liquid handlers, optical imagers, and data management software. A fluorogenic screening assay for inhibition of a protease enzyme target was designed and developed using this platform. The assay was used to perform a survey screen of the Pharmacopeia compound collection for active inhibitors of the target enzyme. The results from the survey demonstrate the successful implementation of the ultra-high throughout platform for routine screening purposes. Performance of the assay in the miniaturized format is equivalent to that of a standard 96-well assay, showing the same dependence on kinetic parameters and ability to measure enzyme inhibition. The survey screen identified an active class of compounds within the Pharmacopeia compound collection. These results were confirmed using a standard 96-well assay.  相似文献   

11.
Opening of permeability transition (PT) pores in the mitochondrial inner membrane causes the mitochondrial permeability transition (MPT) and leads to mitochondrial swelling, membrane depolarization, and release of intramitochondrial solutes. Here, our aim was to develop high-throughput assays using a fluorescence plate reader to screen potential inducers and blockers of the MPT. Isolated rat liver mitochondria (0.5 mg/ml) were incubated in multiwell plates with tetramethylrhodamine methyl ester (TMRM, 1 microM), a potential-indicating fluorophore, and Fluo-5N (1 microM), a low-affinity Ca(2+) indicator. Incubation led to mitochondrial polarization, as indicated by uncoupler-sensitive quenching of the red TMRM fluorescence. CaCl(2) (100 microM) addition led to ruthenium red-sensitive mitochondrial Ca(2+) uptake, as indicated by green Fluo-5N fluorescence. After Ca(2+) accumulation, mitochondria depolarized, released Ca(2+) into the medium, and began to swell. This swelling was monitored as a decrease in light absorbance at 620 nm. Swelling, depolarization, and Ca(2+) release were prevented by cyclosporin A (1 microM), confirming that these events represented the MPT. Measurements of Ca(2+), mitochondrial membrane potential, and swelling could be made independently from the same wells without cross interference, and all three signals could be read from every well of a 48-well plate in about 1 min. In other experiments, mitochondria were ester-loaded with carboxydichlorofluorescein (carboxy-DCF) during the isolation procedure. Release of carboxy-DCF after PT pore opening led to an unquenching of green carboxy-DCF fluorescence occurring simultaneously with swelling. By combining measurements of carboxy-DCF release, Ca(2+) uptake, membrane potential, and swelling, MPT inducers and blockers can be distinguished from uncouplers, respiratory inhibitors, and blockers of Ca(2+) uptake. This high-throughput multiwell assay is amenable for screening panels of compounds for their ability to promote or block the MPT.  相似文献   

12.
The growth of auxotrophic bacteria remains the method of choice for the determination of biologically active folate metabolites in plasma. This report describes a microbiological assay for folates adapted to use disposable 96-well plates and an automatic plate reader. The modifications in the assay decreased reagent costs and made the analysis of hundreds of samples per day possible with a sensitivity limit of 10 fmol of (6S)-5-formyltetrahydrofolic acid. This limit compares favorably with that of previously reported, more laborious methods. The unnatural 6R diastereomer of 5-formyltetrahydrofolic acid did not interfere with the microbiological assay of the natural 6S diastereomer.  相似文献   

13.
The measurement of prostaglandin E synthase (PGES) activity is cumbersome because the product of the reaction, PGE(2), is not readily quantitated by spectral means. The activity of isolated PGES is typically determined by PGE(2) immunoassay or by high-performance liquid chromatography using radiolabeled substrate. A relatively rapid continuous spectrophotometric assay which uses 15-hydroxyprostaglandin dehydrogenase (PGDH) to couple the oxidation of the 15-hydroxy group of PGE(2) to the formation of NADH was developed. PGDH is relatively specific for PGE(2) over the substrate for the PGES reaction, PGH(2), allowing a highly reproducible assay of PGES activity to be obtained.  相似文献   

14.
There is great interest in developing reproducible high-throughput screens to identify small molecular inhibitors of protein fibrillization and aggregation for possible therapy against deposition diseases such as Alzheimer’s and Parkinson’s (PD). We have made a methodical analysis of factors increasing the reproducibility of the fibrillization of α-synuclein (αSN), a 140-amino-acid protein implicated in PD and notorious for its erratic fibrillization behavior. Salts and polyanionic polymers do not significantly improve the quality of the assay. However, an orbital agitation mode in the plate reader is a crucial first step toward reproducible αSN fibrillization. Higher reproducibility is achieved by the addition of glass beads, as evaluated by the percentage standard deviation of the nucleation and elongation rate constants and the end-stage fluorescence intensity of the fibril-binding dye thioflavin T (ThT). The highest reproducibility is obtained by either seeding the solution with preformed fibrils or by adding submicellar amounts of sodium dodecyl sulfate (SDS), where we obtain percentage standard deviations of 3-4% on the end ThT level. We conclude that there are multiple ways to achieve satisfactory levels of reproducibility, although the different conditions used to induce aggregation may lead to different fibrillization pathways.  相似文献   

15.
For structural and functional genomics programs, new high-throughput methods to obtain well-expressing and highly soluble proteins are essential. Here, we describe a rapid procedure to express recombinant proteins in an Escherichia coli cell-free system using a 96-well format. The identification of soluble proteins is performed by the Dot Blot procedure using an anti-His tag antibody. The applications and the automation of this method are described.  相似文献   

16.
Several production lots of Anistreplase (Eminase) were assayed for potency by either two fibrin plate assays or a clot lysis assay performed in 96-well microtiter plates. The 96-well plate assay yielded comparable data to the fibrin plate assays and had the advantage of greater efficiency with respect to both time and reagents. As a result the newer method appears to be a suitable alternative to the fibrin plate assays for lot release of Anistreplase.  相似文献   

17.
Fluorescence polarization (FP) is an established technique for the study of biological interactions and is frequently used in the high-throughput screening (HTS) of potential new drug targets. This work describes the miniaturization of FP receptor assays to 1536-well formats for use in HTS. The FP assays were initially developed in 384-well microplates using CyDye-labeled nonpeptide and peptide ligands. Receptor expression levels varied from approximately 1 to 10 pmols receptor per mg protein, and ligand concentrations were in the 0.5- to 1.0-nM range. The FP assays were successfully miniaturized to 1536-well formats using Cy3B-labeled ligands, significantly reducing reagent consumption, particularly the receptor source, without compromising assay reliability. Z' factor values determined for the FP receptor assays in both 384- and 1536-well formats were found to be > 0.5, indicating the assays to be robust, reliable, and suitable for HTS purposes.  相似文献   

18.
Sample homogenization is an essential step for genomic DNA extraction, with multiple downstream applications in Molecular Biology. Genotyping hundreds or thousands of samples requires an automation of this homogenization step, and high throughput homogenizer equipment currently costs 7000 euros or more. We present an apparatus for homogenization of individual Drosophila adult flies in 96-well micro-titer dishes, which was built from a small portable paint-shaker (F5 portable paint-shaker, Ushake). Single flies are disrupted in each well that contains extraction buffer and a 4-mm metal ball. Our apparatus can hold up to five 96-well micro-titer plates. Construction of the homogenizer apparatus takes about 3–4 days, and all equipment can be obtained from a home improvement store. The total material cost is approximately 700 euros including the paint-shaker. We tested the performance of our apparatus using the ZR-96 Quick-gDNA™ kit (Zymo Research) homogenization buffer and achieved nearly complete tissue homogenization after 15 minutes of shaking. PCR tests did not detect any cross contamination between samples of neighboring wells. We obtained on average 138 ng of genomic DNA per fly, and DNA quality was adequate for standard PCR applications. In principle, our tissue homogenizer can be used for isolation of DNA suitable for library production and high throughput genotyping by Multiplexed Shotgun Genotyping (MSG), as well as RNA isolation from single flies. The sample adapter can also hold and shake other items, such as centrifuge tubes (15–50 mL) or small bottles.  相似文献   

19.
《Fly》2013,7(3):138-144
Sample homogenization is an essential step for genomic DNA extraction, with multiple downstream applications in Molecular Biology. Genotyping hundreds or thousands of samples requires an automation of this homogenization step, and high throughput homogenizer equipment currently costs 7000 euros or more. We present an apparatus for homogenization of individual Drosophila adult flies in 96-well micro-titer dishes, which was built from a small portable paint-shaker (F5 portable paint-shaker, Ushake). Single flies are disrupted in each well that contains extraction buffer and a 4-mm metal ball. Our apparatus can hold up to five 96-well micro-titer plates. Construction of the homogenizer apparatus takes about 3–4 days, and all equipment can be obtained from a home improvement store. The total material cost is approximately 700 euros including the paint-shaker. We tested the performance of our apparatus using the ZR-96 Quick-gDNA? kit (Zymo Research) homogenization buffer and achieved nearly complete tissue homogenization after 15 minutes of shaking. PCR tests did not detect any cross contamination between samples of neighboring wells. We obtained on average 138 ng of genomic DNA per fly, and DNA quality was adequate for standard PCR applications. In principle, our tissue homogenizer can be used for isolation of DNA suitable for library production and high throughput genotyping by Multiplexed Shotgun Genotyping (MSG), as well as RNA isolation from single flies. The sample adapter can also hold and shake other items, such as centrifuge tubes (15–50 mL) or small bottles.  相似文献   

20.
There is a pressing need to develop new antimicrobial drugs because of the increasing resistance of pathogenic bacteria to existing antibiotics. The preliminary development and validation of a novel methodology for the high-throughput screening of antimicrobial compounds and inhibitors of bacterial motility is described. This method uses a bacterial motility swarming agar assay, combined with the use of offset inoculation of the wells in a standard, clear, 96-well plate, to enable rapid screening of compounds for potential antibiotic and antimotility properties with a standard absorbance microplate reader. Thus, the methodology should be compatible with 96-well laboratory automation technology used in drug discovery and chemical biology studies. To validate the screening method, the Genesis Plus structurally diverse library of 960 biologically active compounds was screened against a motile strain of the gram-negative bacterial pathogen Salmonella typhimurium. The average Z' value for the positive and negative motility controls on all 12 compound plates was 0.67 +/- 0.14, and the signal-to-baseline ratio calculated from the positive and negative controls was 5.9 +/- 1.1. A collection of 70 compounds with well-known antimicrobial properties was successfully identified using this assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号