首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thiol/disulfide oxidoreductase DsbA is the strongest oxidant of the thioredoxin superfamily and is required for efficient disulfide bond formation in the periplasm of Escherichia coli. To determine the importance of the redox potential of the final oxidant in periplasmic protein folding, we have investigated the ability of the most reducing thiol/disulfide oxidoreductase, E.coli thioredoxin, of complementing DsbA deficiency when secreted to the periplasm. In addition, we secreted thioredoxin variants with increased redox potentials as well as the catalytic a-domain of human protein disulfide isomerase (PDI) to the periplasm. While secreted wild-type thioredoxin and the most reducing thioredoxin variant could not replace DsbA, all more oxidizing thioredoxin variants as well as the PDI a-domain could complement DsbA deficiency in a DsbB-dependent manner. There is an excellent agreement between the activity of the secreted thioredoxin variants in vivo and their ability to oxidize polypeptides fast and quantitatively in vitro. We conclude that the redox potential of the direct oxidant of folding proteins and in particular its reactivity towards reduced polypeptides are crucial for efficient oxidative protein folding in the bacterial periplasm.  相似文献   

2.
DsbA, a 21-kDa protein from Escherichia coli, is a potent oxidizing disulfide catalyst required for disulfide bond formation in secreted proteins. The active site of DsbA is similar to that of mammalian protein disulfide isomerases, and includes a reversible disulfide bond formed from cysteines separated by two residues (Cys30-Pro31-His32-Cys33). Unlike most protein disulfides, the active-site disulfide of DsbA is highly reactive and the oxidized form of DsbA is much less stable than the reduced form at physiological pH. His32, one of the two residues between the active-site cysteines, is critical to the oxidizing power of DsbA and to the relative instability of the protein in the oxidized form. Mutation of this single residue to tyrosine, serine, or leucine results in a significant increase in stability (of approximately 5-7 kcal/mol) of the oxidized His32 variants relative to the oxidized wild-type protein. Despite the dramatic changes in stability, the structures of all three oxidized DsbA His32 variants are very similar to the wild-type oxidized structure, including conservation of solvent atoms near the active-site residue, Cys30. These results show that the His32 residue does not exert a conformational effect on the structure of DsbA. The destabilizing effect of His32 on oxidized DsbA is therefore most likely electrostatic in nature.  相似文献   

3.
DsbA from Escherichia coli is the most oxidizing member of the thiol-disulfide oxidoreductase family (E(o)' = -122 mV) and is required for efficient disulfide bond formation in the periplasm. The reactivity of the catalytic disulfide bond (Cys(30)-Pro(31)-His(32)-Cys(33)) is primarily due to an extremely low pK(a) value (3.4) of Cys(30), which is stabilized by the partial positive dipole charge of the active-site helix alpha1 (residues 30-37). We have randomized all non-cysteine residues of helix alpha1 (residues 31, 32, and 34-37) and found that two-thirds of the resulting variants complement DsbA deficiency in a dsbA deletion strain. Sequencing of 98 variants revealed a large number of non-conservative replacements in active variants, even at well conserved positions. This indicates that tertiary structure context strongly determines alpha-helical secondary structure formation of the randomized sequence. A subset of active and inactive variants was further characterized. All these variants were more reducing than wild type DsbA, but the redox potentials of active variants did not drop below -210 mV. All inactive variants had redox potentials lower than -210 mV, although some of the inactive proteins were still re-oxidized by DsbB. This demonstrates that efficient oxidation of substrate polypeptides is the crucial property of DsbA in vivo.  相似文献   

4.
The mechanism of the disulfide-bond forming enzyme DsbA depends on the very low pKa of a cysteine residue in its active-site and on the relative instability of the oxidized enzyme compared to the reduced one. A thermodynamic cycle has been used to correlate its redox properties to the difference in the free energies of folding (deltadeltaGred/ox) of the oxidized and reduced forms. However, the relation was proved unsatisfied for a number of DsbA variants. In this study, we investigate the thermodynamic and redox properties of a highly destabilized variant DsbA(P151A) (substitution of cis-Pro151 by an alanine) by the means of intrinsic tryptophan fluorescence and by high-sensitivity differential scanning calorimetry (HS-DSC). When the value of deltadeltaGred/ox obtained fluorimetrically for DsbA(P151A) does not correlate with the value expected from its redox potential, the value of deltadeltaGred/ox provided by HS-DSC are in perfect agreement with the predicted thermodynamic cycle for both wild-type and variant. HS-DSC data indicate that oxidized wild-type enzyme and the reduced forms of both wild-type and variant unfold according to a two-state mechanism. Oxidized DsbA(P151A) shows a deviation from two-state behavior that implies the loss of interdomain cooperativity in DsbA caused by Pro151 substitution. The presence of chaotrope in fluorimetric measurements could facilitate domain uncoupling so that the fluorescence probe (Trp76) does not reflect the whole unfolding process of DsbA(P151A) anymore. Thus, theoretical thermodynamic cycle is respected when an appropriate method is applied to DsbA unfolding under conditions in which protein domains still conserve their cooperativity.  相似文献   

5.
Thioredoxins and glutaredoxins as facilitators of protein folding   总被引:3,自引:0,他引:3  
Thiol-disulfide oxidoreductase systems of bacterial cytoplasm and eukaryotic cytosol favor reducing conditions and protein thiol groups, while bacterial periplasm and eukaryotic endoplasmatic reticulum provide oxidizing conditions and a machinery for disulfide bond formation in the secretory pathway. Oxidoreductases of the thioredoxin fold superfamily catalyze steps in oxidative protein folding via protein-protein interactions and covalent catalysis to act as chaperones and isomerases of disulfides to generate a native fold. The active site dithiol/disulfide of thioredoxin fold proteins is CXXC where variations of the residues inside the disulfide ring are known to increase the redox potential like in protein disulfide isomerases. In the catalytic mechanism thioredoxin fold proteins bind to target proteins through conserved backbone-backbone hydrogen bonds and induce conformational changes of the target disulfide followed by nucleophilic attack by the N-terminally located low pK(a) Cys residue. This generates a mixed disulfide covalent bond which subsequently is resolved by attack from the C-terminally located Cys residue. This review will focus on two members of the thioredoxin superfamily of proteins known to be crucial for maintaining a reduced intracellular redox state, thioredoxin and glutaredoxin, and their potential functions as facilitators and regulators of protein folding and chaperone activity.  相似文献   

6.
On the role of the cis-proline residue in the active site of DsbA   总被引:4,自引:1,他引:3       下载免费PDF全文
In addition to the Cys-Xaa-Xaa-Cys motif at position 30-33, DsbA, the essential catalyst for disulfide bond formation in the bacterial periplasm shares with other oxidoreductases of the thioredoxin family a cis-proline in proximity of the active site residues. In the variant DsbA(P151A), this residue has been changed to an alanine, an almost isosteric residue which is not disposed to adopt the cis conformation. The substitution strongly destabilized the structure of DsbA, as determined by the decrease in the free energy of folding. The pKa of the thiol of Cys30 was only marginally decreased. Although in vivo the variant appeared to be correctly oxidized, it exhibited an activity less than half that of the wild-type enzyme with respect to the folding of alkaline phosphatase, used as a reporter of the disulfide bond formation in the periplasm. DsbA(P151A) crystallized in a different crystal form from the wild-type protein, in space group P2(1) with six molecules in the asymmetric unit. Its X-ray structure was determined to 2.8 A resolution. The most significant conformational changes occurred at the active site. The loop 149-152 adopted a new backbone conformation with Ala151 in a trans conformation. This rearrangement resulted in the loss of van der Waals interactions between this loop and the disulfide bond. His32 from the Cys-Xaa-Xaa-Cys sequence presented in four out of six molecules in the asymmetric unit a gauche conformation not observed in the wild-type protein. The X-ray structure and folding studies on DsbA(P151A) were consistent with the cis-proline playing a major role in the stabilization of the protein. A role for the positioning of the substrate is discussed. These important properties for the enzyme function might explain the conservation of this residue in DsbA and related proteins possessing the thioredoxin fold.  相似文献   

7.
The active-site cysteines (Cys 32 and Cys 35) of Escherichia coli thioredoxin are oxidized to a disulfide bridge when the protein mediates substrate reduction. In reduced thioredoxin, Cys 32 and Cys 35 are characterized by abnormally low pKa values. A conserved side chain, Asp 26, which is sterically accessible to the active site, is also essential to oxidoreductase activity. pKa values governing cysteine thiol-thiolate equilibria in the mutant thioredoxin, D26A, have been determined by direct Raman spectrophotometric measurement of sulfhydryl ionizations. The results indicate that, in D26A thioredoxin, both sulfhydryls titrate with apparent pKa values of 7.5+/-0.2, close to values measured previously for wild-type thioredoxin. Sulfhydryl Raman markers of D26A and wild-type thioredoxin also exhibit similar band shapes, consistent with minimal differences in respective cysteine side-chain conformations and sulfhydryl interactions. The results imply that neither the Cys 32 nor Cys 35 SH donor is hydrogen bonded directly to Asp 26 in the wild-type protein. Additionally, the thioredoxin main-chain conformation is largely conserved with D26A mutation. Conversely, the mutation perturbs Raman bands diagnostic of tryptophan (Trp 28 and Trp 31) orientations and leads to differences in their pH dependencies, implying local conformational differences near the active site. We conclude that, although the carboxyl side chain of Asp 26 neither interacts directly with active-site cysteines nor is responsible for their abnormally low pKa values, the aspartate side chain may play a role in determining the conformation of the enzyme active site.  相似文献   

8.
The membrane protein DsbB from Escherichia coli is essential for disulfide bond formation and catalyses the oxidation of the periplasmic dithiol oxidase DsbA by ubiquinone. DsbB contains two catalytic disulfide bonds, Cys41-Cys44 and Cys104-Cys130. We show that DsbB directly oxidizes one molar equivalent of DsbA in the absence of ubiquinone via disulfide exchange with the 104-130 disulfide bond, with a rate constant of 2.7 x 10 M(-1) x s(-1). This reaction occurs although the 104-130 disulfide is less oxidizing than the catalytic disulfide bond of DsbA (E(o)' = -186 and -122 mV, respectively). This is because the 41-44 disulfide, which is only accessible to ubiquinone but not to DsbA, is the most oxidizing disulfide bond in a protein described so far, with a redox potential of -69 mV. Rapid intramolecular disulfide exchange in partially reduced DsbB converts the enzyme into a state in which Cys41 and Cys44 are reduced and thus accessible for reoxidation by ubiquinone. This demonstrates that the high catalytic efficiency of DsbB results from the extreme intrinsic oxidative force of the enzyme.  相似文献   

9.
Drosophila melanogaster thioredoxin reductase-1 (DmTrxR-1) is a key flavoenzyme in dipteran insects, where it substitutes for glutathione reductase. DmTrxR-1 belongs to the family of dimeric, high Mr thioredoxin reductases, which catalyze reduction of thioredoxin by NADPH. Thioredoxin reductase has an N-terminal redox-active disulfide (Cys57-Cys62) adjacent to the flavin and a redox-active C-terminal cysteine pair (Cys489'-Cys490' in the other subunit) that transfer electrons from Cys57-Cys62 to the substrate thioredoxin. Cys489'-Cys490' functions similarly to Cys495-Sec496 (Sec = selenocysteine) and Cys535-XXXX-Cys540 in human and parasite Plasmodium falciparum enzymes, but a catalytic redox center formed by adjacent Cys residues, as observed in DmTrxR-1, is unprecedented. Our data show, for the first time in a high Mr TrxR, that DmTrxR-1 oscillates between the 2-electron reduced state, EH2, and the 4-electron state, EH4, in catalysis, after the initial priming reduction of the oxidized enzyme (Eox) to EH2. The reductive half-reaction consumes 2 eq of NADPH in two observable steps to produce EH4. The first equivalent yields a FADH--NADP+ charge-transfer complex that reduces the adjacent disulfide to form a thiolate-flavin charge-transfer complex. EH4 reacts with thioredoxin rapidly to produce EH2. In contrast, Eox formation is slow and incomplete; thus, EH2 of wild-type cannot reduce thioredoxin at catalytically competent rates. Mutants lacking the C-terminal redox center, C489S, C490S, and C489S/C490S, are incapable of reducing thioredoxin and can only be reduced to EH2 forms. Additional data suggest that Cys57 attacks Cys490' in the interchange reaction between the N-terminal dithiol and the C-terminal disulfide.  相似文献   

10.
Mammalian metallothionein (MT) contains 20 cysteine residues involved in the two metal clusters without a disulfide bond. The redox reaction of the Cys thiols was proposed to be associated with the metal distribution of MT. The E. coli DsbA protein is extremely active in facilitating thiol/disulfide exchange both in vivo and in vitro. To further investigate the redox properties of MT, reaction between MT and DsbA was carried out in vitro by fluorescence detection. Equilibrium characterization indicates that the reaction is stoichiometric (1:1) under certain conditions. Kinetic study gives a rate constant of the redox reaction of 4.42 × 105 sec–1 M–1, which is 103-fold larger than that of glutathione reacting with DsbA. Metal-free MT (apo-MT) shows a higher equilibrium reduction potential than MT, but exhibits an indistinguishable kinetic rate. Oxidation of MT by DsbA leads to metal release from the clusters. The characteristic fluorescence increase during reduction of DsbA may provide a sensitive probe for exploring the redox properties of some reductants of biological interest. The result also implies that oxidation of Cys thiols may influence the metal release or delivery from MT.  相似文献   

11.
Bacterial virulence depends on the correct folding of surface-exposed proteins, a process catalyzed by the thiol-disulfide oxidoreductase DsbA, which facilitates the synthesis of disulfide bonds in Gram-negative bacteria. The Neisseria meningitidis genome possesses three genes encoding active DsbAs: DsbA1, DsbA2 and DsbA3. DsbA1 and DsbA2 have been characterized as lipoproteins involved in natural competence and in host interactive biology, while the function of DsbA3 remains unknown.This work reports the biochemical characterization of the three neisserial enzymes and the crystal structures of DsbA1 and DsbA3. As predicted by sequence homology, both enzymes adopt the classic Escherichia coli DsbA fold. The most striking feature shared by all three proteins is their exceptional oxidizing power. With a redox potential of − 80 mV, the neisserial DsbAs are the most oxidizing thioredoxin-like enzymes known to date. Consistent with these findings, thermal studies indicate that their reduced form is also extremely stable. For each of these enzymes, this study shows that a threonine residue found within the active-site region plays a key role in dictating this extraordinary oxidizing power. This result highlights how residues located outside the CXXC motif may influence the redox potential of members of the thioredoxin family.  相似文献   

12.
The structure of wild-type bacteriophage T4 glutaredoxin (earlier called thioredoxin) in its oxidized form has been refined in a monoclinic crystal form at 2.0 A resolution to a crystallographic R-factor of 0.209. A mutant T4 glutaredoxin gives orthorhombic crystals of better quality. The structure of this mutant has been solved by molecular replacement methods and refined at 1.45 A to an R-value of 0.175. In this mutant glutaredoxin, the active site residues Val15 and Tyr16 have been substituted by Gly and Pro, respectively, to mimic that of Escherichia coli thioredoxin. The main-chain conformation of the wild-type protein is similar in the two independently determined molecules in the asymmetric unit of the monoclinic crystals. On the other hand, side-chain conformations differ considerably between the two molecules due to heterologous packing interactions in the crystals. The structure of the mutant protein is very similar to the wild-type protein, except at mutated positions and at parts involved in crystal contacts. The active site disulfide bridge between Cys14 and Cys17 is located at the first turn of helix alpha 1. The torsion angles of these residues are similar to those of Escherichia coli thioredoxin. The torsion angle around the S-S bond is smaller than that normally observed for disulfides: 58 degrees, 67 degrees and 67 degrees for wild-type glutaredoxin molecule A and B and mutant glutaredoxin, respectively. Each sulfur atom of the disulfide cysteines in T4 glutaredoxin forms a hydrogen bond to one main-chain nitrogen atom. The active site is shielded from solvent on one side by the beta-carbon atoms of the cysteine residues plus side-chains of residues 7, 9, 21 and 33. From the opposite side, there is a cleft where the sulfur atom of Cys14 is accessible and can be attacked by a nucleophilic thiolate ion in the initial step of the reduction reaction.  相似文献   

13.
Grx5 is a yeast mitochondrial protein involved in iron-sulfur biogenesis that belongs to a recently described family of monothiolic glutaredoxin-like proteins. No member of this family has been biochemically characterized previously. Grx5 contains a conserved cysteine residue (Cys-60) and a non-conserved one (Cys-117). In this work, we have purified wild type and mutant C60S and C117S proteins and characterized their biochemical properties. A redox potential of -175 mV was calculated for wild type Grx5. The pKa values obtained by titration of mutant proteins with iodoacetamide at different pHs were 5.0 for Cys-60 and 8.2 for Cys-117. When Grx5 was incubated with glutathione disulfide, a transient mixed disulfide was formed between glutathione and the cystein 60 of the protein because of its low pKa. Binding of glutathione to Cys-60 promoted a decrease in the Cys-117 pKa value that triggered the formation of a disulfide bond between both cysteine residues of the protein, indicating that Cys-117 plays an essential role in the catalytic mechanism of Grx5. The disulfide bond in Grx5 could be reduced by GSH but at a rate at least 20 times slower than that observed for the reduction of glutaredoxin 1 from E. coli, a dithiolic glutaredoxin. This slow reduction rate could suggest that GSH may not be the physiologic reducing agent of Grx5. The fact that wild type Grx5 efficiently reduced a glutathiolated protein used as a substrate indicated that Grx5 may act as a thiol reductase inside the mitochondria.  相似文献   

14.
DsbA蛋白是大肠杆菌周质空间内的巯基 /二硫键氧化酶 ,主要催化底物蛋白质二硫键的形成。利用定点突变结合色氨酸类似物标记技术 ,研究了DsbA蛋白的氧化还原性质和构象变化。结果显示 :(1 )DsbA蛋白的还原态比氧化态的结构更加稳定 ,说明DsbA的强氧化性来源于氧化态构象的紧张状态 ;(2 )DsbA氧化和还原态间特殊的荧光变化主要来源于Trp76在不同状态间微观环境的差异 ;(3 )色氨酸类似物标记不会对DsbA蛋白的结构和功能产生明显的影响 ,利用1 9F NMR进一步证实了DsbA氧化还原状态间的构象变化 ,而且这种变化主要影响Trp76的局部环境 ,而对Trp1 2 6的局部环境没有太大的影响  相似文献   

15.
The quiescin sulfhydryl oxidase (QSOX) family of enzymes generates disulfide bonds in peptides and proteins with the reduction of oxygen to hydrogen peroxide. Determination of the potentials of the redox centers in Trypanosoma brucei QSOX provides a context for understanding catalysis by this facile oxidant of protein thiols. The CXXC motif of the thioredoxin domain is comparatively oxidizing (E0 of −144 mV), consistent with an ability to transfer disulfide bonds to a broad range of thiol substrates. In contrast, the proximal CXXC disulfide in the ERV (essential for respiration and vegetative growth) domain of TbQSOX is strongly reducing (E0 of −273 mV), representing a major apparent thermodynamic barrier to overall catalysis. Reduction of the oxidizing FAD cofactor (E0 of −153 mV) is followed by the strongly favorable reduction of molecular oxygen. The role of a mixed disulfide intermediate between thioredoxin and ERV domains was highlighted by rapid reaction studies in which the wild-type CGAC motif in the thioredoxin domain of TbQSOX was replaced by the more oxidizing CPHC or more reducing CGPC sequence. Mixed disulfide bond formation is accompanied by the generation of a charge transfer complex with the flavin cofactor. This provides thermodynamic coupling among the three redox centers of QSOX and avoids the strongly uphill mismatch between the formal potentials of the thioredoxin and ERV disulfides. This work identifies intriguing mechanistic parallels between the eukaryotic QSOX enzymes and the DsbA/B system catalyzing disulfide bond generation in the bacterial periplasm and suggests that the strategy of linked disulfide exchanges may be exploited in other catalysts of oxidative protein folding.  相似文献   

16.
Kobayashi T  Ito K 《The EMBO journal》1999,18(5):1192-1198
Escherichia coli DsbB has four essential cysteine residues, among which Cys41 and Cys44 form a CXXC redox active site motif and the Cys104-Cys130 disulfide bond oxidizes the active site cysteines of DsbA, the disulfide bond formation factor in the periplasm. Functional respiratory chain is required for the cell to keep DsbA oxidized. In this study, we characterized the roles of essential cysteines of DsbB in the coupling with the respiratory chain. Cys104 was found to form the inactive complex with DsbA under respiration-defective conditions. While DsbB, under normal aerobic conditions, is in the oxidized state, having two intramolecular disulfide bonds, oxidation of Cys104 and Cys130 requires the presence of Cys41-Cys44. Remarkably, the Cys41-Cys44 disulfide bond is refractory to reduction by a high concentration of dithiothreitol, unless the membrane is solubilized with a detergent. This reductant resistance requires both the respiratory function and oxygen, since Cys41-Cys44 became sensitive to the reducing agent when membrane was prepared from quinone- or heme-depleted cells or when a membrane sample was deaerated. Thus, the Cys41-Val-Leu-Cys44 motif of DsbB is kept both strongly oxidized and strongly oxidizing when DsbB is integrated into the membrane with the normal set of respiratory components.  相似文献   

17.
Nature uses thioredoxin-like folds in several disulfide bond oxidoreductases. Each of them has a typical active site Cys-X-X-Cys sequence motif, the hallmark of thioredoxin being Trp-Cys-Gly-Pro-Cys. The intriguing role of the highly conserved proline in the ubiquitous reducing agent thioredoxin was studied by site-specific mutagenesis of Staphylococcus aureus thioredoxin (Sa_Trx). We present X-ray structures, redox potential, pK(a), steady-state kinetic parameters, and thermodynamic stabilities. By replacing the central proline to a threonine/serine, no extra hydrogen bonds with the sulphur of the nucleophilic cysteine are introduced. The only structural difference is that the immediate chemical surrounding of the nucleophilic cysteine becomes more hydrophilic. The pK(a) value of the nucleophilic cysteine decreases with approximately one pH unit and its redox potential increases with 30 mV. Thioredoxin becomes more oxidizing and the efficiency to catalyse substrate reduction (k(cat)/K(M)) decreases sevenfold relative to wild-type Sa_Trx. The oxidized form of wild-type Sa_Trx is far more stable than the reduced form over the whole temperature range. The driving force to reduce substrate proteins is the relative stability of the oxidized versus the reduced form Delta(T(1/2))(ox/red). This driving force is decreased in the Sa_Trx P31T mutant. Delta(T(1/2))(ox/red) drops from 15.5 degrees C (wild-type) to 5.8 degrees C (P31T mutant). In conclusion, the active site proline in thioredoxin determines the driving potential for substrate reduction.  相似文献   

18.
19.
Glutaredoxins are small proteins with a conserved active site (-CXX(C/S)-) and thioredoxin fold. These thiol disulfide oxidoreductases catalyze disulfide reductions, preferring GSH-mixed disulfides as substrates. We have developed a new real-time fluorescence-based method for measuring the deglutathionylation activity of glutaredoxins using a glutathionylated peptide as a substrate. Mass spectrometric analysis showed that the only intermediate in the reaction is the glutaredoxin-GSH mixed disulfide. This specificity was solely dependent on the unusual gamma-linkage present in glutathione. The deglutathionylation activity of both wild-type Escherichia coli glutaredoxin and the C14S mutant was competitively inhibited by oxidized glutathione, with K(i) values similar to the K(m) values for the glutathionylated peptide substrate, implying that glutaredoxin primarily recognizes the substrate via the glutathione moiety. In addition, wild-type glutaredoxin showed a sigmoidal dependence on GSH concentrations, the activity being significantly decreased at low GSH concentrations. Thus, under oxidative stress conditions, where the ratio of GSH/GSSG is decreased, the activity of glutaredoxin is dramatically reduced, and it will only have significant deglutathionylation activity once the oxidative stress has been removed. Different members of the protein disulfide isomerases (PDI) family showed lower activity levels when compared with glutaredoxins; however, their deglutathionylation activities were comparable with their oxidase activities. Furthermore, in contrast to the glutaredoxin-GSH mixed disulfide intermediate, the only intermediate in the PDI-catalyzed reaction was PDI peptide mixed disulfide.  相似文献   

20.
Escherichia coli thioredoxin 1 has been characterized in vivo and in vitro as one of the most efficient reductants of disulfide bonds. Nevertheless, under some conditions, thioredoxin 1 can also act in vivo as an oxidant, promoting formation of disulfide bonds in the cytoplasm (E. J. Stewart, F. Aslund, and J. Beckwith, EMBO J. 17:5543-5550, 1998). We recently showed that when a signal sequence is attached to thioredoxin 1 it is exported to the periplasm, where it can also act as an oxidant, replacing the normal periplasmic catalyst of disulfide bond formation, DsbA, in oxidizing cell envelope proteins (L. Debarbieux and J. Beckwith, Proc. Natl. Acad. Sci. USA 95:10751-10756, 1998). Here we report pulse-chase studies of the efficiency of disulfide bond formation in strains exporting thioredoxin 1 and more-oxidizing variants of it. While the exported thioredoxin 1 itself substantially speeds up the kinetics of disulfide bond formation, a version of this protein containing the DsbA active site exhibits kinetics that are indistinguishable from those of the DsbA protein itself. Further, we confirm the findings of Jonda et al. (S. Jonda, M. Huber-Wunderlich, R. Glockshuber, and E. M?ssner, EMBO J. 18:3271-3281, 1999), who found that DsbB is responsible for the oxidation of exported thioredoxin 1, and we report the detection of a disulfide-bonded DsbB-thioredoxin 1 complex. Finally, we have found that under conditions of high-level expression of exported thioredoxin 1, the protein can act as both an oxidant and a reductant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号