首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED) are autosomal dominant osteochondrodysplasias that result in mild to severe short-limb dwarfism and early-onset osteoarthrosis. PSACH and some forms of MED result from mutations in the gene for cartilage oligomeric matrix protein (COMP; OMIM 600310 [http://www3.ncbi.nlm. nih.gov:80/htbin-post/Omim/dispmim?600310]). We report the identification of COMP mutations in an additional 14 families with PSACH or MED phenotypes. Mutations predicted to result in single-amino acid deletions or substitutions, all in the region of the COMP gene encoding the calmodulin-like repeat elements, were identified in patients with moderate to severe PSACH. We also identified within this domain a missense mutation that produced MED Fairbank. In two families, one with mild PSACH and the second with a form of MED, we identified different substitutions for a residue in the carboxyl-terminal globular region of COMP. Both the clinical presentations of these two families and the identification of COMP-gene mutations provide evidence of phenotypic overlap between PSACH and MED. These data also reveal a role for the carboxyl-terminal domain in the structure and/or function of COMP.  相似文献   

2.
Mutations in the gene encoding cartilage oligomeric matrix protein ( COMP) cause two skeletal dysplasias, pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED). More than 40 mutations have been identified; however, genotype-phenotype relationships are not well delineated. Further, mutations other than in-frame insertion/deletions and substitutions have not been found, and currently known mutations are clustered within relatively small regions. Here we report the identification of nine novel and three recurrent COMP mutations in PSACH and MED patients. These include two novel types of mutations; the first, a gross deletion spanning an exon-intron junction, causes an exon deletion. The second, a frameshift mutation that results in a truncation of the C-terminal domain, is the first known truncating mutation in the COMP gene. The remaining mutations, other than a novel exon 18 mutation, affected highly conserved aspartate or cysteine residues in the calmodulin-like repeat (CLR) region. Genotype-phenotype analysis revealed a correlation between the position and type of mutations and the severity of short stature. Mutations in the seventh CLR produced more severe short stature compared with mutations elsewhere in the CLRs ( P=0.0003) and elsewhere in the COMP gene ( P=0.0007). Patients carrying mutations within the five-aspartates repeat (aa 469-473) in the seventh CLR were extremely short (below -6 SD). Patients with deletion mutations were significantly shorter than those with substitution mutations ( P=0.0024). These findings expand the mutation spectrum of the COMP gene and highlight genotype-phenotype relationships, facilitating improved genetic diagnosis and analysis of COMP function in humans.  相似文献   

3.
Mutations in cartilage oligomeric matrix protein (COMP) produce clinical phenotypes ranging from the severe end of the spectrum, pseudoachondroplasia (PSACH), which is a dwarfing condition, to a mild condition, multiple epiphyseal dysplasia (MED). Patient chondrocytes have a unique morphology characterized by distended rER cisternae containing lamellar deposits of COMP and other extracellular matrix proteins. It has been difficult to determine why different mutations give rise to variable clinical phenotypes. Using our in vitro cell system, we previously demonstrated that the most common PSACH mutation, D469del, severely impedes trafficking of COMP and type IX collagen in chondrocytic cells, consistent with observations from patient cells. Here, we hypothesize that PSACH and MED mutations variably affect the cellular trafficking behavior of COMP and that the extent of defective trafficking correlates with clinical phenotype. Twelve different recombinant COMP mutations were expressed in rat chondrosarcoma cells and the percent cells with ER-retained COMP was assessed. For mutations in type 3 (T3) repeats, trafficking defects correlated with clinical phenotype; PSACH mutations had more cells retaining mutant COMP, while MED mutations had fewer. In contrast, the cellular trafficking pattern observed for mutations in the C-terminal globular domain (CTD) was not predictive of clinical phenotype. The results demonstrate that different COMP mutations in the T3 repeat domain have variable effects on intracellular transport, which correlate with clinical severity, while CTD mutations do not show such a correlation. These findings suggest that other unidentified factors contribute to the effect of the CTD mutations. J. Cell. Biochem. 103: 778-787, 2008. (c) 2007 Wiley-Liss, Inc.  相似文献   

4.
Mutations in type 3 repeats of cartilage oligomeric matrix protein (COMP) cause two skeletal dysplasias, pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED). We expressed recombinant wild-type COMP that showed structural and functional properties identical to COMP isolated from cartilage. A fragment encompassing the eight type 3 repeats binds 14 calcium ions with moderate affinity and high cooperativity and presumably forms one large disulfide-bonded folding unit. A recombinant PSACH mutant COMP in which Asp-469 was deleted (D469 Delta) and a MED mutant COMP in which Asp-361 was substituted by Tyr (D361Y) were both secreted into the cell culture medium of human cells. Circular dichroism spectroscopy revealed only small changes in the secondary structures of D469 Delta and D361Y, demonstrating that the mutations do not dramatically affect the folding and stability of COMP. However, the local conformations of the type 3 repeats were disturbed, and the number of bound calcium ions was reduced to 10 and 8, respectively. In addition to collagen I and II, collagen IX also binds to COMP with high affinity. The PSACH and MED mutations reduce the binding to collagens I, II, and IX and result in an altered zinc dependence. These interactions may contribute to the development of the patient phenotypes and may explain why MED can also be caused by mutations in collagen IX genes.  相似文献   

5.
6.
7.
Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED) are skeletal disorders resulting from mutations in COMP, matrilin-3 or collagen IX and are characterised by short-limbed dwarfism and premature osteoarthritis. Interestingly, recent reports suggest patients can also manifest with muscle weakness. Here we present a detailed analysis of two mouse models of the PSACH/MED disease spectrum; ΔD469 T3-COMP (PSACH) and V194D matrilin-3 (MED). In grip test experiments T3-COMP mice were weaker than wild-type littermates, whereas V194D mice behaved as controls, confirming that short-limbed dwarfism alone does not contribute to PSACH/MED-related muscle weakness. Muscles from T3-COMP mice showed an increase in centronuclear fibers at the myotendinous junction. T3-COMP tendons became more lax in cyclic testing and showed thicker collagen fibers when compared with wild-type tissue; matrilin-3 mutant tissues were indistinguishable from controls. This comprehensive study of the myopathy associated with PSACH/MED mutations enables a better understanding of the disease progression, confirms that it is genotype specific and that the limb weakness originates from muscle and tendon pathology rather than short-limbed dwarfism itself. Since some patients are primarily diagnosed with neuromuscular symptoms, this study will facilitate better awareness of the differential diagnoses that might be associated with the PSACH/MED spectrum and subsequent care of PSACH/MED patients.  相似文献   

8.
We identified simple-sequence repeat polymorphisms in intron 8 of the RHD and RHCE genes, both of which contained the 5-bp repeat unit (AAAAT)n. We analyzed the polymorphisms of this short tandem repeat (STR) in 104 Japanese RhD-positive and 124 RhD-negative (87 RHD gene negative and 37 nonfunctional RHD gene positive) donors by the polymerase chain reaction (PCR) and subsequent typing by electrophoresis and silver staining. We found five alleles (10, 11, 12, 13, and 14 repeats) in the RHD gene and four (7, 8, 9, and 10 repeats) in the RHCE gene. The Rh phenotypes were closely associated with polymorphisms of the STR. The Ce allele had 12 repeats in the RHD gene and 9 repeats in the RHCE gene at high frequency. The cE allele frequently had 10–12 repeats in the RHD gene and 10 repeats in the RHCE gene. The 10 repeats in the RHCE gene were identified exclusively in the 87 RHD gene-negative donors and 9 repeats were identified only in those with the RhC antigen. These results indicate that both haplotypes of dce and dcE arose from single RHD gene deletion and recombination events, respectively. In the 37 RhD-negative donors with a nonfunctional RHD gene, 12 repeats in the RHD gene and 9 repeats in the RHCE gene were frequently observed. Thus, the RhD-negative with a nonfunctional RHD gene combination might have arisen from the DCe haplotype via a mutation that abolished RHD gene expression. These findings suggest that the STR polymorphisms might shed light upon the molecular evolution of RH haplotypes. Received: 30 November 1998 / Accepted: 8 February 1999  相似文献   

9.
A 0.6-kb segment of exon 1 of the canine androgen receptor gene contains two polymorphic CAG tandem repeats which encode strings of glutamine homopolymers. The number of CAGs in each tandem repeat was determined by (1) polymerase chain reaction (PCR) amplification of a gene segment containing both repeats, (2) cleavage between repeats with restriction enzyme EcoO109I and (3) fractionation of the restriction fragments containing individual CAG repeats by denaturing polyacrylamide gel electrophoresis (PAGE). Individual genomic DNA samples from 80 unrelated dogs (53 males plus 27 females for a total of 107 X chromosomes) contained 10–12 CAGs in the 5′ repeats and 10–13 CAGs in the 3′ repeats. Thirteen distinct androgen receptor genotypes were identified. Eleven (or 41%) of the 27 unrelated females were heterozygous in one or both repeat regions, whereas all male samples produced single bands as expected for X chromosome markers. A total of seven distinct haplotypes contributed to the 13 genotypes. The ‘polymorphism information content’ or PIC for this seven-allele X chromosome marker was 0.67.  相似文献   

10.
Mutations in cartilage oligomeric matrix protein (COMP) cause pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED). We studied the effects of over‐expression of wild type and mutant COMP on early stages of chondrogenesis in chicken limb bud micromass cultures. Cells were transduced with RCAS virus harboring wild type or mutant (C328R, PSACH; T585R, MED) COMP cDNAs and cultured for 3, 4, and 5 days. The effect of COMP constructs on chondrogenesis was assessed by analyzing mRNA and protein expression of several COMP binding partners. Cell viability was assayed, and evaluation of apoptosis was performed by monitoring caspase 3 processing. Over‐expression of COMP, and especially expression of COMP mutants, had a profound affect on the expression of syndecan 3 and tenascin C, early markers of chondrogenesis. Over‐expression of COMP did not affect levels of type II collagen or matrilin‐3; however, there were increases in type IX collagen expression and sulfated proteoglycan synthesis, particularly at day 5 of harvest. In contrast to cells over‐expressing COMP, cells with mutant COMP showed reduction in type IX collagen expression and increased matrilin 3 expression. Finally, reduction in cell viability, and increased activity of caspase 3, at days 4 and 5, were observed in cultures expressing either wild type or mutant COMP. MED, and PSACH mutations, despite displaying phenotypic differences, demonstrated only subtle differences in their cellular viability and mRNA and protein expression of components of the extracellular matrix, including those that interact with COMP. These results suggest that COMP mutations, by disrupting normal interactions between COMP and its binding partners, significantly affect chondrogenesis. J. Cell. Physiol. 224: 817–826, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Multiple epiphyseal dysplasia (MED) is a dominantly inherited chondrodysplasia characterized by mild short stature and early-onset osteoarthrosis. Some forms of MED clinically resemble another chondrodysplasia phenotype, the mild form of pseudoachondroplasia (PSACH). On the basis of their clinical similarities as well as similar ultrastructural and biochemical features in cartilage from some patients, it has been proposed that MED and PSACH belong to a single bone-dysplasia family. Recently, both mild and severe PSACH as well as a form of MED have been linked to the same interval on chromosome 19, suggesting that they may be allelic disorders. Linkage studies with the chromosome 19 markers were carried out in a large family with MED and excluded the previously identified interval. Using this family, we have identified an MED locus on the short arm of chromosome 1, in a region containing the gene (COL9A2) that encodes the α2 chain of type IX collagen, a structural component of the cartilage extracellular matrix.  相似文献   

12.
Cartilage oligomeric matrix protein (COMP) belongs to the thrombospondin family and is a homopentamer primarily expressed in cartilage. Mutations in the COMP gene result in the autosomal dominant chondrodysplasias pseudoachondroplasia (PSACH) and some types of multiple epiphyseal dysplasia (MED), which are characterized by mild to severe short-limb dwarfism and early-onset osteoarthritis. We have generated COMP-null mice to study the role of COMP in vivo. These mice show no anatomical, histological, or ultrastructural abnormalities and show none of the clinical signs of PSACH or MED. Northern blot analysis and immunohistochemical analysis of cartilage indicate that the lack of COMP is not compensated for by any other member of the thrombospondin family. The results also show that the phenotype in PSACH/MED cartilage disorders is not caused by the reduced amount of COMP.  相似文献   

13.
The WT1 gene is known to play a role in at least some cases of Wilms tumor (WT). The first exon of the gene is highly GC rich and contains many short tandem di- and trinucleotide repeats, interrupted direct repeats, and CCTG (CAGG) motifs that have been identified as hotspots for DNA deletions. We have analyzed 80 WT patient samples for mutations in the first exon of WT1, either by SSCP analysis of the first 131 bp of the coding portion of WT1 exon 1 or by size analysis of a PCR product encompassing the coding region of exon 1 in addition to flanking noncoding regions. We report here the occurrence of somatic and germ-line deletion and insertion mutations in this portion of the gene in four WT patients. The mutations are flanked by short direct repeats, and the breakpoints are within 5 nt of a CCTG (CAGG) sequence. These data suggest that a distinctive mutational mechanism, previously unrecognized for this gene, is important for the generation of DNA mutations at the WT1 locus.  相似文献   

14.
15.
Fibroadenoma is the most common type of benign breast tumor, accounting for 90% of benign lesions in India. Somatic mutations in the mediator complex subunit 12 (MED12) gene play a critical role in fibroepithelial tumorigenesis. The current study evaluated the hotspot region encompassing exon 2 of the MED12 gene, in benign and malignant breast tumor tissue from women who presented for breast lump evaluation. A total of 100 (80 fibroadenoma and 20 breast cancer) samples were analyzed by polymerase chain reaction-Sanger sequencing. Sequence variant analysis showed that 68.75% of nucleotide changes were found in exon 2 and the remaining in the adjacent intron 1. Codon 44 was implicated as a hotspot mutation in benign tumors, and 86.36% of the identified mutations involved this codon. An in silico functional analysis of missense mutations using consensus scoring sorting intolerant from tolerant (SIFT), SIFT seq, Polyphen2, Mutation Assessor, SIFT transFIC, Polyphen2 transFIC, Mutation Assesor transFIC, I-Mutant, DUET, PON-PS, SNAP2, and protein variation effect analyzer] revealed that apart from variants involving codon 44 (G44S; G44H), others like V41A and E55D were also predicted to be deleterious. Most of the missense mutations appeared in the loop region of the MED12 protein, which is expected to affect its functional interaction with cyclin C–CDK8/CDK19, causing loss of mediator-associated cyclin depended kinase (CDK) activity. These results suggest a key role of MED12 somatic variations in the pathogenesis of fibroadenoma. For the first time, it was demonstrated that MED12 sequence variations are present in benign breast tumors in the south Indian population.  相似文献   

16.
Mutations in genes encoding cartilage oligomeric matrix protein and matrilin-3 cause a spectrum of chondrodysplasias called multiple epiphyseal dysplasia (MED) and pseudoachondroplasia (PSACH). The majority of these diseases feature classical endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) as a result of misfolding of the mutant protein. However, the importance and the pathological contribution of ER stress in the disease pathogenesis are unknown. The aim of this study was to investigate the generic role of ER stress and the UPR in the pathogenesis of these diseases. A transgenic mouse line (ColIITgcog) was generated using the collagen II promoter to drive expression of an ER stress-inducing protein (Tgcog) in chondrocytes. The skeletal and histological phenotypes of these ColIITgcog mice were characterised. The expression and intracellular retention of Tgcog induced ER stress and activated the UPR as characterised by increased BiP expression, phosphorylation of eIF2α and spliced Xbp1. ColIITgcog mice exhibited decreased long bone growth and decreased chondrocyte proliferation rate. However, there was no disruption of chondrocyte morphology or growth plate architecture and perturbations in apoptosis were not apparent. Our data demonstrate that the targeted induction of ER stress in chondrocytes was sufficient to reduce the rate of bone growth, a key clinical feature associated with MED and PSACH, in the absence of any growth plate dysplasia. This study establishes that classical ER stress is a pathogenic factor that contributes to the disease mechanism of MED and PSACH. However, not all the pathological features of MED and PSACH were recapitulated, suggesting that a combination of intra- and extra-cellular factors are likely to be responsible for the disease pathology as a whole.  相似文献   

17.
王晶晶  郭奕斌 《遗传》2008,30(5):537-542
假性软骨发育不全(pseudoachondroplasia, PSACH)和多发性骨骺发育不良(multiple epiphyseal dysplasia, MED)均为骨发育不良性疾病的家族成员之一, 它们的遗传方式和临床表型都具有异质性的特点, 二者均由软骨低聚物基质蛋白(cartilage oligomeric matrix protein, COMP)基因突变所致。COMP是血小板凝血酶敏感蛋白(thrombospondin, TSP)家族的成员之一, 它在骨骼的发育过程中起着重要的作用, 文章着重就COMP的结构与功能、COMP基因的突变类型、检测方法及其与两病的相关性的最新进展作一综述。  相似文献   

18.
The K-ras gene is frequently mutated in colorectal cancer and has been associated with tumor initiation and progression; approximately 90% of the activating mutations are found in codons 12 and 13 of exon 1 and just under 5% in codon 61 located in exon 2. These mutations determine single aminoacidic substitutions in the GTPase pocket leading to a block of the GTP hydrolytic activity of the K-ras p21 protein, and therefore to its constitutive activation. Point mutations in sites of the K-ras gene, other than codons 12, 13 and 61, and other types of genetic alterations, may occur in a minority of cases, such as in the less frequent cases of double mutations in the K-ras gene. However, all mutations in this gene, even those which occur in non-canonical sites or double mutations, are relevant oncogenic alterations in colorectal cancer and may underlie K-ras pathway hyperactivation. In the present study, we report the case of a patient with colorectal cancer presenting a concurrent point mutation in exons 1 and 2 of the K-ras gene, a GGT to TGT substitution (Glycine to Cysteine) at codon 12, and a GAC to AAC substitution (Aspartic Acid to Asparagine) at codon 57. In addition, we found in the same patient's sample a silent polymorphism at codon 11 (Ala11Ala) of exon 1.  相似文献   

19.
C L Hanis  T K Bertin 《Genomics》1992,12(4):842-845
The insulin receptor has been sequenced on numerous occasions and reports suggest several potential polymorphisms, as do a number of reports of single base changes. Examining these reports identifies five potential polymorphisms at or near exon 3. Three of these--codon 233 (CTG to CCG), codon 234 (GAC to GAT), and codon 276 (CAG to CAA)--predict restriction site differences. Just 5' of exon 3, the sequence suggests the presence of two short sequence repeats (SSRs), one with ATTT repeats and one with TC dinucleotide repeats. Amplification of exon 3 using the polymerase chain reaction followed by appropriate restriction digestion demonstrated no variation in a sample of 50 Mexican Americans. The codon 276 results were surprising given several reports showing the putative differences. An additional 91 mixed samples were examined and no variation was detected, suggesting that the reported differences likely resulted from sequencing artifacts. Amplification of a smaller fragment demonstrated 10 phenotypes and 7 alleles for the SSR region. Digestion with MnlI permitted scoring each motif separately and when coupled with the uncut results permits unequivocal classification of haplotypes without familial data. These juxtaposed SSRs should be useful for linkage analysis and investigations of gene structure and evolution.  相似文献   

20.
Mutations identified in the hypoxanthine phosphoribosyltransferase (HPRT) gene of patients with Lesch-Nyhan (LN) syndrome are dominated by simple base substitutions. Few hotspot positions have been identified, and only three large genomic rearrangements have been characterized at the molecular level. We have identified one novel mutation, two tentative hot spot mutations, and two deletions by direct sequencing of HPRT cDNA or genomic DNA from fibroblasts or T-lymphocytes from LN patients in five unrelated families. One is a missense mutation caused by a 610C→T transition of the first base of HPRT exon 9. This mutation has not been described previously in an LN patient. A nonsense mutation caused by a 508C→T transition at a CpG site in HPRT exon 7 in the second patient and his younger brother is the fifth mutation of this kind among LN patients. Another tentative hotspot mutation in the third patient, a frame shift caused by a G nucleotide insertion in a monotonous repeat of six Gs in HPRT exon 3, has been reported previously in three other LN patients. The fourth patient had a tandem deletion: a 57-bp deletion in an internally repeated Alu-sequence of intron 1 was separated by 14 bp from a 627-bp deletion that included HPRT exon 2 and was flanked by a 4-bp repeat. This complex mutation is probably caused by a combination of homologous recombination and replication slippage. Another large genomic deletion of 2969 bp in the fifth patient extended from one Alu-sequence in the promoter region to another Alu-sequence of intron 1, deleting the whole of HPRT exon 1. The breakpoints were located within two 39-bp homologous sequences, one of which overlapped with a well-conserved 26-bp Alu-core sequence previously suggested as promoting recombination. These results contribute to the establishment of a molecular spectrum of LN mutations, support previous data indicating possible mutational hotspots, and provide evidence for the involvement of Alu-mediated recombination in HPRT deletion mutagenesis. Received: 21 April 1998 / Accepted: 16 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号