首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Summary The structural gene for theBacillus stearothermophilus initiation factor IF2 was localized to a 6 kbHindIII restriction fragment by cross-hybridization with theSstI-SmaI fragment of theEscherichia coli infB gene. This fragment corresponds to the central region of the molecule containing the GTP-binding domain which is homologous inE. coli IF2, EF-Tu, EF-G and the humanras1 oncogene protein. After cloning into pACYC177, theHindIII fragment was further analysed by restriction mapping and cross-hybridization. A smaller (2.2 kb)SphI-HindIII fragment, which showed cross-hybridization, was subcloned into M13 phage and sequenced by the dideoxy chain-terminating method. This fragment was found to contain the entire IF2 gene except for the region coding for the N-terminus. This remaining region, coding for 45 amino acids, was located by homologous hybridization on an overlappingClaI-SstI fragment which was also subcloned and sequenced. Overall, theB. stearothermophilus IF2 gene codes for a protein of 742 amino acids (Mr=82,043) whose primary sequence displays extensive homology with the C-terminal two-thirds (but little or no homology with the N-terminal one-third) of the correspondingE. coli IF2 molecule. When cloned into an expression vector under the control of the λPL promoter, theB. stearothermophilus IF2 gene, reconstituted by ligation of the two separately cloned pieces, could be expressed at high levels inE. coli cells.  相似文献   

2.
Summary An artificial gene encoding the Escherichia coli translational initiation factor IF1 was synthesized based on the primary structure (71 amino acid residues) of the protein. Codons for individual amino acids were selected on the basis of the preferred codon usage found in the structural genes for the initiation factor IF2 of E. coli and Bacillus stearothermophilus, both of which can be expressed at high levels in E. coli cells. We gave the IF1 gene a modular structure by introducing specific restriction enzyme sites into the sequence, resulting in units of three to ten codons. This was conceived to facilitate site-directed mutagenesis of the gene and thus to obtain IF1 with specific amino acid alterations at desired positions. The IF1 gene was assembled by shot-gun ligation of 9 synthetic oligodeoxyri-bonucleotides ranging in size from 31 to 65 nucleotides and cloned into an expression vector to place the gene under the control of an inducible promoter. Upon induction, E. coli cells harbouring the artificial gene were found to produce large amounts (60 mg/100 g cells) of a protein indistinguishable from natural IF1 in both chemecal and biological properties.  相似文献   

3.
InfB-encoded translation initiation factor IF2 contains a non-conserved N-terminal domain and two conserved domains (G and C) constituted by three (G1, G2 and G3) and two (C1 and C2) sub-domains. Here, we show that: (i) Bacillus stearothermophilus IF2 complements in vivo an Escherichia coli infB null mutation and (ii) the N-domain of B. stearothermophilus IF2, like that of E. coli IF2, provides a strong yet dispensable interaction with 30 S and 50 S subunits in spite of the lack of any size, sequence or structural homology between the N-domains of the two factors. Furthermore, the nature of the B. stearothermophilus IF2 sites involved in establishing the functional interactions with the ribosome was investigated by generating deletion, random and site-directed mutations within sub-domains G2 or G3 of a molecule carrying an H301Y substitution in switch II of the G2 module, which impairs the ribosome-dependent GTPase activity of IF2. By selecting suppressors of the dominant-lethal phenotype caused by the H301Y substitution, three independent mutants impaired in ribosome binding were identified; namely, S387P (in G2) and G420E and E424K (in G3). The functional properties of these mutants and those of the deletion mutants are compatible with the premise that IF2 interacts with 30 S and 50 S subunits via G3 and G2 modules, respectively. However, beyond this generalization, because the mutation in G2 resulted in a functional alteration of G3 and vice versa, our results indicate the existence of extensive “cross-talking” between these two modules, highlighting a harmonic conformational cooperation between G2 and G3 required for a functional interaction between IF2 and the two ribosomal subunits. It is noteworthy that the E424K mutant, which completely lacks GTPase activity, displays IF2 wild-type capacity in supporting initiation of dipeptide formation.  相似文献   

4.
During the IF2-catalysed formation of the 30S initiation complex, the GTP requirement and Its subsequent hydrolysis during 70S complex formation are considered to be essential for translation initiation in Escherichia coli. In order to clarify the role of certain amino acid residues believed to be crucial for the GTP hydrolytic activity of E. coli IF2, we have introduced seven single amino acid substitutions into its GTP-binding site (Gly for Val-400; Thr for Pro-446; Gly, Glu, Gin for His-448; and Asn, Glu for Asp-501). These mutated IF2 proteins were expressed in vivo in physiological quantities and tested for their ability to maintain the growth of an E. coli strain from which the functional chromosomal copy of the infB gene has been deleted. Only one of the mutated proteins (Asp-501 to Giu) was able to sustain cell viability and several displayed a dominant negative effect. These results emphasize that the amino acid residues we substituted are essential for the iF2 functions and demonstrate the importance of GTP hydrolysis in translation initiation. These findings are discussed in relation to a previously proposed theoretical model for the IF2 G-domain.  相似文献   

5.
The gene coding for the thermostable d-hydantoinase from the thermophilic bacterium Bacillus stearothermophilus SD1 was cloned and its nucleotide sequence was completely determined. The d-hydantoinase protein showed considerable amino acid sequence homology (20–28%) with other hydantoinases and functionally related allantoinases and dihydroorotases. Strikingly the sequence of the enzyme from B. stearothermophilus SD1 exhibited greater than 89% identity with hydantoinases from thermophilic bacteria. Despite the extremely high amino acid homology among the hydantoinases from thermophiles, the C-terminal regions of the enzymes were completely different in both sequence and predicted secondary structure, implying that the C-terminal region plays an important role in determining the biochemical properties of the enzymes. Alignment of the sequence of the d-hydantoinase from B. stearothermophilus SD1 with those of other functionally related enzymes revealed four conserved regions, and five histidines and an acidic residue were found to be conserved, suggesting a close evolutionary relationship between all these enzymes. Received: 20 December 1996 / Accepted: 12 March 1997  相似文献   

6.
Summary The expression of infC, the structural gene for translational initiation factor IF3, has been studied in different constructs under the control of the PL and tac promoters. The amount of synthesized IF3 has been determined by a quantitative functional test and the levels of IF3-specific mRNA have been estimated. The synthesis of IF3 is strongly enhanced when the unusual AUU initiation codon is changed to AUG by site-directed mutagenesis. Removal of the sequence upstream from the start codon including most of the Shine-Dalgarno sequence, as well as part of a 10 bp region with potential complementarity to an internal region of the 16S rRNA, which is unique to the IF3 mRNA, reduced but did not completely abolish the high expression of infC obtained after introduction of the AUG initiation codon. The level of IF3 mRNA was found to be positively influenced by the presence of the rplT gene in the plasmid downstream from the infC gene. In vivo accumulation of a large excess of IF3, obtained when the infC gene was placed under the control of an incompletely repressed tac promoter, was not accompanied by any noticeable adverse phenotype.  相似文献   

7.
The structural gene for translation initiation factor IF2 (infB) was isolated from the myxobacterium Stigmatella aurantiaca on a 5.18-kb BamHI genomic restriction fragment. The infB gene (ca. 3.16 kb) encodes a 1,054-residue polypeptide with extensive homology within its G domain and C terminus with the equivalent regions of IF2s from Escherichia coli, Bacillus subtilis, Bacillus stearothermophilus, and Streptococcus faecium. The N-terminal region does not display any significant homology to other known proteins. The S. aurantiaca infB gene encodes a single protein which cross-reacted with antiserum to E. coli IF2 and was able to complement an E. coli infB mutant. The S. aurantiaca IF2 is distinguished from all other IF2s by a sequence of 160 residues near the N terminus that has an unusual composition, made up essentially of alanine, proline, valine, and glutamic acid. Within this sequence, the pattern PXXXAP is repeated nine times. Complete deletion of this sequence did not affect the factor's function in initiation of translation and even increased its capacity to complement the E. coli infB mutant.  相似文献   

8.
Summary Using two synthetic deoxyribonucleotide probes encoding segments of the primary structure of initiation factor IF3 from Bacillus stearothermophilus, we identified and cloned a segment of DNA which carries the infC gene. As in Escherichia coli, the infC gene begins with the unusual initiation triplet AUU, and is followed by the structural genes for ribosomal proteins L35 and L20 (rpmI and rplT, respectively).  相似文献   

9.
cDNA and genomic clones encoding narbonin, a 2S globulin from the seed of narbon bean (Vicia narbonensis L.), were obtained using the polymerase chain reaction (PCR) and sequenced. The full-length cDNA as well as genomic clones contain a single open reading frame (ORF) of 873 bp that encodes a protein with 291 amino acids comprising the mature narbonin polypeptide (M r ca. 33 100) and an initiation methionine. The deduced amino acid sequence lacks a transient N-terminal signal peptide. The genomic clones do not contain any intron. No homology was found to nucleic acid and protein sequences so far registered in sequence data libraries. The biosynthesis of narbonin during embryogenesis is developmentally-regulated and its pattern of synthesis closely resembles that of typical seed storage globulins. However, during seed germination narbonin was degraded very slowly, indicating that it may have other function than storage protein. Southern analysis suggests the existence of a small narbonin gene family. Narbonin genes were also found in four different species of the genus Vicia as well as in other legumes such as Canavalia ensiformis and Glycine max. In Escherichia coli a recombinant narbonin was produced which yielded crystals like those prepared from narbonin purified from seeds.  相似文献   

10.
Summary The previously reported nucleotide sequence of the spoOA coding region of Bacillus subtilis suggested that the protein is initiated with either of two possible initiation codons, ATG and GTG, 84 base pairs apart. To determine which codon is utilized as an initiator in B. subtilis, we constructed a fusion gene in which the promoter and NH2-terminal region of the spoOA gene was connected to the chloramphenicol acetyltransferase gene (cat gene). After introduction of the plasmid carrying the spoOA-cat fusion gene into B. subtilis cells, the fusion protein was purified by affinity chromatography. The sequence of NH2-terminal amino acids of the fusion protein was determined and the result established that the GTG codon is utilized as an initiator in B. subtilis.Comparison of the amino acid sequences revealed a marked homology between the spoOA (NH2-terminal half) and spoOF proteins. A less striking but significant homology was also found between the spoOA (COOH-terminal half) and spoOB proteins. This suggests the presence of a common functional domain structure for these proteins that are supposed to play key regulatory roles in sporulation.  相似文献   

11.
12.
Summary The nucleotide sequence of the ribosomal protein gene rpsO (S15) and its flanking region were determined. The amino acid sequence of S15 protein deduced from the nucleotide sequence is in good agreement with the published amino acid sequence with one exception. The nucleotide sequence shows two probable promoter sites about 100 nucleotides upstream from the initiation codon (AUG) of rpsO. Inspection of the sequence also revealed structural homology between the distal part of rpsO and the reported S15 binding region in 16S rRNA.  相似文献   

13.
The gene coding for the thermostable d-hydantoinase from the thermophilic bacterium Bacillus stearothermophilus SD1 was cloned and its nucleotide sequence was completely determined. The d-hydantoinase protein showed considerable amino acid sequence homology (20–28%) with other hydantoinases and functionally related allantoinases and dihydroorotases. Strikingly the sequence of the enzyme from B. stearothermophilus SD1 exhibited greater than 89% identity with hydantoinases from thermophilic bacteria. Despite the extremely high amino acid homology among the hydantoinases from thermophiles, the C-terminal regions of the enzymes were completely different in both sequence and predicted secondary structure, implying that the C-terminal region plays an important role in determining the biochemical properties of the enzymes. Alignment of the sequence of the d-hydantoinase from B. stearothermophilus SD1 with those of other functionally related enzymes revealed four conserved regions, and five histidines and an acidic residue were found to be conserved, suggesting a close evolutionary relationship between all these enzymes.  相似文献   

14.
Thermostable pullulanase was purified to homogeneity on sodium dodecyl sulfate-polyacrylamide gel from the culture supernatant of Bacillus stearothermophilus TRS128. However, multiformity of the pullulanase was suggested by activity staining on a pullulan-reactive red plate. The thermostability of the enzyme was tested. In the presence of Ca2+, the optimum temperature of the pullulanase was 75°C, and nearly 100% of the enzyme activity was retained even after treatment at 68°C for 60 min. Since the thermostable pullulanase gene (pulT) has been cloned, the nucleotide sequence was determined. Although the DNA sequence revealed only one large open reading frame, two possible pairs of SD sequence and initiation codon were found in the frame. To analyze the regulatory region, several mutations (deletion, insertion and substitution of nucleotides) were introduced in the flanking region of pulT, using site-directed mutagenesis. A putative promoter, SD sequence and initiation codon were inferred. The pulT gene was composed of 1974 bases and 658 amino acid residues (molecular weight 75,375). The deduced amino acid sequence of the thermostable pullulanase exhibited a fairly low homology with that of the thermolabile pullulanase from Klebsiella aerogenes. However, four consensus sequences containing catalytic and/or substrate binding sites for amylolytic enzymes were also found in the thermostable pullulanase and the thermolabile enzyme.  相似文献   

15.
The tryptophan synthase genes, trpA and trpB, of Bacillus stearothermophilus IFO13737 were cloned by transformation of tryptophan auxotrophic mutations of the trp genes into Escherichia coli. The genes are located in the order of trpB and trp A, according to their coding orientation, in a 2.5 kb EcoRy-Hindlll DNA fragment. The complete nucleotide sequence of this DNA was determined. The trp A and trpB genes consist of 810bp (269 amino acid residues) and 1215bp (404 amino acid residues), respectively. The 5′-proximal portion of the trpB gene was found to overlap 20 nucleotides of the upstream coding region of the trpA gene. The homology of the amino acid sequences of the trp gene products of trp A and trpB of B. stearothermophilus is 35 and 50 %, respectively, to those of E. coli, and 55 and 70 %, respectively, to those of B. subtilis.  相似文献   

16.
Summary Inducible resistance to the glycopeptide antibiotics vancomycin and teicoplanin is mediated by plasmid pIP816 in Enterococcus faecium strain BM4147. Vancomycin induced the synthesis of a ca. 40 kDa membrane-associated protein designated VANA. The resistance protein was partially purified and its N-terminal sequence was determined. A 1761 by DNA restriction fragment of pIP816 was cloned into Escherichia coli and sequenced. When expressed in E. coli, this fragment encoded a ca. 40 kDa protein that comigrated with VANA from enterococcal membrane fractions. The ATG translation initiation codon for VANA specified the methionine present at the N-terminus of the protein indicating the absence of signal peptide processing. The amino acid sequence deduced from the sequence of the vanA gene consisted of 343 amino acids giving a protein with a calculated Mr of 37400. VANA was structurally related to the d-alanyl-d-alanine (d-ala-d-ala) ligases of Salmonella typhimurium (36% amino acid identity) and of E. coli (28%). The vanA gene was able to transcomplement an E. coli mutant with thermosensitive d-ala-d-ala ligase activity. Thus, the inducible resistance protein VANA was structurally and functionally related to cytoplasmic enzymes that synthesize the target of glycopeptide antibiotics. Based on these observations we discuss the possibility that resistance is due to modification of the glycopeptide target.  相似文献   

17.
Complementary DNA encoding Rhizopus niveus lipase (RNL) was isolated from the R. niveus IF04759 cDNA library using a synthetic oligonucleotide corresponding to the amino acid sequence of the enzyme. A clone, which had an insert of 1.0 kilobase pairs, was found to contain the coding region of the enzyme. The lipase gene was expressed in Escherichia coli as a lacZ fusion protein. The mature RNL consisted of 297 amino acid residues with a molecular mass of 32 kDa. The RNL sequence showed significant overall homology to Rhizomucor miehei lipase and the putative active site residues were strictly conserved.  相似文献   

18.
Mutations in the fmt gene (encoding formyl methionine transferase) that eliminate formylation of initiator tRNA (Met‐tRNAi) confer resistance to the novel antibiotic class of peptide deformylase inhibitors (PDFIs) while concomitantly reducing bacterial fitness. Here we show in Salmonella typhimurium that novel mutations in initiation factor 2 (IF2) located outside the initiator tRNA binding domain can partly restore fitness of fmt mutants without loss of antibiotic resistance. Analysis of initiation of protein synthesis in vitro showed that with non‐formylated Met‐tRNAi IF2 mutants initiated much faster than wild‐type IF2, whereas with formylated fMet‐tRNAi the initiation rates were similar. Moreover, the increase in initiation rates with Met‐tRNAi conferred by IF2 mutations in vitro correlated well with the increase in growth rate conferred by the same mutations in vivo, suggesting that the mutations in IF2 compensate formylation deficiency by increasing the rate of in vivo initiation with Met‐tRNAi. IF2 mutants had also a high propensity for erroneous initiation with elongator tRNAs in vitro, which could account for their reduced fitness in vivo in a formylation‐proficient strain. More generally, our results suggest that bacterial protein synthesis is mRNA‐limited and that compensatory mutations in IF2 could increase the persistence of PDFI‐resistant bacteria in clinical settings.  相似文献   

19.
Bacterial translation initiation factor IF2 complexed with GTP binds to the 30S ribosomal subunit, promotes ribosomal binding of fMet‐tRNA, and favors the joining of the small and large ribosomal subunits yielding a 70S initiation complex ready to enter the translation elongation phase. Within the IF2 molecule subdomain G3, which is believed to play an important role in the IF2‐30S interaction, is positioned between the GTP‐binding G2 and the fMet‐tRNA binding C‐terminal subdomains. In this study the solution structure of subdomain G3 of Geobacillus stearothermophilus IF2 has been elucidated. G3 forms a core structure consisting of two β‐sheets with each four anti‐parallel strands, followed by a C‐terminal α‐helix. In line with its role as linker between G3 and subdomain C1, this helix has no well‐defined orientation but is endowed with a dynamic nature. The structure of the G3 core is that of a typical OB‐fold module, similar to that of the corresponding subdomain of Thermus thermophilus IF2, and to that of other known RNA‐binding modules such as IF2‐C2, IF1 and subdomains II of elongation factors EF‐Tu and EF‐G. Structural comparisons have resulted in a model that describes the interaction between IF2‐G3 and the 30S ribosomal subunit.  相似文献   

20.
The expression of the infC gene encoding translation initiation factor IF3 is negatively autoregulated at the level of translation, i.e. the expression of the gene is derepressed in a mutant infC background where the IF3 activity is lower than that of the wild type. The special initiation codon of infC, AUU, has previously been shown to be essential for derepression in vivo. In the present work, we provide evidence that the AUU initiation codon causes derepression by itself, because if the initiation codon of the thrS gene, encoding threonyl-tRNA synthetase, is changed from AUG to AUU, its expression is also derepressed in an infC mutant background. The same result was obtained with the rpsO gene encoding ribosomal protein S15. We also show that derepression of infCthrS, and rpsO is obtained with other ‘abnormal’ initiation codons such as AUA, AUC, and CUG which initiate with the same low efficiency as AUU, and also with ACG which initiates with an even lower efficiency. Under conditions of IF3 excess, the expression of infC is repressed in the presence of the AUU or other ‘abnormal’ initiation codons. Under the same conditions and with the same set of ‘abnormal’ initiation codons, the repression of thrS and rpsO expression is weaker. This result suggests that the infC message has specific features that render its expression particularly sensitive to excess of IF3. We also studied another peculiarity of the infC message, namely the role of a GC-rich sequence located immediately downstream of the initiation codon and conserved through evolution. This sequence was proposed to interact with a conserved region in 16S RNA and enhance translation initiation. Unexpectedly, mutating this GC-rich sequence increases infC expression, indicating that this sequence has no enhancing role. Chemical and enzymatic probing of infC RNA synthesized in vitro indicates that this GC-rich sequence might pair with another region of the mRNA. On the basis of our in vivo results we propose, as suspected from earlier in vitro results, that IF3 regulates the expression of its own gene by using its ability to differentiate between ‘normal’ and ‘abnormal’ initiation codons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号