首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The discrimination between the isotopes of hydrogen in the reaction catalyzed by yeast phosphoglucoisomerase is examined by NMR, as well as by spectrofluorometric or radioisotopic methods. The monodirectional conversion of D-glucose 6-phosphate to D-fructose 6-phosphate displays a lower maximal velocity with D-[2-2H]glucose 6-phosphate than unlabelled D-glucose 6-phosphate, with little difference in the affinity of the enzyme for these two substrates. About 72% of the deuterium located on the C2 of D-[1-13C,2-2H]glucose 6-phosphate is transferred intramolecularly to the C1 of D-[1-13C,1-2H]fructose 6-phosphate. The velocity of the monodirectional conversion of D-[U-14C]glucose 6-phosphate (or D-[2-3H]glucose 6-phosphate) to D-fructose 6-phosphate is virtually identical in H2O and D2O, respectively, but is four times lower with the tritiated than 14C-labelled ester. In the monodirectional reaction, the intramolecular transfer from the C2 of D-[2-3H]glucose 6-phosphate is higher in the presence of D2O than H2O. Whereas prolonged exposure of D-[1-13C]glucose 6-phosphate to D2O, in the presence of phosphoglucoisomerase, leads to the formation of both D-[1-13C,2-2H]glucose 6-phosphate and D-[1-13C,1-2H]fructose 6-phosphate, no sizeable incorporation of deuterium from D2O on the C1 of D-[1-13C]fructose 1,6-bisphosphate is observed when the monodirectional conversion of D-[1-13C]glucose 6-phosphate occurs in the concomitant presence of phosphoglucoisomerase and phosphofructokinase. The latter finding contrasts with the incorporation of hydrogen from 1H2O or tritium from 3H2O in the monodirectional conversion of D-[2-3H]glucose 6-phosphate and unlabelled D-glucose 6-phosphate, respectively, to their corresponding ketohexose esters.  相似文献   

2.
Summary The rate of conversion of D-glucose 6-phosphate to D-fructose 6-phosphate as catalyzed by yeast phosphoglucoisomerase is about fourfold lower when 3H, rather than 1H, is present on the C2 of D-glucose 6-phosphate. This difference appears to be due mainly to a change in maximal velocity, rather than affinity. Phosphoglucoisomerase also distinguishes between 1H and 3H in terms of either their intramolecular transfer from C2 to C1 or their incorporation from water on the C1 of D-fructose 6-phosphate.  相似文献   

3.
The isotopic discrimination, diastereotopic specificity and intramolecular hydrogen transfer characterizing the reaction catalyzed by phosphomannoisomerase are examined. During the monodirectional conversion of D-[2-3H]mannose 6-phosphate to D-fructose 6-phosphate and D-fructose 1,6-bisphosphate, the reaction velocity is one order of magnitude lower than with D-[U-14C]mannose 6-phosphate and little tritium (less than 6%) is transferred intramolecularly. Inorganic phosphate decreases the reaction velocity but favours the intramolecular transfer of tritium. Likewise, when D-[1-3H]fructose 6-phosphate prepared from D-[1-3H]glucose is exposed solely to phosphomannoisomerase, the generation of tritiated metabolites is virtually restricted to 3H2O and occurs at a much lower rate than the production of D-[U-14C]mannose 6-phosphate from D-[U-14C]fructose 6-phosphate. However, no 3H2O is formed when D-[1-3H]fructose 6-phosphate generated from D-[2-3H]glucose is exposed to phosphomannoisomerase, indicating that the diastereotopic specificity of the latter enzyme represents a mirror image of that of phosphoglucoisomerase. Advantage is taken of such a contrasting enzymic behaviour to assess the back-and-forth flow through the reaction catalyzed by phosphomannoisomerase in intact cells exposed to D-[1-3H]glucose, D-[5-3H]glucose or D-[6-3H]glucose. Relative to the rate of glycolysis, this back-and-forth flow amounted to approx. 4% in human erythrocytes and rat parotid cells, 9% in tumoral cells of the RINm5F line and 47% in rat pancreatic islets.  相似文献   

4.
When D-[2-3H]glucose 6-phosphate mixed with the unlabeled ester is converted to D-[1-3H]fructose 6-phosphate and 3HOH in the phosphoglucoisomerase reaction and then to D-[1-3H]fructose 1,6-bisphosphate in the phosphofructokinase reaction, the specific radioactivity of the latter metabolite and the production of 3HOH relative to the total generation of tritiated end products are both inversely related to the concentration of phosphofructokinase. In human erythrocytes, the modeling of D-[2-3H]glucose metabolism, based on the activity of phosphoglucoisomerase in cell homogenates and on the steady-state content of D-glucose 6-phosphate and D-fructose 6-phosphate in intact cells, indicates that the back-and-forth interconversion of these esters is about five-times higher than the net glycolytic flux. Yet, the production of 3HOH from D-[2-3H]glucose is about 20% lower than the net glycolytic flux, as judged from the production of 3HOH from D-[5-3H]glucose. Thus, an incomplete detriation of D-[2-3H]glucose is not incompatible with an extensive interconversion of hexose 6-phosphates in the reaction catalyzed by phosphoglucoisomerase.  相似文献   

5.
The 1H NMR spectrum obtained with the alpha- and beta-anomers of D-[1-2H]fructose 6-phosphate generated from D-glucose 6-phosphate sequentially exposed in D2O to phosphoglucoisomerase, phosphofructokinase and fructose-1,6-diphosphatase differed from that recorded when the deuterated ketohexose phosphate was produced from D-mannose 6-phosphate sequentially exposed in D2O to phosphomannoisomerase, phosphofructokinase and fructose-1,6-diphosphatase. The identification of the 2 isotopomers of D-fructose 6-phosphate by 1H NMR spectroscopy provides a new tool to assess the relative extent of interconversion of hexose phosphates in the reactions catalyzed by phosphoglucoisomerase and phosphomannoisomerase, respectively.  相似文献   

6.
Based on experimental data, a model is proposed for the interconversion of either unlabelled hexose phosphates or D-[2-3H]glucose 6-phosphate and D-[1-3H]fructose 6-phosphate in the reaction catalyzed by phosphoglucoisomerase. This model takes into account the known differences in maximal velocity and affinity for each substrate, the intramolecular transfer of tritium between C1 and C2, and the isotopic discrimination between unlabelled and tritiated esters. This model reveals that, in a close system characterized by the progressive detritiation of hexose phosphates, the concentration ratio of D-glucose 6-phosphate to D-fructose 6-phosphate is much higher with the tritiated than unlabelled esters, a paradoxical increase in the specific radioactivity of D-glucose 6-phosphate above its initial value being even observed during the initial period of exposure of D-[2-3H]glucose 6-phosphate to phosphoglucoisomerase. The extension of this model to an open system may be essential for the correct interpretation of radioactive data collected in intact cells exposed to D-[2-3H]glucose.  相似文献   

7.
The analogue of fructose 1,6-bisphosphate in which the phosphate group, -O-PO3H2, on C-6 is replaced by the phosphonomethyl group, -CH2-PO3H2, was made enzymically from the corresponding analogue of 3-phosphoglycerate. It was a substrate for aldolase, which was used to form it, but not for fructose 1,6-bisphosphatase. It was hydrolysed chemically to yield the corresponding analogue of fructose 6-phosphate [i.e. 6-deoxy-6-(phosphonomethyl)-D-fructose, or, more strictly, 6,7-dideoxy-7-phosphono-D-arabino-2-heptulose]. This proved to be a substrate for the sequential actions of glucose 6-phosphate isomerase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. Thus seven out of the nine enzymes of the glycolytic and pentose phosphate pathways so far tested catalyse the reactions of the phosphonomethyl isosteres of their substrates.  相似文献   

8.
The effect of sequence on the binding of 9-aminoacridine to DNA has been investigated by studying its interaction with deoxydinucleoside phosphates of different sequences using proton nuclear magnetic resonance. Quantitative binding information can be obtained by comparison of the proton chemical shift behavior of 9-aminoacridine upon addition of dinucleoside phosphate to various models for the interaction using least-squares computer fitting procedures. The simplest model that fits the data includes (1) dimerization of 9-aminoacridine and (2) a mixture of 1:1 and 2:1 (dinucleoside phosphate/9-aminoacridine) complexes. The computed parameters allow comparison of binding constants and stereochemistry for different sequences. The 1:1 complexes seem to involve interaction of the ring nitrogen with the backbone phosphate and stacking of one or both chromophores on the acridine; preference in binding is observed for alternating (purine-pyrimidine or pyrimidine-purine) over non-alternating (purine-purine) dinucleoside phosphates. The 2:1 complexes involve intercalation of the acridine between two complementary dinucleoside phosphate strands with weak sequence preferences in binding. The stereochemistry of intercalation differs between non-alternating purine-purine sequences and the alternating pyrimidine-purine or purine-pyrimidine sequences in having the 9-aminoacridine stacked with the purines of one strand rather than straddling the purines on opposite strands. The difference in stereochemistry could possibly be a determining factor in frameshift sequence specificity.  相似文献   

9.
10.
A heteronuclear spin echo experiment is described which allows detection of both 12C and 13C labelled species in a 1H spectrum. Fractional labelling of 13C labelled metabolites can thus be observed. The method is illustrated with a study of the exchange of 13C label between the methyl groups of alanine and pyruvate catalysed by the enzyme alanine aminotransferase (E.C. 2.6.1.2) both in the human erythrocyte and in, vitro.  相似文献   

11.
The interactions among adenosine triphosphate, Mg+2, and epinephrine at pH's below 7.0 have been studied by observing the effects of these interactions on the chemical shifts and line widths of their 1H and 31P nuclear magnetic resonance spectra. Mg+2 is tightly bound by the β- and γ-phosphate groups of adenosine triphosphate and there is a weak association between this chelate and epinephrine. In the ternary complex, the aromatic ring of epinephrine overlaps the purine ring of adenosine triphosphate and there appears to be an ionic interaction between the protonated amino group and the α-phosphate of adenosine triphosphate. It was also found that dichloroisoproterenol forms essentially the same type of ternary complex.  相似文献   

12.
13.
The sodium salts of (+)-(S)- and (−)-(R)-2-(2-fluoro-4-biphenylyl)propionic acid (flurbiprofen, FBP) form 1:1 inclusion complexes with β-cyclodextrin (β-CD) having different association constants. Proton selective relaxation rate measurements revealed the existence of superior aggregated forms for both complexes (+)-FBP/β-CD and (−)-FBP/β-CD; information about their stereochemistry has been obtained by 2D ROESY analysis. © 1996 Wiley-Liss, Inc.  相似文献   

14.
15.
16.
17.
We investigated whether localized 1H nuclear magnetic resonance spectroscopy (NMRS) using stimulated echoes (STEAM) with a long mixing time (t m) allowed the suppression of the fat signal and detection of lactate in skeletal muscle. The 1H NMRS sequence was first validated in three isolated and perfused rabbit biceps brachii muscles. Spectra were obtained on a wide-bore spectrometer using a dual-tuned probe (1H and 31P). Death was simulated by ceasing the muscle perfusion, which allowed post-mortem changes to be followed. During and after the simulated death, changes in levels of pH and in content of energy-rich compounds were observed with 31P NMRS. Our results showed an inverse linear relationship between pH and lactate in each of the three rabbits (r = 0.93, P < 0.001; r = 0.92, P < 0.01; r = 0.89, P < 0.01) and a decrease in phosphocreatine and concomitant increase in lactate. We then investigated whether this sequence allowed repeated detection of lactate in human soleus muscle during the recovery between periods of intense exercise (force-velocity test, F-v test). Seven subjects mean age 25.1 (SEM 0.8) years participated in this study. Soleus muscle lactate was detected at rest and for 3 min 30 s of the 5-min recovery between periods using a 2.35-T 40-cm bore magnet spectrometer. Arm venous plasma lactate concentration was measured at rest, during the F-v test when the subject stopped pedalling (S1), and at the end of each 5-min recovery between periods (S2). Results showed that the venous plasma lactate concentration at S1 and S2 increased significantly from the beginning of the F-v test to peak anaerobic power (W an,peak) (P < 0.001). The spectra showed that muscle lactate resonance intensity rose markedly when W an,peak was achieved. The muscle lactate resonance intensity plotted as a percentage of the resting value increased significantly at W an,peak compared with submaximal braking forces (P < 0.05). We concluded from these results that localized 1H NMRS using STEAM with a long t m allows suppression of the fat signal and repeated detection of lactate on isolated perfused skeletal muscle in animals and between periods of intense exercise in humans. Accepted: 19 January 1998  相似文献   

18.
19.
The development of NMR is described to illustrate the importance of new methodologies to solve biological problems.  相似文献   

20.
Using a novel concentration technique (reverse osmosis and freeze-drying) as well as a standard analytical technique little used with limnological samples (solid state 13C nuclear magnetic resonance), we studied the chemical structure of aquatic organic matter from four closely located freshwater sites in Nova Scotia. The main conclusions drawn from the data are that: (a) the aromatic C fraction which is assumed to be refractory remains at less than 10% of the total, with a slight increase in relative importance in the fall, (b) less structurally complex aliphatic carbon decreases from winter to spring and remains at lower levels into later fall, (c) carbohydrates are at a maximum during the summer, (d) the carboxylic C fraction is at a minimum in the summer and maximum in the fall and winter. Results show roughly the same annual patterns of C composition for the two running water sites. Our data suggest that the hydrological processes which carry terrestrial and wetland DOM to streams and lakes allow a selective adsorption process of DOM to occur in soils. We compare our data to those from other freshwater studies and suggest that the importance of aromatic carbon in freshwaters has probably been overestimated in the past, with a corresponding underestimate of the more biologically labile carbohydrate and aliphatic material.Department of Chemistry, McMaster Universtiy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号