共查询到20条相似文献,搜索用时 15 毫秒
1.
D Brooks S J Busby J R Griffiths G K Radda O Avramovic-Zikic 《Canadian journal of biochemistry》1976,54(5):494-499
Phosphorylase b which had been inactivated with 5-diazo1H-tetrazole was specifically labelled with 4-iodoacetamidosalicylic acid (a fluorescent probe) or with N-(1-oxyl-2,2,6,6,-tetramethyl-4-piperidinyl)iodoacetamide (a spin label probe) so that the binding of ligands and accompanying conformational changes could be determined by fluorescence or electron spin resonance changes, respectively. The allosteric effector, AMP, causes conformational changes similar to those caused in the native enzyme. The affinity of binding of phosphate or AMP to the inhibited protein is the same as for the unmodified protein. The heterotropic interactions between glucose-1-phosphate or glycogen and AMP are much less in the inactivated enzyme than in unmodified phosphorylase. Using a light scattering assay, it is shown that the modified enzyme binds to glycogen less strongly than the native protein. Phosphorylase b which had been inactivated by carbodimide in the presence of glycine ethyl ester, resulting in the modification of one or more carboxyl groups, was labelled with the spin label probe described above. The modified enzyme has an affinity for AMP similar to that of the native enzyme. AMP binding to the modified enzyme is tightened by glycogen, weakened by glucose-6-phosphate and is unaffected by glucose-1-phosphate. The actions of 5-diazo-1H-tetrazole and carbodimide on phosphorylase are discussed in the light of the above observation. 相似文献
2.
Three ligand binding sites on glycogen phosphorylase b which were originally described by kinetic and physicochemical means, and more recently located and defined in molecular terms by X-ray crystallography, have been probed by ligands specific for each site. Kinetic analyses, supplemented by X-ray crystallographic binding studies, permit assignment of each ligand to a primary binding site, as well as determination of its dissociation constant and interaction with ligands binding to the other sites. 8-Anilino-1-naphthalenesulfonate binds most strongly to the activator site, in competition with adenosine 5'-phosphate, presumably because its sulfonate group interacts with several arginine residues, and binds only weakly to the hydrophobic inhibitor site, possibly because of charge repulsion. It is itself a weak activator and decreases binding affinities for compounds specific for the inhibitor site. Our results with 8-anilino-1-naphthalenesulfonate are not consistent with predictions of its expected behavior and suggest caution in the use of this reagent as an indicator of hydrophobicity. Our second major probe, caffeine, binds primarily to the inhibitor site, shows competitive inhibition with substrate binding to the catalytic site, and decreases the affinity for the activator at the activator site. The catalytic site was probed with two different types of ligand. Glucose, known to stabilize the inactive T conformation of the enzyme, competes with the substrate alpha-D-glucose 1-phosphate for the catalytic site and decreases the affinity of adenosine 5'-phosphate for the activator site. Glucose also improves the binding affinity of caffeine for the inhibitor site by 3-5-fold, both compounds synergistically stabilizing the inactive T conformation.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
3.
P Gergely B Tóth V Dombrádi J Matkó G Bot 《Biochemical and biophysical research communications》1983,113(3):825-831
Subtilisin BPN' hydrolyses a single peptide bond in phosphorylase a. The two proteolytic fragments are attached to each other by noncovalent bonds in solution as shown by gel filtration and ultracentrifugation studies. The subtilisin nicked phosphorylase a is inactive, however, still binds AMP and glucose as judged by equilibrium dialysis and fluorescence experiments. The modified enzyme can be dephosphorylated by protein phosphatase and AMP is an effective inhibitor of the dephosphorylation reaction. Glucose cannot cancel the AMP inhibition as well as cannot expel AMP from the nucleotide binding site. Thus a single nick in the polypeptide chain breaks the "communication" between the two ligand binding domains. 相似文献
4.
5.
Allosteric interactions of glycogen phosphorylase b. A crystallographic study of glucose 6-phosphate and inorganic phosphate binding to di-imidate-cross-linked phosphorylase b. 总被引:2,自引:0,他引:2 下载免费PDF全文
A Lorek K S Wilson M S Sansom D I Stuart E A Stura J A Jenkins G Zanotti J Hajdu L N Johnson 《The Biochemical journal》1984,218(1):45-60
The binding to glycogen phosphorylase b of glucose 6-phosphate and inorganic phosphate (respectively allosteric inhibitor and substrate/activator of the enzyme) were studied in the crystal at 0.3 nm (3A) resolution. Glucose 6-phosphate binds in the alpha-configuration at a site that is close to the AMP allosteric effector site at the subunit-subunit interface and promotes several conformational changes. The phosphate-binding site of the enzyme for glucose 6-phosphate involves contacts to two cationic residues, Arg-309 and Lys-247. This site is also occupied in the inorganic-phosphate-binding studies and is therefore identified as a high-affinity phosphate-binding site. It is distinct from the weaker phosphate-binding site of the enzyme for AMP, which is 0.27 nm (2.7A) away. The glucose moiety of glucose 6-phosphate and the adenosine moiety of AMP do not overlap. The results provide a structural explanation for the kinetic observations that glucose 6-phosphate inhibition of AMP activation of phosphorylase b is partially competitive and highly co-operative. The results suggest that the transmission of allosteric conformational changes involves an increase in affinity at phosphate-binding sites and relative movements of alpha-helices. In order to study glucose 6-phosphate and phosphate binding it was necessary to cross-link the crystals. The use of dimethyl malondi-imidate as a new cross-linking reagent in protein crystallography is discussed. 相似文献
6.
T G Sotiroudis N G Oikonomakos A E Evangelopoulos 《Biochemical and biophysical research communications》1979,86(3):674-682
Activation of phosphorylase b by AMP is stimulated by certain aliphatic and cyclic polycarboxylates. This stimulation was depended on the number and the position of the carboxyl groups, the stereochemistry and the size of the molecule, and was more pronounced at low AMP concentrations. Kinetic studies indicated that in the presence of polycarboxylates the affinity of the enzyme for AMP was enhanced, the cooperative binding of the nucleotide was removed, and the enzyme was no longer inhibited by glucose-6-phosphate. Although polycarboxylates have no effect on the sedimentation pattern of phosphorylase b in the absence of AMP, the partial association of the enzyme caused by AMP is greatly enhanced in the presence of the acids. 相似文献
7.
A synthetic octapeptide of the phosphorylatable site of phosphorylase and its analogs were used to determine the specificity of nonactivated phosphorylase kinase. By substitution of each of six amino acid residues (lysine11, glutamine12, isoleucine13, serine14, valine15, and arginine16), it was found that these residues were all important in the enzyme recognition. Valine15 was more important than isoleucine13, when either valine15 or isoleucine13 was substituted by glutamic acid. A peptide containing two isoleucyl residues (surrounding serine14) had a better phosphorylation rate than a peptide containing two valyl residues. A peptide with a threonine residue instead of serine could be phosphorylated but with a low reaction rate. 相似文献
8.
9.
The effects of several chemical modifications in the AMP molecule on its interaction with phosphorylase b are examined by microcalorimetry, equilibrium dialysis, light scattering and ultracentrifuge experiments. In this work we report the results obtained for eight AMP analogues corresponding to different substituents in the puric base or in the ribose, or to different positions of the phosphate. The thermodynamic properties of the interaction between the phosphorylase b and the above mentioned nucleotides are also reported. The following conclusions were obtained: a) Except for IMP and 2'dIMP all the nucleotides studied clearly show two types of binding sites in the enzyme. b) The interaction of the nucleotide with its weaker affinity binding site is highly dependent upon chemical alterations in the puric base. c) Both the amino group in C(6) and the N(1) of the adenine in the AMP seem to play an important role in the conformational transitions induced by the nucleotide on the enzyme. d) The tetramerization of phosphorylase b in the presence of 10(-2) M AMP and in the conditions of the ultracentrifuge experiments is drastically affected by modifications in the ribose-phosphate part of the AMP molecule. 相似文献
10.
The mutual influence of ligand binding and self-association has been examined for phosphorylase b in the presence of a series of small ligands. The stepwise equilibrium constants describing the mutual dependence have been evaluated and discussed in terms of possible molecular mechanisms. 相似文献
11.
Catherine Vénien-Bryan Edward M Lowe Nicolas Boisset Kenneth W Traxler Louise N Johnson Gerald M Carlson 《Structure (London, England : 1993)》2002,10(1):33-41
Phosphorylase kinase (PhK) integrates hormonal and neuronal signals and is a key enzyme in the control of glycogen metabolism. PhK is one of the largest of the protein kinases and is composed of four types of subunit, with stoichiometry (alphabetagammadelta)(4) and a total MW of 1.3 x 10(6). PhK catalyzes the phosphorylation of inactive glycogen phosphorylase b (GPb), resulting in the formation of active glycogen phosphorylase a (GPa) and the stimulation of glycogenolysis. We have determined the three-dimensional structure of PhK at 22 A resolution by electron microscopy with the random conical tilt method. We have also determined the structure of PhK decorated with GPb at 28 A resolution. GPb is bound toward the ends of each of the lobes with an apparent stoichiometry of four GPb dimers per (alphabetagammadelta)(4) PhK. The PhK/GPb model provides an explanation for the formation of hybrid GPab intermediates in the PhK-catalyzed phosphorylation of GPb. 相似文献
12.
13.
14.
Regulation of glycogenolysis in skeletal muscle is dependent on a network of interacting enzymes and effectors that determine the relative activity of the enzyme phosphorylase. That enzyme is activated by phosphorylase kinase and inactivated by protein phosphatase-1 in a cyclic process of covalent modification. We present evidence that the cyclic interconversion is subject to zero-order ultrasensitivity, and the effect is responsible for the "flash" activation of phosphorylase by Ca2+ in the presence of glycogen. The zero-order effect is observable either by varying the amounts of kinase and phosphatase or by modifying the ratio of their activities by a physiological effector, protein phosphatase inhibitor-2. The sensitivity of the system is enhanced in the presence of the phosphorylase limit dextrin of glycogen which lowers the Km of phosphorylase kinase for phosphorylase. The in vitro experimental results are examined in terms of physiological conditions in muscle, and it is shown that zero-order ultrasensitivity would be more pronounced under the highly compartmentalized conditions found in that tissue. The sensitivity of this system to effector changes is much greater than that found for allosteric enzymes. Furthermore, the sensitivity enhancement increases more rapidly than energy consumption (ATP) as the phosphorylase concentration increases. Energy effectiveness is shown to be a possible evolutionary factor in favor of the development of zero-order ultrasensitivity in compartmentalized systems. 相似文献
15.
16.
17.
Rabbit skeletal muscle phosphorylase b was separated into two fractions by column chromatography on AMP-Sepharose. The first fraction protein was eluted by glucose-6-phosphate while the second fraction protein was eluted in an AMP concentration gradient. The bulk of the protein eluate was represented by the first fraction protein. Chromatography of phosphorylase b from bovine skeletal muscle under identical conditions also resulted in two fractions, however, with a reverse correlation: the bulk protein of this fraction was eluted by AMP. It was shown that the two phosphorylase b forms eluted by glucose-6-phosphate and AMP differ by their kinetic and physico-chemical properties as well as by the SH-group reactivity. The phosphorylase b forms eluted by the nucleotide were practically uninhibited by glucose-6-phosphate. It can thus be assumed that the equilibrium between the "active" (R) and "inactive" (T) conformations of the protein changes depending on metabolic peculiarities of a given tissue used as a source for enzyme isolation. 相似文献
18.
Kinetics of nitrogenase of Klebsiella pneumoniae. Heterotropic interactions between magnesium-adenosine 5''-diphosphate and magnesium-adenosine 5''-triphosphate. 下载免费PDF全文
The effects of MgADP and MgATP on the kinetics of a pre-steady-state electron-transfer reaction and on the steady-state kinetics of H2 evulution for nitrogenase proteins of K. pneumoniae were studied. MgADP was a competitive inhibitor of MgATP in the MgATP-induced electron transfer from the Fe-protein to the Mo-Fe-protein. A dissociation constant K'i = 20 micron was determined for MgADP. The release of MgADP or a coupled conformation change in the Fe-protein of K.pneumoniae occurred with a rate comparable with that of electron transfer, k approximately 2 X 10(2)S-1. Neither homotropic nor heterotropic interactions involving MgATP and MgADP were observed for this reaction. Steady-state kinetic data for H2 evolution exhibited heterotropic effects between MgADP and MgATP. The data have been fitted to symmetry and sequential-type models involving conformation changes in two identical subunits. The data suggest that the enzyme can bind up to molecules of either MgATP or MgADP, but is unable to bind both nucleotides simultaneously. The control of H2 evolution by the MgATP/MgADP ratio is not at the level of electron transfer between the Fe- and Mo-Fe-proteins. 相似文献
19.
Glycogen phosphorylase b is converted to glycogen phosphorylase a, the covalently activated form of the enzyme, by phosphorylase kinase. Glc-6-P, which is an allosteric inhibitor of phosphorylase b, and glycogen, which is a substrate of this enzyme, are already known to have respectively an inhibiting and activating effect upon the rate of conversion from phosphorylase b to phosphorylase a by phosphorylase kinase. In the former case, this effect is due to the binding of glucose-6-phosphate to glycogen phosphorylase b. In order to investigate whether or not the rate of conversion of glycogen phosphorylase b to phosphorylase a depends on the conformational state of the b substrate, we have tested the action of the most specific effectors of glycogen phosphorylase b activity upon the rate of conversion from phosphorylase b to phosphorylase a at 0 degrees C and 22 degrees C : AMP and other strong activators, IMP and weak activators, Glc-6-P, glycogen. Glc-1-P and phosphate. AMP and strong activators have a very important inhibitory effect at low temperature, but not at room temperature, whereas the weak activators have always a very weak, if even existing, inhibitory effect at both temperatures. We confirmed the very strong inhibiting effect of Glc-6-P at both temperatures, and the strong activating effect of glycogen. We have shown that phosphate has a very strong inhibitory effect, whereas Glc-1-P has an activating effect only at room temperature and at non-physiological concentrations. The concomitant effects of substrates and nucleotides have also been studied. The observed effects of all these ligands may be either direct ones on phosphorylase kinase, or indirect ones, the ligand modifying the conformation of phosphorylase b and its interaction with phosphorylase kinase. Since we have no control experiments with a peptidic fragment of phosphorylase b, the interpretation of our results remains putative. However, the differential effects observed with different nucleotides are in agreement with the simple conformational scheme proposed earlier. Therefore, it is suggested that phosphorylase kinase recognizes differently the different conformations of glycogen phosphorylase b. In agreement with such an explanation, it is shown that the inhibiting effect of AMP is mediated by a slow isomerisation which has been previously ascribed to a quaternary conformational change of glycogen phosphorylase b. The results presented here (in particular, the important effect of glycogen and phosphate) are also discussed in correlation with the physiological role of the different ligands as regulatory signals in the in vivo situation where phosphorylase is inserted into the glycogen particle. 相似文献
20.
When crude rat liver preparations were incubated at 30degrees C, a gradual loss of phosphorylase kinase (ATP:phosphorylase b phosphotransferase, EC 2.7.1.38) activity was observed. This inactivation was Mg2+ dependent and was partially inhibited by sodium fluoride. Addition of Mg2+ ATP to the liver preparations, at any time throughout the incubation, caused a reactivation of the phosphorylase kinase and this was accelerated by micromolar concentrations of cyclic AMP. The reactivation process could be completely abolished by the addition of a heat stable protein kinase inhibitor, implicating cyclic AMP dependent protein kinase in the activation reaction. Both the low and the high activity forms of the enzyme required micromolar quantities of Ca2+ for full activity (KA = 0.6 micronM). The two forms exhibit quite different pH dependencies and at the physiological pH of liver (pH 7.4) their activities differed by a factor of 5-10. Conversion of the lower activity form into the higher seems to affect only the V - Km for muscle phosphorylase b (EC 2.4.1.1) was about 1 mg/ml for both enzyme forms. 相似文献