首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Lysine catabolism in seedlings of barley (Hordeum vulgare L. var. Emir) was studied by direct injection of the following tracers into the endosperm of the seedlings: aspartic acid-3-(14)C, 2-aminoadipic acid-1-(14)C, saccharopine-(14)C, 2,6-diaminopimelic acid-1-(7)-(14)C, and lysine-1-(14)C. Labeled saccharopine was formed only after the administration of either labeled 2,6-diaminopimelic acid or labeled lysine to the seedlings. The metabolic fate of the other tracers administered also supported a catabolic lysine pathway via saccharopine, and apparently proceeding by a reversal of some of the biosynthetic steps of the 2-aminoadipic acid pathway known from lysine biosynthesis in most fungi. Pipecolic acid seems not to be on the main pathway of l-lysine catabolism in barley seedlings.  相似文献   

2.
Homocitrate synthase in the first enzyme of the lysine biosynthetic pathway. It is feedback regulated by L-lysine. Lysine decreases the biosynthesis of penicillin (determined by the incorporation of [14C]valine into penicillin) by inhibiting and repressing homocitrate synthase, thereby depriving the cell of alpha-aminoadipic acid, a precursor of penicillin. Lysine feedback inhibited in vivo the biosynthesis and excretion of homocitrate by a lysine auxotroph, L2, blocked in the lysine pathway after homocitrate. Neither penicillin nor 6-aminopenicillanic acid exerted any effect at the homocitrate synthase level. The molecular mechanism of lysine feedback regulation in Penicillium chrysogenum involved both inhibition of homocitrate synthase activity and repression of its synthesis. In vitro studies indicated that L-lysine feedback inhibits and represses homocitrate synthase both in low- and high-penicillin-producing strains. Inhibition of homocitrate synthase activity by lysine was observed in cells in which protein synthesis was arrested with cycloheximide. Maximum homocitrate synthase activity in cultures of P. chrysogenum AS-P-78 was found at 48 h, coinciding with the phase of high rate of penicillin biosynthesis.  相似文献   

3.
The content of alpha-aminoadipyl-cysteinyl-valine, the first intermediate of the penicillin biosynthetic pathway, decreased when Penicillium chrysogenum was grown in a high concentration of glucose. Glucose repressed the incorporation of [14C]valine into alpha-aminoadipyl-cysteinyl-[14C]valine in vivo. The pool of alpha-aminoadipic acid increased sevenfold in control (lactose-grown) penicillin-producing cultures, coinciding with the phase of rapid penicillin biosynthesis, but this increase was very small in glucose-grown cultures. Glucose stimulated homocitrate synthase and saccharopine dehydrogenase activities in vivo and increased the incorporation of lysine into proteins. These results suggest that glucose stimulates the flux through the lysine biosynthetic pathway, thus preventing alpha-aminoadipic acid accumulation. The repression of alpha-aminoadipyl-cysteinyl-valine synthesis by glucose was not reversed by the addition of alpha-aminoadipic acid, cysteine, or valine. Glucose also repressed isopenicillin N synthase, which converts alpha-aminoadipyl-cysteinyl-valine into isopenicillin N, but did not affect penicillin acyltransferase, the last enzyme of the penicillin biosynthetic pathway.  相似文献   

4.
Pipecolic acid serves as a precursor of the biosynthesis of the alkaloids slaframine and swainsonine (an antitumor agent) in some fungi. It is not known whether other fungi are able to synthesize pipecolic acid. Penicillium chrysogenum has a very active alpha-aminoadipic acid pathway that is used for the synthesis of this precursor of penicillin. The lys7 gene, encoding saccharopine reductase in P. chrysogenum, was target inactivated by the double-recombination method. Analysis of a disrupted strain (named P. chrysogenum SR1-) showed the presence of a mutant lys7 gene lacking about 1,000 bp in the 3'-end region. P. chrysogenum SR1- lacked saccharopine reductase activity, which was recovered after transformation of this mutant with the intact lys7 gene in an autonomously replicating plasmid. P. chrysogenum SR1- was a lysine auxotroph and accumulated piperideine-6-carboxylic acid. When mutant P. chrysogenum SR1- was grown with L-lysine as the sole nitrogen source and supplemented with DL-alpha-aminoadipic acid, a high level of pipecolic acid accumulated intracellularly. A comparison of strain SR1- with a lys2-defective mutant provided evidence showing that P. chrysogenum synthesizes pipecolic acid from alpha-aminoadipic acid and not from L-lysine catabolism.  相似文献   

5.
A partially purified preparation of alpha-aminoadipate reductase (EC 1.2.1.31) from Penicillium chrysogenum is competitively inhibited by lysine (Ki of 0.26 mM). Exogenous addition of 10 mM L-lysine to resting mycelia of P. chrysogenum increased the intracellular lysine pool concentration 2-fold, but decreased the incorporation of (6-14C)-alpha-aminoadipate into protein-bound lysine to a fifth. The distribution of radioactivity in the pathway metabolites alpha-aminoadipate, saccharopine and lysine was consistent with the assumption of a lysine sensitive enzyme step in vivo between alpha-aminoadipate and saccharopine. Hence lysine inhibition of alpha-aminoadipate reductase may be of physiologic importance.  相似文献   

6.
The mammalian degradation of lysine is believed to proceed via two distinct routes, the saccharopine and the pipecolic acid routes, that ultimately converge at the level of α-aminoadipic semialdehyde (α-AASA). α-AASA dehydrogenase-deficient fibroblasts were grown in cell culture medium supplemented with either l-[α-15N]lysine or l-[ε-15N]lysine to explore the exact route of lysine degradation. l-[α-15N]lysine was catabolised into [15N]saccharopine, [15N]α-AASA, [15N]Δ1-piperideine-6-carboxylate, and surprisingly in [15N]pipecolic acid, whereas l-[ε-15N]lysine resulted only in the formation of [15N]saccharopine. These results imply that lysine is exclusively degraded in fibroblasts via the saccharopine branch, and pipecolic acid originates from an alternative precursor. We hypothesize that pipecolic acid derives from Δ1-piperideine-6-carboxylate by the action of Δ1-pyrroline-5-carboxylic acid reductase, an enzyme involved in proline metabolism.  相似文献   

7.
Pipecolic acid is a component of several secondary metabolites in plants and fungi. This compound is useful as a precursor of nonribosomal peptides with novel pharmacological activities. In Penicillium chrysogenum pipecolic acid is converted into lysine and complements the lysine requirement of three different lysine auxotrophs with mutations in the lys1, lys2, or lys3 genes allowing a slow growth of these auxotrophs. We have isolated two P. chrysogenum mutants, named 7.2 and 10.25, that are unable to convert pipecolic acid into lysine. These mutants lacked, respectively, the pipecolate oxidase that converts pipecolic acid into piperideine-6-carboxylic acid and the saccharopine reductase that catalyzes the transformation of piperideine-6-carboxylic acid into saccharopine. The 10.25 mutant was unable to grow in Czapek medium supplemented with alpha-aminoadipic acid. A DNA fragment complementing the 10.25 mutation has been cloned; sequence analysis of the cloned gene (named lys7) revealed that it encoded a protein with high similarity to the saccharopine reductase from Neurospora crassa, Magnaporthe grisea, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. Complementation of the 10.25 mutant with the cloned gene restored saccharopine reductase activity, confirming that lys7 encodes a functional saccharopine reductase. Our data suggest that in P. chrysogenum the conversion of pipecolic acid into lysine proceeds through the transformation of pipecolic acid into piperideine-6-carboxylic acid, saccharopine, and lysine by the consecutive action of pipecolate oxidase, saccharopine reductase, and saccharopine dehydrogenase.  相似文献   

8.
Glutamate-alpha-ketoadipate transaminase, saccharopine reductase, and saccharopine dehydrogenase activities were demonstrated in extracts of Rhodotorula glutinis but alpha-aminoadipate reductase activity could not be measured in whole cells or in extracts. Lysine auxotroph lys1 grew in the presence of L-lysine or DL-alpha-aminoadipate and incorporated radioactivity from DL-alpha-amino-[I-14C]adipate into lysine during growth. Growing wild-type cells converted L-[U-14C]lysine into alpha-amino-[14C]adipate, suggesting both biosynthetic and degradative roles for alpha-aminoadipate. Lysine auxotrophs lys1, lys2 and lys3 of R. glutinis, unlike lysine auxotrophs of Saccharomyces cerevisiae, satisfied their growth requirement with L-pipecolate. Moreover, extracts of wild-type R. glutinis catalysed the conversion of L-pipecolate to alpha-aminoadipate-delta semialdehyde. These results suggest a biosynthetic role for L-pipecolate in R. glutinis but not in S. cerevisiae.  相似文献   

9.
The biosynthesis of pipecolic acid from L-lysine in the fungal parasite, Rhizoctonia leguminicola has been reinvestigated. Pipecolate is then utilized to form the toxic octahydroindolizine alkaloids, slaframine and swainsonine. Incorporation studies of L-versus D-[U-14C]lysine into R. leguminicola metabolites confirmed earlier findings that L-lysine is the predominant substrate for pipecolate formation and D-lysine for alpha-N-acetyllysine (concerned in lysine catabolism). However [alpha-15N]lysine, not [epsilon-15N]lysine as previously reported, labeled pipecolate. Such findings implied that delta 1-piperideine-6-carboxylate, not delta 1-piperideine-2-carboxylate, was formed from lysine and was the immediate precursor of pipecolate. Evidence from cell-free enzyme systems established the following biosynthetic events: L-lysine A----saccharopine B----delta 1-piperideine-6-carboxylate C----pipecolate. Products of reactions A and C were identified from biological and chemical considerations. Reaction B was carried out by a previously undescribed flavin enzyme termed saccharopine oxidase. The product of reaction B, which reacted with p-dimethylaminobenzaldehyde, was reduced with Na-CNB2H3. Its NMR spectrum was identical with that of deuteriated pipecolate prepared from authentic delta 1-piperideine-6-carboxylate, but not from authentic delta 1-piperideine-2-carboxylate. Reaction B represents a branching of primary lysine metabolism from saccharopine to a secondary pathway leading to pipecolate and to octahydroindolizine alkaloids in R. leguminicola.  相似文献   

10.
We previously reported that lysine inhibits in vivo homocitrate synthesis in the lysine bradytroph, Penicillium chrysogenum L(1), and that such feedback inhibition could explain the known lysine inhibition of penicillin formation. In the present study, it was found that dialyzed cell-free extracts of mutant L(1) converted [1-(14)C]acetate to homocitrate. This homocitrate synthase activity was extremely labile but could be stabilized by high salt concentrations. The pH optimum of the reaction was 6.9, and the K(m) was 5.5 mM with respect to alpha-ketoglutarate. The reaction was also dependent upon the presence of Mg(2+), adenosine 5'-triphosphate, and coenzyme A. Surprisingly, the activity in these crude extracts was not inhibited by lysine. Benzylpenicillin at a high concentration (20 mM) partially inhibited the enzyme, an effect that was enhanced by lysine. Casein hydrolysate also partially inhibited the enzyme.  相似文献   

11.
The biosynthesis and catabolism of lysine in Penicillium chrysogenum is of great interest because these pathways provide 2-aminoadipic acid, a precursor of the tripeptide δ-L-2-aminoadipyl-L-cysteinyl-D-valine that is an intermediate in penicillin biosynthesis. In vivo conversion of labelled L-lysine into two different intermediates was demonstrated by HPLC analysis of the intracellular amino acid pool. L-lysine is catabolized to 2-aminoadipic acid by an ω-aminotransferase and to saccharopine by a lysine-2-ketoglutarate reductase. In lysine-containing medium both activities were expressed at high levels, but the ω-aminotransferase activity, in particular, decreased sharply when ammonium was used as the nitrogen source. The ω-aminotransferase was partially purified, and found to accept L-lysine, L-ornithine and, to a lesser extent, N-acetyl-L-lysine as amino-group donors. 2-Ketoglutarate, 2-ketoadipate and, to a lesser extent, pyruvate served as amino group acceptors. This pattern suggests that this enzyme, previously designated as a lysine-6-aminotransferase, is actually an ω-aminotransferase. When 2-ketoadipate is used as substrate, the reaction product is 2-aminoadipic acid, which contributes to the pool of this intermediate available for penicillin biosynthesis. The N-terminal end of the purified 45-kDa ω-aminotransferase was sequenced and was found to be similar to the corresponding segment of the OAT1 protein of Emericella (Aspergillus) nidulans. This information was used to clone the gene encoding this enzyme.  相似文献   

12.
LYSINE METABOLISM IN THE RAT BRAIN: THE PIPECOLIC ACID-FORMING PATHWAY   总被引:5,自引:4,他引:1  
Employing both the intraventricular and intraperitoneal injection techniques, 14C-l -lysine at non-overloading concentrations was found to be metabolized to l -14C-pipecolic acid at significantly high levels in the rat. Labeled pipecolic acid in the brain and liver was only found at rather low levels 24 h after intraperitoneal administration of 14C-l -lysine regardless of non-labeled lysine metabolite overload. A marked enhancement of pipecolic acid labeling was only found in the brain when 14C-l -lysine was intraventricularly administered to animals under various lysine metabolite overloads. While overloading doses of non-labeled saccharopine or α-aminoadipate did not significantly alter the labeling patterns of pipecolic acid in the brain, liver or urine when 14C-l -lysine was intraperitoneally administered, pipecolate overloading markedly reduced labeled pipecolic acid levels in the brain, liver and urine. These results indicate: pipecolic acid formation is subject to product inhibition, and saccharopine is not in the pathway of pipecolic acid synthesis from l -lysine. The labeling pattern of lysine metabolites was not significantly affected by the overloading injection of pipecolic acid when 14C-l -lysine was intraventricularly administered suggesting a blood-brain barrier for pipecolate. Besides 14C-pipecolic acid, labeled α-aminoadipic acid was also found at significant levels mostly in the brain. Labeled saccharopine was not detected in any tissues or urine samples analyzed. The 14C-l -lysine metabolic pattern of the newborn rats did not seem to be any different from the adult rats, i.e. labeled pipecolic acid was also detected in substantial quantities in the brain, liver and urine 5 h after injection. 14C-d -Lysine was mainly metabolized to l -14C-pipecolic acid through either route of administration. These experimental evidences indicate that the pipecolic acid-forming pathway is a significant route for lysine metabolism in the rat, and that the rat brain probably utilizes this pathway mainly for lysine metabolism. The present study also discusses the potential neurological significance of the pipecolic acid pathway in relation to the major lysine metabolic pathway (the saccharopine pathway).  相似文献   

13.
【目的】研究青霉素V生产过程中—Ca~(2+)信号转导途径参与产黄青霉菌对外源侧链前体苯氧乙酸的应答机制。【方法】考察4种不同机制的Ca~(2+)信号干扰剂[利心平、乙二醇双(2-氨基乙基醚)四乙酸、苏拉明和硫酸新霉素]对青霉素V产量和产黄青霉菌生物量的影响。运用Fluo-3/AM荧光染料对细胞进行染色,通过荧光显微镜成像和酶标仪定量检测两种方法监测胞内Ca~(2+)浓度的变化。【结果】苯氧乙酸添加后胞内Ca~(2+)相对含量高于对照组49.86%,而1 mmol/L磷酸酯酶C底物抑制剂硫酸新霉素的添加使得胞内Ca~(2+)相对含量降低了53.31%,同时青霉素V产量降低78.71%,表明产黄青霉菌可通过肌醇1,4,5-三磷酸信号途径调节胞内Ca~(2+)浓度来响应苯氧乙酸的胁迫。【结论】首次探究了Ca~(2+)信号转导途径在产黄青霉菌对苯氧乙酸应答中的作用,为丝状真菌中Ins(1,4,5)P3-Ca~(2+)信号转导途径的研究提供理论依据。  相似文献   

14.
Uptake of phenylacetic acid, the side-chain precursor of benzylpenicillin, was studied in Penicillium chrysogenum Wisconsin 54-1255 and in a strain yielding high levels of penicillin. In penicillin fermentations with the high-yielding strain, 100% recovery of phenylacetic acid in benzylpenicillin was found, whereas in the Wisconsin strain only 17% of the supplied phenylacetic acid was incorporated into benzylpenicillin while the rest was metabolized. Accumulation of total phenylacetic acid-derived carbon in the cells was nonsaturable in both strains at high external concentrations of phenylacetic acid (250-3500 microM), and in the high-yielding strain at low phenylacetic acid concentrations (2. 8-100 microM), indicating that phenylacetic acid enters the cells by simple diffusion, as concluded earlier for P. chrysogenum by other authors. However, at low external concentrations of phenylacetic acid saturable accumulation appeared in the Wisconsin strain. HPLC-analyses of cell extracts from the Wisconsin strain showed that phenylacetic acid was metabolized immediately after entry into the cells and different [14C]-labeled metabolites were detected in the cells. Up to approximately 50% of the accumulated phenylacetic acid was metabolized during the transport-assay period, the conversion having an impact on the uptake experiments. Nevertheless, accumulation of free unchanged phenylacetic acid in the cells showed saturation kinetics, suggesting the possible involvement of a high-affinity carrier in uptake of phenylacetic acid in P. chrysogenum Wisconsin 54-1255. At high concentrations of phenylacetic acid, contribution to uptake by this carrier is minor in comparison to simple diffusion and therefore, of no importance in the industrial production of penicillin.  相似文献   

15.
1. l-alpha-Amino[6-(14)C]adipic acid has been prepared from the dl-amino acid by oxidation of the l-isomer with l-amino acid oxidase to alpha-oxo[6-(14)C]adipic acid and by transamination of the latter with l-glutamic acid in an extract of a Cephalosporium sp. prepared by ultrasonic treatment of the mycelium. 2. The optical configuration of small amounts of (14)C-labelled alpha-aminoadipic acid from the mycelium of the Cephalosporium sp. has been determined by treatment with l-amino acid oxidase and measurement of the proportion of radioactivity subsequently retained on a column of a strong cation-exchange resin. 3. alpha-Aminoadipic acid which had been labelled in the mycelium from [1-(14)C]acetate appeared to contain more than 99% of the l-isomer. 4. l-alpha-Amino[(14)C]adipic acid (sodium salt) was taken up much more rapidly than the d-isomer, or alpha-oxo[6-(14)C]adipic acid, by suspensions of washed mycelium of the Cephalosporium sp. in water. The pool of intracellular alpha-aminoadipic acid was expandable. 5. Intracellular products found to be labelled with (14)C from l-alpha-amino[(14)C]adipic acid were delta-aminovaleric acid, saccharopine, lysine, protein, compounds which behaved like penicillin N, cephalosporin C and deacetylcephalosporin C respectively on paper chromatography and electrophoresis, and a peptide whose amino acid residues include alpha-aminoadipic acid, cysteine and valine. 6. l-alpha-Amino[(14)C]adipic acid acted as a precursor of the delta-(d-alpha-aminoadipoyl) side chains of extracellular penicillin N and cephalosporin C. 7. (14)C from d-alpha-amino[(14)C]adipic acid was incorporated into penicillin N and cephalosporin C, but the incorporation was accompanied by a relatively high dilution of specific radioactivity and some l-alpha-amino[(14)C]adipic acid was found in the intracellular pool. 8. These findings are discussed in relation to the origin of the d- configuration of the alpha-aminoadipoyl side chain of the antibiotics.  相似文献   

16.
Cephamycin C is produced in a nine steps pathway by the actinomycetes S. clavuligerus and N. lactamdurans. The genes encoding the biosynthesis enzymes are clustered in both microorganisms as well as in the cephabacin producer Lysobacter lactamgenus, a Gram negative bacterium. The clusters of genes include genes encoding enzymes common to the biosynthesis of penicillin and cephalosporin C by the eukaryotic producers Penicillium chrysogenum and Cephalosporiun acremonium and genes for steps specific for the formation of the precursor -aminoadipic acid as well as for the enzymes involved in the late modification of the cephalosporin intermediates of the pathway. Present are also genes for proteins involved in the export and/or resistance to cephamycin C. In S. clavuligerus a gene encoding a regulatory protein controlling the formation of cephamycin C and clavulanic acid is also present in the cluster.  相似文献   

17.
Pulse-chase experiments using [U14C]valine were done with P2 and Q176, high- and low-penicillin-producing strains of Penicillium chrysogenum. The metabolic flux of this amino acid into protein and penicillin was measured, and compartmentation of penicillin biosynthesis was assessed. Strain P2 took up 14C-valine more slowly than strain Q176, but their rates of incorporation into protein were comparable. Incorporation of 14C-valine into penicillin occurred immediately with the high-producer P2, but exhibited a lag with Q176. After 14C-valine had been removed from the medium, the specific radioactivity of penicillin continued to increase in Q176 but started to decrease immediately in P2. The specific radioactivities of 14C-valine in protein and in penicillin were significantly different in both strains: Q176 had a higher specific radioactivity of valine in penicillin than P2, whereas P2 had a higher specific radioactivity of valine in protein than Q176. Moreover, the specific radioactivity of 14C-valine in penicillin was 20-fold higher in strain Q176 than in P2. These results indicate that penicillin and protein biosynthesis use different pools of cellular valine, and that exchange of valine between the two compartments is slow in the low-producer, but rapid in the high-producer strain. Hence these results indicate a further control point of penicillin biosynthesis in P. chrysogenum.  相似文献   

18.
19.
The first enzyme of the lysine degradation pathway in maize (Zea mays L.), lysine-ketoglutarate reductase, condenses lysine and [alpha]-ketoglutarate into saccharopine using NADPH as a cofactor, whereas the second, saccharopine dehydrogenase, converts saccharopine to [alpha]-aminoadipic-[delta]-semialdehyde and glutamic acid using NAD+ or NADP+ as a cofactor. The reductase and dehydrogenase activities are optimal at pH 7.0 and 9.0, respectively. Both enzyme activities, co-purified on diethylaminoethyl-cellulose and gel filtration columns, were detected on nondenaturing polyacrylamide gels as single bands with identical electrophoretic mobilities and share tissue specificity for the endosperm. The highly purified preparation containing the reductase and dehydrogenase activities showed a single polypeptide band of 125 kD on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native form of the enzyme is a dimer of 260 kD. Limited proteolysis with elastase indicated that lysine-ketoglutarate reductase and saccharopine dehydrogenase from maize endosperm are located in two functionally independent domains of a bifunctional polypeptide.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号