首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Tissue factor (TF)-positive microparticles (MPs) are highly procoagulant, and linked to thrombosis in sepsis and cancer. MP-associated TF may be assayed by immunological or functional methods. Several reports have demonstrated discrepancies between TF-protein and TF-activity, which have been explained by antibody binding to "encrypted" or degraded forms of inactive TF-protein. Our goal was to evaluate the possible interference of fluorescent antibody aggregates in solutions containing antibodies against TF and CD14 in flow cytometric analysis. Using monocyte-derived microparticles (MPs) released from human monocytes, incubated with or without lipopolysaccharides (LPS) in vitro, we measured MP-associated TF-protein (flow cytometry) and TF-activity (clot formation assay). MPs released from monocytes exposed to LPS (1 ng mL(-1) ) had ~14 times higher TF-activity than MPs originated from monocytes exposed to only culture medium. However, using untreated anti-TF antibodies (American Diagnostica and BD) in the flow cytometric analysis, MPs released from unstimulated monocytes had a similar number of TF-positive events as MPs secernated from LPS-stimulated monocytes [~45,000 events mL(-1) (American Diagnostica); ~15,000 events mL(-1) (BD)]. These TF-positive events did not exert any TF-activity, and centrifugation (17,000g, 30 min, 4°C) of the antibody solutions prior to use effectively removed the interfering fluorescent events. Removal of fluorescent interference, probably in the form of fluorescent antibody aggregates, from the antibody solutions by centrifugation is essential to prevent the occurrence of false positive flow cytometric events. The events can be mistaken as MP-associated TF-protein, and interpreted as a discrepancy between TF-protein and TF-activity.  相似文献   

2.
Fulminant meningococcal sepsis (FMS) is considered the prototypical Gram-negative sepsis. Lipopolysaccharide (LPS) is thought to be the main toxic element that induces pro-inflammatory cytokine production after interaction with CD14 and toll-like receptor 4 (TLR4). However, there is increasing evidence that LPS is not the sole toxic element of meningococci. The aim of the present study was to determine the role of CD14 and TLR4 in pro-inflammatory cytokine induction by meningococci. To this end, cytokine induction by isolated meningoccal LPS, wild-type N. meningitidis H44/76 (LPS+-meningococci) matched for concentrations of LPS and LPS-deficient N. meningitidis H44/76lpxA (LPS - -meningococci) was studied in human PBMCs and murine peritoneal macrophages (PMs). Pre-incubation of PBMCs with WT14, a monoclonal antibody against CD14, abolished TNF-alpha and IL-1beta induction by E. coli LPS, while cytokine induction by meningococcal LPS was only partially inhibited. When LPS+- and LPS - -meningococci at higher concentrations were used as stimuli, anti-CD14 had a minimal effect. In C3H/HeJ murine PMs, devoid of a functional TLR4, minimal IL-1alpha, IL-6 and TNF-alpha production was seen after stimulation with 10 ng/mL E. coli or meningococcal LPS. However, at higher concentrations (1000 ng LPS/mL) the production of TNF-alpha, but not IL-1alpha or IL-6, occurred also independently of TLR4. The expression of a functional TLR4 in murine PMs had no effect on the cytokine induction by LPS+- or LPS - -meningococci. It is concluded that pro-inflammatory cytokine induction by N. meningitidis can occur independently of CD14 and TLR4.  相似文献   

3.
Mannose binding lectin (MBL) is a key molecule in the lectin pathway of complement activation, and likely of importance in our innate defence against meningococcal infection. We evaluated the role of MBL in cytokine induction by LPS or non-LPS components of Neisseria meningitidis, using a meningococcal mutant deficient for LPS. Binding experiments showed that MBL exhibited low, but significant binding to encapsulated LPS+ meningococci (H44/76) and LPS-deficient (LPS-) meningococci (H44/76lpxA). Experiments with human mononuclear cells (PBMCs) showed that MBL significantly augmented IL-1beta production after stimulation with LPS+ and LPS- meningococci, in a dose-dependent fashion. In addition, IL-10 production was enhanced after stimulation with LPS- meningococci. In contrast, TNFalpha, IL-6 and IFNgamma productions were unaffected. No effect of MBL was observed on cytokine induction by meningococcal LPS. MBL enhanced cytokine production at concentrations >10(7) meningococci. It is concluded that MBL interacts with non-LPS components of N. meningitidis and in this way modulates the cytokine response.  相似文献   

4.
5.
Lipopolysaccharide is a major constituent of the outer membrane of Gram-negative bacteria and important in the induction of pro-inflammatory responses. Recently, novel LPS species derived from Neisseria meningitidis H44/76 by insertional inactivation of the lpxL1 and lpxL2 genes have been created with a lipid A portion consisting of five (penta-acylated lpxL1) or four (tetra-acylated lpxL2) fatty acids connected to the glucosamine backbone instead of six fatty acids in the wild-type LPS. We show that these mutant LPS-types are poor inducers of cytokines (tumor-necrosis factor-α, IL-1β, IL-10, IL-RA) in human mononuclear cells. Both penta- and tetra-acylated meningococcal LPSs were able to inhibit cytokine production by wild-type Escherichia coli or meningococcal LPS. Binding of FITC-labelled E. coli LPS TLR4 transfected Chinese hamster ovary (CHO) cells was inhibited by both mutant LPS-types. Experiments with CHO fibroblasts transfected with human CD14 and TLR4 showed that the antagonizing effect was dependent on the expression of human TLR4. In contrast to the situation in humans, lpxL1 LPS has agonistic activity for cytokine production in peritoneal macrophages of DBA mice, and exacerbated arthritis in murine collagen induced arthritis model. N. meningitidis lipid A mutant LPSs lpxL1 and lpxL2 function as LPS antagonists in humans by inhibiting TLR4-dependent cytokine production but have agonistic activity in mice.  相似文献   

6.
The interactions of Neisseria meningitidis with cells of the meninges are critical to progression of the acute, compartmentalized intracranial inflammatory response that is characteristic of meningococcal meningitis. An important virulence mechanism of the bacteria is the ability to shed outer membrane (OM) blebs containing lipopolysaccharide (LPS), which has been assumed to be the major pro-inflammatory molecule produced during meningitis. Comparison of cytokine induction by human meningeal cells following infection with wild-type meningococci, LPS-deficient meningococci or after treatment with OM isolated from both organisms, demonstrated the involvement of non-LPS bacterial components in cell activation. Significantly, recognition of LPS-replete OM did not depend on host cell expression of Toll-like receptor (TLR)4, the accessory protein MD-2 or CD14, or the recruitment of LPS-accessory surface proteins heat shock protein (HSP)70, HSP90alpha, chemokine receptor CXCR4 and growth differentiation factor (GDF)5. In addition, recognition of LPS-deficient OM was not associated with the expression of TLR2 or any of these other molecules. These data suggest that during meningococcal meningitis innate recognition of both LPS and non-LPS modulins is dependent on the expression of as yet uncharacterized pattern recognition receptors on cells of the meninges. Moreover, the biological consequences of cellular activation by non-LPS modulins suggest that clinical intervention strategies based solely on abrogating the effects of LPS are likely to be only partially effective.  相似文献   

7.
The use of lipoproteins has been suggested as a treatment for Gram-negative sepsis because they inhibit lipopolysaccharide (LPS)-mediated cytokine production. However, little is known about the neutralizing effects of lipoproteins on cytokine production by meningococcal LPS or whole Gram-negative bacteria. We assessed the neutralizing effect of LDLs, HDLs, and VLDLs on LPS- or whole bacteria-induced cytokines in human mononuclear cells. A strong inhibition of Escherichia coli LPS-induced interleukin-1beta (IL-1beta), tumor necrosis factor-alpha, and IL-10 by LDL and HDL was seen, whereas VLDL had a less pronounced effect. In contrast, Neisseria meningitidis LPS, in similar concentrations, was neutralized much less effectively than E. coli LPS. Effective neutralization of meningococcal LPS required a longer interaction time, a lower concentration of LPS, or higher concentrations of lipoproteins. The difference in neutralization was independent of the saccharide tail, suggesting that the lipid A moiety accounted for the difference. Minimal neutralizing effects of the lipoproteins were observed on whole E. coli or N. meningitidis bacteria under all conditions tested. These results indicate that efficient neutralization of LPS depends on the type of LPS, but a sufficiently long interaction time, a low LPS concentration, or high lipoprotein concentration also inhibited cytokines by the less efficiently neutralized N. meningitidis LPS. Irrespective of these differences, whole bacteria showed no neutralization by lipoproteins.  相似文献   

8.
Activity of tissue factor (TF) in membrane microparticles (MPs) produced in vitro by endothelial cells (ECs), monocytes, THP-1 monocytic cells, granulocytes, and platelets was investigated. ECs were isolated from human umbilical vein, and monocytes, granulocytes, and platelets–from the blood of healthy donors. ECs, monocytes, and THP-1 cells were activated by bacterial lipopolysaccharide, granulocytes–by lipopolysaccharide or phorbol myristate acetate, and platelets - by SFLLRN, thrombin receptor-activating peptide. MPs were sedimented from the culture medium or supernatant of activated cells at 20,000g for 30 min. Coagulation activity of MPs was analyzed in a modified recalcification assay by assessing their effects on coagulation of donor plasma depleted of endogenous MPs (by centrifuging at 20,000g for 90 min). MPs from all cell types accelerated plasma coagulation. Antibodies blocking TF activity prolonged coagulation lagphase in the presence of MPs from ECs, monocytes, and THP-1 cells (by 2.7-, 2.0-, and 1.8-fold, respectively), but did not influence coagulation in the presence of MPs from granulocytes and platelets. In accordance with these data, TF activity measured by its ability to activate factor X was found in MPs from ECs, monocytes, and THP-1 cells, but not in MPs from granulocytes and platelets. The data obtained indicate that active TF is present in MPs produced in vitro by ECs, monocytes, and THP-1 cells, but not in MPs derived from granulocytes and platelets.  相似文献   

9.
The protective effect of recombinant activated protein C therapy in patients with severe sepsis likely reflects the ability of recombinant activated protein C to modulate multiple pathways implicated in sepsis pathophysiology. In this study, we examined the effects of recombinant activated protein C on the anti-inflammatory cytokine IL-10 and on the procoagulant molecule tissue factor (TF) in LPS-challenged blood monocytes. Treatment of LPS-stimulated monocytes with recombinant activated protein C resulted in an up-regulation of IL-10 protein production and mRNA synthesis. The up-regulation of IL-10 required the serine protease activity of recombinant activated protein C and was dependent on protease-activated receptor-1, but was independent of the endothelial protein C receptor. At the intracellular level, p38 MAPK activation was required for recombinant activated protein C-mediated up-regulation of IL-10. We further observed that incubation of LPS-stimulated monocytes with recombinant activated protein C down-regulated TF Ag and activity levels. This anticoagulant effect of recombinant activated protein C was dependent on IL-10 since neutralization of endogenously produced IL-10 abrogated the effect. In patients with severe sepsis, plasma IL-10 levels were markedly higher in those treated with recombinant activated protein C than in those who did not receive recombinant activated protein C. This study reveals novel regulatory functions of recombinant activated protein C, specifically the up-regulation of IL-10 and the inhibition of TF activity in monocytes. Our data further suggest that these activities of recombinant activated protein C are directly linked: the recombinant activated protein C-mediated up-regulation of IL-10 reduces TF in circulating monocytes.  相似文献   

10.
Human-like immune responses in CD46 transgenic mice   总被引:2,自引:0,他引:2  
Neisseria meningitidis is a major cause of sepsis and/or meningitis. These bacteria normally cause disease only in humans, however, mice expressing human CD46 are susceptible to meningococcal disease. To explain the sensitivity of CD46 transgenic mice to meningococci, we evaluated early immune responses. Stimulation of TNF, IL-6, and IL-10 was stronger in CD46 transgenic mice compared with nontransgenic mice, and resembled human responses. In CD46 transgenic mice, bacterial clearance in blood started at later time points, and neutrophil numbers in blood were lower compared with nontransgenic mice. Further, elevated levels of activated microglia cells and cyclooxygenase-2 were observed in brain of infected CD46 transgenic mice. Intraperitoneal administration of meningococci lead to increased levels of macrophages only in the i.p. cavity of CD46 transgenic mice. Most of the responses were impaired or absent using LPS-deficient meningococci, showing the importance of LPS in the early immune response to meningococcal infection. Taken together, these data demonstrate that responses in mice expressing human CD46 mimic human meningococcal disease in many aspects, and demonstrate novel important links between CD46 and the innate immune system.  相似文献   

11.
Tissue factor (TF) is a glycoprotein which acts as a trigger of the coagulation cascade. TF expression may be induced at the surface of monocytes and endothelial cells by several stimuli including bacterial endotoxin (LPS) and cytokines (IL1β, TNFα) and there is a large body of evidence for the involvement of hypoxia as a primaring factor in the process leading to thrombosis. To define the molecular basis underlying this phenomenon, we evaluated the relative role of platelet activating factor (PAF). PAF primed human monocytes and human umbilical vein endothelial cells (HUVEC) for TF expression following exposure to E. coli LPS but was unable to enhance the induction of TF expression by IL1β. The priming effect of PAF with regard to LPS occurred in a time-and dose-dependent manner and was inhibited by the PAF receptor antagonist SR 27417. When HUVEC or monocytes were exposed to an hypoxic environment, a significant rise in LPS-induced TF expression was observed. Hypoxia had no effect on IL1-induced TF expression. The enhanced LPS-induced TF expression in both cell types was mediated by PAF as indicated by the inhibition obtained with SR 27417, added during hypoxia. Although the importance of hypoxia in the etiology of venous thrombosis has been acknowledged for a long time, evaluation of the relative importance of PAF in the process leading to thrombus formation is still lacking. Stasis-induced thrombosis performed in the rabbit jugular vein was enhanced in a dose-dependent manner by the prior i.v. administration of LPS (0.05 to 100 μg/kg, i.v.). SR 27417 administered simultaneously with LPS prevented thrombus formation with an ED50 value of 0.1 ± 0.04 mg/kg. These results therefore show that hypoxia promotes LPS-induced TF expression in HUVEC and human monocytes through a PAF-dependent mechanism in vitro and in vivo. © 1996 Wiley-Liss, Inc.  相似文献   

12.
Lipopolysaccharides (LPS) are surface components of the outer membrane of Neisseria meningitidis. Today, 12 different types of meningococcal LPS (immunotypes) are known, of which 3 are prevalent in the western world. The differences between these immunotypes are in the oligosaccharide part of the LPS molecule and consist of small differences in the oligosaccharide structure, the amount and location of phosphoethanolamine groups, and the degree of O acetylation of individual monosaccharides. Although the differences between the various immunotypes are small, they have a profound influence on the immunochemical and immunological properties of these molecules. Furthermore, each individual strain synthesizes a number of different LPS molecules. The expression of the various components (protective epitopes) is influenced by growth conditions and growth phase. Meningococci can endogenously sialyate their LPS, which constitutes one of the mechanisms by which N. meningitidis can evade the response of the human host. Meningococcal LPS play a key role in the induction of septic shock and can probably enhance the invasiveness of meningococcal strains and shield protective epitopes. Therefore, incorporation of (detoxified) LPS or oligosaccharide components derived therefrom might be very beneficial for the efficacy of a vaccine against group B meningococci. An overview of the development of vaccines against group B meningococci is given, and the status and potential of meningococcal LPS-derived (synthetic) oligosaccharide-protein conjugate vaccines are discussed.  相似文献   

13.
14.
Our aim was to clarify the role of anti-phospholipid antibodies in the pathogenesis of monocyte tissue factor (TF) expression and thromboembolic complications (TE) in patients with SLE. We examined cell surface expression of TF on monocytes in 93 SLE patients. Monocyte TF expression was significantly higher in SLE patients who had TE than in other SLE patients, and confirmed that the high expression of monocyte TF was a strong risk factor for TE. Furthermore, the presence of anti-cardiolipin/β2-glycoprotein I antibodies (anti-CL/β2-GPI) was strongly associated with the high expression of monocyte TF. We therefore studied the in vitro effect of IgG anti-CL/β2-GPI on lipopolysaccharide (LPS)-induced expression of TF on monocytes in healthy peripheral blood and found that purified IgG containing anti-CL/β2-GPI significantly enhanced LPS-induced monocyte TF expression. These results suggest that anti-CL/β2-GPI cause persistently high TF expression on monocyte, which may contribute to the risk of thromboembolic events in SLE patients.  相似文献   

15.
The protective activity of the sera of mice immunized with the preparations of native and detoxified N. meningitidis lipopolysaccharide (LPS), group A, as well as with monoclonal antibodies to N. meningitidis antigens, groups A and B, was studied on the mucin model of meningococcal infection. The study showed that the maximum level of anti-LPS antibodies in mice was observed on day 7 after the injection of LPS. Immune sera obtained from mice were capable of protecting the animals from fetal meningococcemia induced by N. meningitidis strains of homologous and heterologous groups. As shown by the results of this study, the alkaline treatment of N. meningitidis native LPS did not decrease the protective properties of antibodies. The monoclonal antibodies under study were found to possess high preventive activity in mice challenged with N. meningitidis, groups A and B. Anti-LPS monoclonal antibodies showed greater protective activity than antipolysaccharide monoclonal antibodies.  相似文献   

16.
BACKGROUND: Monocytic tissue factor (TF), an initiator of extrinsic blood coagulation, is often activated under various inflammatory conditions including endotoxemia. This activation could be a contributing factor to the manifestation of disseminated intravascular coagulation following septic shock. HYPOTHESIS: We herein determine if extracellular Ca(2+) ([Ca(2+)](ex)) regulates bacterial endotoxin (LPS)-inducible monocytic TF activation. METHODS: We have employed a model monocytic cell line (THP-1) to explore the mode of action of [Ca(2+)](ex) on the modulation of LPS-induced TF activation. TF activity was measured by a single stage clotting assay, while TF expression as well as LPS recognition and its receptor expression were studied in immunofluorescent approaches. RESULTS: LPS-induced TF activation was inversely correlated to [Ca(2+)](ex). Upon exposure of THP-1 cells to LPS (1.5 microg ml(-1)) for 6 h in the Hanks' medium without CaCl(2), TF was activated by nearly 10-fold. TF activation appreciably decreased with the increasing [Ca(2+)](ex). No more than 3.5-fold TF activation was detected at 5 mM [Ca(2+)](ex). Consistent with the significantly lower degree of TF activation, LPS-induced TF expression at 5 mM [Ca(2+)](ex) was 60 per cent less than that without [Ca(2+)](ex). FACScan analysis showed that LPS recognition was significantly blocked at 5 mM [Ca(2+)](ex) which however had no effect on the expression of CD14 and CD11b, the proposed major LPS receptors. Moreover, LPS binding in vitro was significantly inhibited by 5 mM CaCl(2). CONCLUSION: Our results demonstrate that [Ca(2+)](ex) blocked LPS recognition without affecting its receptor expression on THP-1 monocytes. This insensitivity to LPS thereby resulted in the depressed inducible monocytic TF expression and activation.  相似文献   

17.
A major problem in the development of vaccines against Gram-negative bacteria is the endotoxic -activity of lipopolysaccharide (LPS), which is determined by its lipid A moiety. Nevertheless, LPS would be an interesting vaccine component because of its immune-stimulating properties. In the present study, we have changed the fatty acid composition of Neisseria meningitidis LPS by replacing the lpxA gene of strain H44/76 with the Escherichia coli or Pseudomonas aeruginosa homologue. The majority of the O-linked 3-OH C12 in N. meningitidis lipid A was replaced by 3-OH C14 (strain HA01E) and 3-OH C10 (strain HA25P) respectively. Both strains, but most notably strain HA01E, had reduced amounts of LPS compared with the wild-type strain. In addition, growth was severely impaired for HA01E. The major outer membrane proteins were expressed normally. Outer membrane complexes of both strains normalized on their LPS content showed a 10-fold reduction in their ability to induce tumour necrosis factor (TNF)-alpha. Immunogenicity studies in BALB/c mice revealed that the adjuvant activity of the LPS was not affected. Thus, the replacement of the O-linked fatty acids in meningococcal lipid A results in immunogenic outer membranes with reduced endotoxic activity, more suitable for use in outer membrane vesicle vaccines.  相似文献   

18.
Lipopolysaccharide (LPS) is a major determinant of Neisseria meningitidis virulence. A key feature of meningococcal LPS is the phase-variable expression of terminal structures which are proposed to have disparate roles in pathogenesis. In order to identify the biosynthetic genes for terminal LPS structures and the control mechanisms for their phase-variable expression, the lic2A gene, which is involved in LPS biosynthesis in Haemophilus influenzae , was used as a hybridization probe to identify a homologous gene in N. meningitidis strain MC58. The homologous region of DNA was cloned and nucleotide sequence analysis revealed three open reading frames (ORFs), two of which were homologous to the H. influenzae lic2A gene. All three ORFs were mutagenized by the insertion of antibiotic-resistance cassettes and the LPS from these mutant strains was analysed to determine if the genes had a role in LPS biosynthesis. Immunological and tricine—SDS—PAGE analysis of LPS from the mutant strains indicated that all three genes were probably transferases in the biosynthesis of the terminal lacto- N -neotetraose structure of meningococcal LPS. The first ORF of the locus contains a homopolymeric tract of 14 guanosine residues within the 5'-end of the coding sequence. As the lacto- N -neotetraose structure in meningococcal LPS is subject to phase-variable expression, colonies that no longer expressed the terminal structure, as determined by monoclonal antibody binding, were isolated. Analysis of an 'off' phase variant revealed a change in the number of guanosine residues resulting in a frameshift mutation, indicating that a slipped-strand mispairing mechanism, operating in the first ORF, controls the phase-variable expression of lacto- N -neotetraose.  相似文献   

19.
Meningococcal lipopolysaccharide (LPS) is of crucial importance for the pathogenesis of invasive infection. We show that sialylation and elongation of the alpha-chain effectively shields viable unencapsulated Neisseria meningitidis from recognition by human dendritic cells (DC). In contrast, beta- and gamma- chain of the LPS carbohydrate moiety play only a minor role in the interaction with DC. The protective function of the LPS for the bacteria can be counteracted in vivo by phase variation of the lgtA gene encoding LPS glycosyltransferase A. Capsule expression protects N. meningitidis efficiently from recognition and phagocytosis by DC independent of the LPS structure. Despite the significant impact of LPS composition on the adhesion and phagocytosis of N. meningitidis no differences were found in terms of cytokine levels secreted by DC for IL1-beta, IL-6, IL-8, TNF-alpha, IFN-gamma and GM-CSF. However, significantly lower levels of the regulatory mediator IL-10 were induced by encapsulated strains in comparison to isogenic unencapsulated derivatives. IL-10 secretion was shown to depend on phagocytosis because poly alpha-2,8 sialic acid did not influence IL-10 secretion. The use of truncated LPS isoforms in vaccine preparations can therefore not only result in attenuation but also in more efficient targeting of DC.  相似文献   

20.
Group B Neisseria meningitidis is a human pathogen, for which a universally effective vaccine is still not available. Immune responses to bacteria are initiated by dendritic cells (DC), which internalize and process bacterial antigens for presentation to T cells. We show here that optimal IL-12 and TNF-alpha production by human monocyte derived DC in response to killed serogroup B N. meningitidis depends on physical contact and internalization of the bacteria by DC. The majority of DC producing cytokines had internalized N. meningitidis while inhibition of bacterial internalization markedly impaired IL-12 and TNF-alpha, but not IL-6 production. Internalization of N. meningitidis was shown to depend on lipooligosaccharide (LOS) expressed by the bacteria with poor internalization of LOS deficient bacteria compared to wild-type bacteria. Restoration of LOS biosynthesis in a LOS regulatory strain also restored both internalization and cytokine production and was enhanced in the presence of LPS binding protein (LBP). These results suggest that DC phagocytosis depends on expression of LOS within the bacteria and that optimal cytokine production, particularly IL-12, requires internalization of the bacteria. These findings have important implications for designing vaccines that will induce protective immune responses to group B N. meningitidis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号