首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 897 毫秒
1.
Epigenetic regulation in psychiatric disorders   总被引:8,自引:0,他引:8  
Many neurological and most psychiatric disorders are not due to mutations in a single gene; rather, they involve molecular disturbances entailing multiple genes and signals that control their expression. Recent research has demonstrated that complex 'epigenetic' mechanisms, which regulate gene activity without altering the DNA code, have long-lasting effects within mature neurons. This review summarizes recent evidence for the existence of sustained epigenetic mechanisms of gene regulation in neurons that have been implicated in the regulation of complex behaviour, including abnormalities in several psychiatric disorders such as depression, drug addiction and schizophrenia.  相似文献   

2.
Prenatal environmental events that disturb neurodevelopment are suspected to increase the risk of psychiatric disorders. Estrogenic hormones such as diethylstilbestrol (DES) and environmental monomers like Bisphenol A (BPA) have the potential to disturb the development of the foetus and especially its brain. We reviewed the epidemiological studies investigating a possible association between prenatal DES or BPA exposure and risk of psychiatric disorders and discussed the hypothetical biological mechanisms linking this prenatal exposure with psychiatric disorders. The principal methodological issues that could represent confounding factors and may explain conflicting results are discussed. Interestingly, prenatal exposure to DES and BPA has been linked to epigenetic alterations associated with urogenital lesions observed in the exposed offspring, supporting the hypothesis that this environmental factor can indeed alter epigenetic regulations. Following the same line of thinking, these endocrine disruptors may modify the epigenetic mechanisms involved in neurodevelopment and, in turn, increase the occurrence of psychiatric disorders.  相似文献   

3.
The study of epigenetics is providing novel insights about the functional and developmental complexity of the nervous system. In neuropathology, therapies aimed at correcting epigenetic dysregulation have been extensively documented in a large variety of models for neurodegenerative, neurodevelopmental and psychiatric disorders. Taking the treatment of Huntington's disease as a paradigm for the study of these ameliorative strategies, this review updates the main conclusions derived from the use of epigenetic drugs at the preclinical and clinical stages, including actions beyond epigenetics.This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.  相似文献   

4.
Understanding the interaction between fear and reward at the circuit and molecular levels has implications for basic scientific approaches to memory and for understanding the etiology of psychiatric disorders. Both stress and exposure to drugs of abuse induce epigenetic changes that result in persistent behavioral changes, some of which may contribute to the formation of a drug addiction or a stress‐related psychiatric disorder. Converging evidence suggests that similar behavioral, neurobiological and molecular mechanisms control the extinction of learned fear and drug‐seeking responses. This may, in part, account for the fact that individuals with post‐traumatic stress disorder have a significantly elevated risk of developing a substance use disorder and have high rates of relapse to drugs of abuse, even after long periods of abstinence. At the behavioral level, a major challenge in treatments is that extinguished behavior is often not persistent, returning with changes in context, the passage of time or exposure to mild stressors. A common goal of treatments is therefore to weaken the ability of stressors to induce relapse. With the discovery of epigenetic mechanisms that create persistent molecular signals, recent work on extinction has focused on how modulating these epigenetic targets can create lasting extinction of fear or drug‐seeking behavior. Here, we review recent evidence pointing to common behavioral, systems and epigenetic mechanisms in the regulation of fear and drug seeking. We suggest that targeting these mechanisms in combination with behavioral therapy may promote treatment and weaken stress‐induced relapse.  相似文献   

5.
6.
7.
Primary malignant brain tumors are a major cause of morbidity and mortality in both adults and children, with a dismal prognosis despite multimodal therapeutic approaches. In the last years, a specific subpopulation of cells within the tumor bulk, named cancer stem cells(CSCs) or tumor-initiating cells, have been identified in brain tumors as responsible for cancer growth and disease progression. Stemness features of tumor cells strongly affect treatment response, leading to the escape from conventional therapeutic approaches and subsequently causing tumor relapse. Recent research efforts have focused at identifying new therapeutic strategies capable of specifically targeting CSCs in cancers by taking into consideration their complex nature. Aberrant epigenetic machinery plays a key role in the genesis and progression of brain tumors as well as inducing CSC reprogramming and preserving CSC characteristics. Thus, reverting the cancer epigenome can be considered a promising therapeutic strategy. Three main epigenetic mechanisms have been described: DNA methylation, histone modifications, and non-coding RNA, particularly micro RNAs. Each of these mechanisms has been proven to be targetable by chemical compounds, known as epigeneticbased drugs or epidrugs, that specifically target epigenetic marks. We review here recent advances in the study of epigenetic modulators promoting and sustaining brain tumor stem-like cells. We focus on their potential role in cancer therapy.  相似文献   

8.
Epigenetic mechanisms have emerged as important components of a variety of human diseases, including cancer and central nervous system disorders. Despite recent studies highlighting the role of epigenetic mechanisms in several neurodegenerative and neuropsychiatric disorders, to date, there has been a paucity of studies exploring the role of epigenetic factors in Parkinson’s disease (PD). PD is a progressive neurological disorder with characteristic motor and non-motor symptoms, including a range of neuropsychiatric features, for which neither preventative nor effective long-term treatment strategies are available. It is one of the most common neurodegenerative disorders and the second most prevalent after Alzheimer’s disease. In this review, we present several lines of evidence suggesting that epigenetic factors may play an important role in the pathogenesis of PD and propose on this basis a framework to guide future investigations into epigenetic mechanisms and systems biology of PD. These notions, together with technical advances in the ability to perform genome-wide analysis of epigenomic states, and newly available small-molecule probes targeting chromatin-modifying enzymes, may help design new treatment strategies for PD and other human diseases involving epigenetic dysregulation.  相似文献   

9.
While proteomics has excelled in several disciplines in biology (cancer, injury and aging), neuroscience and psychiatryproteomic studies are still in their infancy. Several proteomic studies have been conducted in different areas of psychiatric disorders, including drug abuse (morphine, alcohol and methamphetamine) and other psychiatric disorders (depression, schizophrenia and psychosis). However, the exact cellular and molecular mechanisms underlying these conditions have not been fully investigated. Thus, one of the primary objectives of this review is to discuss psychoproteomic application in the area of psychiatric disorders, with special focus on substance- and drug-abuse research. In addition, we illustrate the potential role of degradomic utility in the area of psychiatric research and its application in establishing and identifying biomarkers relevant to neurotoxicity as a consequence of drug abuse. Finally, we will discuss the emerging role of systems biology and its current use in the field of neuroscience and its integral role in establishing a comprehensive understanding of specific brain disorders and brain function in general.  相似文献   

10.
While proteomics has excelled in several disciplines in biology (cancer, injury and aging), neuroscience and psychiatryproteomic studies are still in their infancy. Several proteomic studies have been conducted in different areas of psychiatric disorders, including drug abuse (morphine, alcohol and methamphetamine) and other psychiatric disorders (depression, schizophrenia and psychosis). However, the exact cellular and molecular mechanisms underlying these conditions have not been fully investigated. Thus, one of the primary objectives of this review is to discuss psychoproteomic application in the area of psychiatric disorders, with special focus on substance- and drug-abuse research. In addition, we illustrate the potential role of degradomic utility in the area of psychiatric research and its application in establishing and identifying biomarkers relevant to neurotoxicity as a consequence of drug abuse. Finally, we will discuss the emerging role of systems biology and its current use in the field of neuroscience and its integral role in establishing a comprehensive understanding of specific brain disorders and brain function in general.  相似文献   

11.
Day JJ  Sweatt JD 《Neuron》2011,70(5):813-829
Although the critical role for epigenetic mechanisms in development and cell differentiation has long been appreciated, recent evidence reveals that these mechanisms are also employed in postmitotic neurons as a means of consolidating and stabilizing cognitive-behavioral memories. In this review, we discuss evidence for an "epigenetic code" in the central nervous system that mediates synaptic plasticity, learning, and memory. We consider how specific epigenetic changes are regulated and may interact with each other during memory formation and how these changes manifest functionally at the cellular and circuit levels. We also describe a central role for mitogen-activated protein kinases in controlling chromatin signaling in plasticity and memory. Finally, we consider how aberrant epigenetic modifications may lead to cognitive disorders that affect learning and memory, and we review the therapeutic potential of epigenetic treatments for the amelioration of these conditions.  相似文献   

12.
Chordoma is a rare type of malignant bone tumour arising from remnant notochord and prognosis of patients with it remains poor as its molecular and genetic mechanisms are not well understood. Increasing evidence has demonstrated that epigenetic mechanisms (DNA methylation, histone modification and nucleosome remodelling), play a crucial role in the pathogenesis of many diseases. Aberrant epigenetic patterns are present in patients with chordoma, indicating a potential role for epigenetic mechanisms inthis malignancy. Furthermore, epigenetic alterations may provide novel biomarkers for diagnosis and prognosis as well as therapeutic targets for treatment. In this review, we discuss relevant epigenetic findings associated with chordoma, and their potential application for diagnosis, prognosis and treatment.  相似文献   

13.
14.
15.
The most remarkable feature of the nervous system is that the development and functions of the brain are largely reshaped by postnatal experiences, in joint with genetic landscapes. The nature vs. nurture argument reminds us that both genetic and epigenetic information is indispensable for the normal function of the brain. The epigenetic regulatory mechanisms in the central nervous system have been revealed over last a decade. Moreover, the mutations of epigenetic modulator genes have been shown to be implicated in neuropsychiatric disorders, such as autism spectrum disorders. The epigenetic study has initiated in the neuroscience field for a relative short period of time. In this review, we will summarize recent discoveries about epigenetic regulation on neural development, synaptic plasticity, learning and memory, as well as neuropsychiatric disorders. Although the comprehensive view of how epigenetic regulation contributes to the function of the brain is still not completed, the notion that brain, the most complicated organ of organisms, is profoundly shaped by epigenetic switches is widely accepted.  相似文献   

16.
刘姝丽  张胜利  俞英 《遗传》2016,38(12):1043-1055
同卵双胞胎来源于同一个受精卵,DNA序列基本一致,但在某些重要表型上如复杂疾病,并不完全一样。利用表型不一致的同卵双胞胎进行研究,能在遗传背景、母体效应、年龄性别效应等一致的基础上,深入研究分析复杂性状的表观调控机制。而DNA甲基化是最为稳定的一类表观遗传修饰。在人类中,利用同卵双胞胎对印记异常疾病、精神类疾病、自身免疫病及癌症等疾病的DNA甲基化调控研究已经揭示了多个致病基因,为研究疾病的表观调控以及表观遗传学药物的应用打下了基础。本文着重对同卵双胞胎DNA甲基化状态、DNA甲基化遗传力计算以及复杂性状DNA甲基化调控的研究应用及其进展展开综述,以期为复杂性状表观调控机制研究提供借鉴和参考。  相似文献   

17.
Osteoarthritis (OA) is one of the most prevalent forms of joint disorder, associated with a tremendous socioeconomic burden worldwide. Various non-genetic and lifestyle-related factors such as aging and obesity have been recognized as major risk factors for OA, underscoring the potential role for epigenetic regulation in the pathogenesis of the disease. OA-associated epigenetic aberrations have been noted at the level of DNA methylation and histone modification in chondrocytes. These epigenetic regulations are implicated in driving an imbalance between the expression of catabolic and anabolic factors, leading eventually to osteoarthritic cartilage destruction. Cellular senescence and metabolic abnormalities driven by OA-associated risk factors appear to accompany epigenetic drifts in chondrocytes. Notably, molecular events associated with metabolic disorders influence epigenetic regulation in chondrocytes, supporting the notion that OA is a metabolic disease. Here, we review accumulating evidence supporting a role for epigenetics in the regulation of cartilage homeostasis and OA pathogenesis.  相似文献   

18.
《Bioscience Hypotheses》2008,1(2):103-108
Since the pivotal role of long chain omega-3 (n-3) polyunsaturated fatty acids (PUFA) in brain structure and development became apparent in the 1970s, these lipids have been investigated in relation to a range of psychiatric disorders, with some positive and some conflicting evidence to support their use as a supplementary treatment for various symptoms. A number of mechanisms of action have been proposed to account for their potential benefits, largely based on their structural role in brain development and purported influences on central neurotransmission.Theories on the pathogenesis of mental health and psychiatric illness have traditionally focused on the role of neurotransmitters, although there is also ample evidence that psychiatric disorders are associated with impaired cerebral blood flow (CBF) or impairments in blood-brain barrier (BBB) function. Associations between cardiovascular and psychiatric pathologies are further indicative of a possible underlying vascular component to psychiatric illness. We hypothesise that treatment with vasoactive nutrients that can improve cerebral perfusion may help to improve a variety of mental disorders.In presenting our hypothesis, we provide an overview of cerebral vascular function, focusing specifically on the role of the endothelium in CBF and BBB integrity, and review evidence for associations between impaired CBF/endothelial function and psychiatric illness. Then, as an example of a potential treatment, we review the influence of n-3 PUFA on endothelial function, drawing on evidence of anti-inflammatory, anti-aggregatory and vasodilatory roles in blood flow and vascular permeability. We hypothesise that n-3 PUFA may act on the blood side of the BBB as well as on central neural pathways to influence cerebral functions. In the former case, they may act on endothelial cells to influence both vasodilation and selective permeability, thereby assisting in CBF and delivery of oxygen and glucose to brain tissue in response to requirements.  相似文献   

19.
Despite great progress in antipsychotic drug research, the molecular mechanisms by which these drugs work have remained elusive. High-throughput gene profiling methods have advanced this field by allowing the simultaneous investigation of hundreds to thousands of genes. However, different methodologies, choice of brain region, and drugs studied have made comparisons across different studies difficult. Because of the complexity of gene expression changes caused by drugs, teasing out the most relevant expression differences is a challenging task. One approach is to focus on gene expression changes that converge on the same systems that were previously deemed important to the pathology of psychiatric disorders. From the microarray studies performed on human postmortem brain samples from schizophrenics, the systems most implicated to be dysfunctional are synaptic machinery, oligodendrocyte/myelin function, and mitochondrial/ubiquitin metabolism. Drugs may act directly or indirectly to compensate for underlying pathological deficits in schizophrenia or via other mechanisms that converge on these pathways. Side effects, consisting of motor and metabolic dysfunction (which occur with typical and atypical drugs, respectively), also may be mediated by gene expression changes that have been reported in these studies. This article surveys both the convergent antipsychotic mechanisms and the genes that may be responsible for other effects elicited by antipsychotic drugs.  相似文献   

20.
In the last three decades huge efforts have been made to characterize genetic defects responsible for cancer development and progression, leading to the comprehensive identification of distinct cellular pathways affected by the alteration of specific genes. Despite the undoubtable role of genetic mechanisms in triggering neoplastic cell transformation, epigenetic modifications (i.e., heritable changes of gene expression that do not derive from alterations of the nucleotide sequence of DNA) are rapidly emerging as frequent alterations that often occur in the early phases of tumorigenesis and that play an important role in tumor development and progression. Epigenetic alterations, such as modifications in DNA methylation patterns and post-translational modifications of histone tails, behave extremely different from genetic modifications, being readily revertable by "epigenetic drugs" such as inhibitors of DNA methyl transferases and inhibitors of histone deacetylases. Since epigenetic alterations in cancer cells affect virtually all cellular pathways that have been associated to tumorigenesis, it is not surprising that epigenetic drugs display pleiotropic activities, being able to concomitantly restore the defective expression of genes involved in cell cycle control, apoptosis, cell signaling, tumor cell invasion and metastasis, angiogenesis and immune recognition. Prompted by this emerging clinical relevance of epigenetic drugs, this review will focus on the large amount of available data, deriving both from in vitro experimentations and in vivo pre-clinical and clinical studies, which clearly indicate epigenetic drugs as effective modifiers of cancer phenotype and as positive regulators of tumor cell biology with a relevant therapeutic potential in cancer patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号