首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.
2.
3.
Antidepressants may be effective treatment for smoking cessation and new evidence on relationship between smoking and depression is emerging. Extracts of the plant Hypericum perforatum possess antidepressant activity in humans and reduce nicotine withdrawal signs in mice. Both nicotine and H. perforatum administration elicit changes in serotonin (5-HT) formation in the brain. On this basis, we investigated the possible involvement of 5-HT in the beneficial effects of H. perforatum on nicotine withdrawal signs. With the aim to induce nicotine dependence, nicotine (2 mg/kg, four intraperitoneal injections daily) was administered for 14 days to mice (NM). Saline (controls, M) or H. perforatum extract (Ph 50, 500 mg/kg) were orally administered immediately after the last nicotine injection for 30 days after nicotine withdrawal. Another group of animals treated with nicotine (14 days) and successively with H. perforatum extract was intraperitoneally co-administered with selective 5-HT receptorial antagonist WAY 100635 (WAY) (1 mg/kg). All animals were evaluated for locomotor activity and abstinence signs, 24 after nicotine withdrawal. Brain 5-HT metabolism was evaluated in the cortex of mice sacrificed 30 days after nicotine withdrawal through evaluation of 5-HT, 5-hydroxyindoleacetic acid (5-HIAA) and 5-HIAA/5-HT ratio. After nicotine withdrawal measurement of 5-HT metabolism in the cortex showed a reduction of 5-HT content while animals treated only with Hypericum extract showed a significant reduction of total abstinence score compared to controls. WAY inhibited the reduction of total abstinence score induced by H. perforatum. Moreover, 5-HT1A expression has been evaluated 30 days after nicotine withdrawal. Our results, show a significant increase of cortical 5-HT content in NM treated with H. perforatum, with a concomitant significant increase of 5-HT1A receptor. So, it is possible to suggest an involvement of 5-HT in beneficial effects of H. perforatum on suffering produced by nicotine withdrawal in dependent mice.  相似文献   

4.
The aim of this study was designed to evaluate the possible protective effects of thymoquinone (TQ) on the neuronal injury in the frontal cortex after chronic toluene exposure in rats. The rats were randomly allotted into one of three experimental groups: A (control), B (toluene treated) and C (toluene treated with TQ); each group contain 10 animals. Control group received 1ml normal saline solution and toluene treatment was performed by inhalation of 3,000 ppm toluene, in a 8 h/day and 6 day/week order for 12 weeks. The rats in TQ treated group was given TQ (50 mg/kg body weight) once a day orally for 12 weeks starting just after toluene exposure. Tissue samples were obtained for histopathological investigation. To date, no histopathological changes of neurodegeneration in the frontal cortex after chronic toluene exposure in rats by TQ treatment have been reported. In this study, the morphology of neurons in the TQ treatment group was well protected. Chronic toluene exposure caused severe degenerative changes, shrunken cytoplasma, severely dilated cisternae of endoplasmic reticulum, markedly swollen mitochondria with degenerated cristae and nuclear membrane breakdown with chromatin disorganization in neurons of the frontal cortex. We conclude that TQ therapy causes morphologic improvement on neurodegeneration in frontal cortex after chronic toluene exposure in rats. We believe that further preclinical research into the utility of TQ may indicate its usefulness as a potential treatment on neurodegeneration after chronic toluene exposure in rats.  相似文献   

5.
A novel mechanism for TNFR-associated factor 6-dependent CD40 signaling   总被引:2,自引:0,他引:2  
Members of the TNFR family play critical roles in the regulation of the immune system. One member of the family critical for efficient activation of T-dependent humoral immune responses is CD40, a cell surface protein expressed by B cells and other APC. The cytoplasmic domain of CD40 interacts with several members of the TNFR-associated factor (TRAF) family, which link CD40 to intracellular signaling pathways. TRAF2 and 6 appear to play particularly important roles in CD40 signaling. Previous studies suggest that the two molecules have certain overlapping roles in signaling, but that unique roles for each molecule also exist. To better define the roles of TRAF2 and TRAF6 in CD40 signaling, we used somatic cell gene targeting to generate TRAF-deficient mouse B cell lines. A20.2J cells deficient in TRAF6 exhibit marked defects in CD40-mediated JNK activation and the up-regulation of CD80. Our previous experiments with TRAF2-deficient B cell lines suggest that TRAF6 and TRAF2 may have redundant roles in CD40-mediated NF-kappaB activation. Consistent with this hypothesis, we found CD40-mediated activation of NF-kappaB intact in TRAF6-deficient cells and defective in cells lacking both TRAF2 and TRAF6. Interestingly, we found that TRAF6 mutants defective in CD40 binding were able to restore CD40-mediated JNK activation and CD80 up-regulation in TRAF6-deficient cells, indicating that TRAF6 may be able to contribute to certain CD40 signals without directly binding CD40.  相似文献   

6.
ATP/ADP-sensing (sulfonylurea receptor (SUR)/K(IR)6)(4) K(ATP) channels regulate the excitability of our insulin secreting and other vital cells via the differential MgATP/ADP-dependent stimulatory actions of their tissue-specific ATP-binding cassette regulatory subunits (sulfonylurea receptors), which counterbalance the nearly constant inhibitory action of ATP on the K(+) inwardly rectifying pore. Mutations in SUR1 that abolish its stimulation have been found in infants persistently releasing insulin. Activating mutations in SUR1 have been shown to cause neonatal diabetes. Here, analyses of K(IR)6.2-based channels with diabetogenic receptors reveal that MgATP-dependent hyper-stimulation of mutant SUR can compromise the ability of K(ATP) channels to function as metabolic sensors. I demonstrate that the channel hyperactivity rises exponentially with the number of hyperstimulating subunits, so small subpopulations of channels with more than two mutant SUR can dominate hyperpolarizing currents in heterozygous patients. I uncovered an attenuated tolbutamide inhibition of the hyperstimulated mutant, which is normally sensitive to the drug under non-stimulatory conditions. These findings show the key role of SUR in sensing the metabolic index in humans and urge others to (re)test mutant SUR/K(IR)6 channels from probands in physiologic MgATP.  相似文献   

7.
Excessive fat intake can lead to cellular injury and inflammation (termed lipotoxicity), but studies on lipid metabolism in the kidney have been scarce. We recently identified a novel mechanism of lipotoxicity in the kidney proximal tubules especially focusing on the effect of lipid overload on lysosomal function and autophagic activity. Lipid overload basically stimulates macroautophagy/autophagy for renovation of the plasma and organelle membranes, which plays an essential role in maintaining the integrity of proximal tubules. However, this autophagic activation is inevitably accompanied with lysosomal stress and consequent downstream suppression of autophagy, which manifest as phospholipid accumulation in the lysosome. Stagnation of autophagy can enhance vulnerability to additional stress such as ischemic injury. Pharmacological correction of phospholipid accumulation that restores autophagic flux will be a novel therapeutic option for obesity-related kidney diseases.  相似文献   

8.
During embryonic morphogenesis, adhesion molecules are required for selective cell-cell interactions. The classical cadherins mediate homophilic calcium-dependent cell adhesion and are founding members of the large and diverse cadherin superfamily. The protocadherins are the largest subgroup within this superfamily, yet their participation in calcium-dependent cell adhesion is uncertain. In this paper, we demonstrate a novel mechanism of adhesion, mediated by a complex of Protocadherin-19 (Pcdh19) and N-cadherin (Ncad). Although Pcdh19 alone is only weakly adhesive, the Pcdh19-Ncad complex exhibited robust adhesion in bead aggregation assays, and Pcdh19 appeared to play the dominant role. Adhesion by the Pcdh19-Ncad complex was unaffected by mutations that disrupt Ncad homophilic binding but was inhibited by a mutation in Pcdh19. In addition, the complex exhibited homophilic specificity, as beads coated with Pcdh19-Ncad did not intermix with Ncad- or Pcdh17-Ncad-coated beads. We propose a model in which association of a protocadherin with Ncad acts as a switch, converting between distinct binding specificities.  相似文献   

9.
Complement activation may predispose to vascular injury and atherogenesis. The atheroprotective actions of unidirectional laminar shear stress led us to explore its influence on endothelial cell expression of complement inhibitory proteins CD59 and decay-accelerating factor. Human umbilical vein and aortic endothelial cells were exposed to laminar shear stress (12 dynes/cm(2)) or disturbed flow (+/- 5 dynes/cm(2) at 1Hz) in a parallel plate flow chamber. Laminar shear induced a flow rate-dependent increase in steady-state CD59 mRNA, reaching 4-fold at 12 dynes/cm(2). Following 24-48 h of laminar shear stress, cell surface expression of CD59 was up-regulated by 100%, whereas decay-accelerating factor expression was unchanged. The increase in CD59 following laminar shear was functionally significant, reducing C9 deposition and complement-mediated lysis of flow-conditioned endothelial cells by 50%. Although CD59 induction was independent of PI3-K, ERK1/2 and nitric oxide, an RNA interference approach demonstrated dependence upon an ERK5/KLF2 signaling pathway. In contrast to laminar shear stress, disturbed flow failed to induce endothelial cell CD59 protein expression. Likewise, CD59 expression on vascular endothelium was significantly higher in atheroresistant regions of the murine aorta exposed to unidirectional laminar shear stress, when compared with atheroprone areas exposed to disturbed flow. We propose that up-regulation of CD59 via ERK5/KLF2 activation leads to endothelial resistance to complement-mediated injury and protects from atherogenesis in regions of laminar shear stress.  相似文献   

10.
Establishment of symbiosis between certain host plants and nitrogen-fixing bacteria ("rhizobia") depends on type 3 effector proteins secreted via the bacterial type 3 secretion system (T3SS). Here, we report that the open reading frame y4zC of strain NGR234 encodes a novel rhizobial type 3 effector, termed NopT (for nodulation outer protein T). Analysis of secreted proteins from NGR234 and T3SS mutants revealed that NopT is secreted via the T3SS. NopT possessed autoproteolytic activity when expressed in Escherichia coli or human HEK 293T cells. The processed NopT exposed a glycine (G50) to the N terminus, which is predicted to be myristoylated in eukaryotic cells. NopT with a point mutation at position C93, H205, or D220 (catalytic triad) showed strongly reduced autoproteolytic activity, indicating that NopT is a functional protease of the YopT-AvrPphB effector family. When transiently expressed in tobacco plants, proteolytically active NopT elicited a rapid hypersensitive reaction. Arabidopsis plants transformed with nopT showed chlorotic and necrotic symptoms, indicating a cytotoxic effect. Inoculation experiments with mutant derivatives of NGR234 indicated that NopT affected nodulation either positively (Phaseolus vulgaris cv. Yudou No. 1; Tephrosia vogelii) or negatively (Crotalaria juncea). We suggest that NopT-related polymorphism may be involved in evolutionary adaptation of NGR234 to particular host legumes.  相似文献   

11.
12.
The findings from long-term field studies on biological effects in plant populations inhabiting radioactively contaminated territories contrast in levels and compositions of dose-forming radionuclides are presented. Plant populations developing under radioactive impact show enhanced frequencies of gene and chromosome mutations, and their reproductive potential is inferior to reference populations. Even relatively low levels of technogenic impact are able to increase genetic diversity and destroy regularities inherent for intact populations. Chronic radiation exposure from a certain level appears to be an ecological factor changing genetic structure of wild populations. Data presented indicate the presence of adaptation processes in plant populations in territories with technogenic impact. Under ecological stress, there are selection processes for resistance improvement in plant populations. But an appearance and rate of this process can essentially differ in dependence on radioecological conditions.  相似文献   

13.
We have previously demonstrated that kidney embryonic structures are present in rats, and are still developing until postnatal Day 20. Consequently, at postnatal Day 10, the rat renal papilla contains newly formed collecting duct (CD) cells and others in a more mature stage. Performing primary cultures, combined with immunocytochemical and time-lapse analysis, we investigate the cellular mechanisms that mediate the postnatal CD formation. CD cells acquired a greater degree of differentiation, as we observed that they gradually lose the ability to bind BSL-I lectin, and acquire the capacity to bind Dolichos biflorus. Because CD cells retain the same behavior in culture than in vivo, and by using DBA and BSL-I as markers of cellular lineage besides specific markers of epithelial/mesenchymal phenotype, the experimental results strongly suggest the existence of mesenchymal cell insertion into the epithelial CD sheet. We propose such a mechanism as an alternative strategy for CD growing and development.  相似文献   

14.
The functional role of harmful substances (i.e. toxins) produced by marine planktonic algae is still, in many cases, unknown. This study describes a novel mechanism by which the phototrophic dinoflagellate Alexandrium pseudogonyaulax secretes a toxic mucus trap where prey items are caught and immobilized prior to ingestion. Prey cells remain entrapped and immobile in the mucus trap, but most stay intact, readily available as whole-cell prey. It is shown that food uptake by A. pseudogonyaulax increases its growth rate considerably even in nutrient-replete, high-light conditions. The increase in growth rate was more enhanced in light-limited treatments and A. pseudogonyaulax grew significantly faster when fed Heterocapsa rotundata, than when fed Teleaulax acuta under both light conditions. For comparison, strains of Alexandrium catenella and Alexandrium minutum were studied for their mixotrophic capabilities. None of these strains were mixotrophic under the conditions provided. In addition, the toxic effects on various protistan targets of these Alexandrium strains as well as Alexandrium tamarense and Alexandrium ostenfeldii were compared to that of A. pseudogonyaulax. A. tamarense and A. catenella did immobilize and lyse target cells through substances leaked directly into the water, differing from all the strains of A. pseudogonyaulax studied. Results show that the toxic effect of A. pseudogonyaulax is non-specific causing nearly 100% immobilization of a variety of protistan targets at relatively low cell concentrations (500 cells ml−1 of donor cell). A critical donor cell density was not required as only one A. pseudogonyaulax cell was able to cause immobilization of target cells. For the first time, the connection between excreted toxins and phagotrophy is evident in an Alexandrium species and this particular strategy has the potential to severely impact competing phytoplankton communities.  相似文献   

15.
The neurotoxic amino acid, domoic acid (DA), is naturally produced by marine phytoplankton and presents a significant threat to the health of marine mammals, seabirds and humans via transfer of the toxin through the foodweb. In humans, acute exposure causes a neurotoxic illness known as amnesic shellfish poisoning characterized by seizures, memory loss, coma and death. Regular monitoring for high DA levels in edible shellfish tissues has been effective in protecting human consumers from acute DA exposure. However, chronic low-level DA exposure remains a concern, particularly in coastal and tribal communities that subsistence harvest shellfish known to contain low levels of the toxin. Domoic acid exposure via consumption of planktivorous fish also has a profound health impact on California sea lions (Zalophus californianus) affecting hundreds of animals yearly. Due to increasing algal toxin exposure threats globally, there is a critical need for reliable diagnostic tests for assessing chronic DA exposure in humans and wildlife. Here we report the discovery of a novel DA-specific antibody response that is a signature of chronic low-level exposure identified initially in a zebrafish exposure model and confirmed in naturally exposed wild sea lions. Additionally, we found that chronic exposure in zebrafish caused increased neurologic sensitivity to DA, revealing that repetitive exposure to DA well below the threshold for acute behavioral toxicity has underlying neurotoxic consequences. The discovery that chronic exposure to low levels of a small, water-soluble single amino acid triggers a detectable antibody response is surprising and has profound implications for the development of diagnostic tests for exposure to other pervasive environmental toxins.  相似文献   

16.
Exposure to nicotine is known to cause adverse effects in many target organs including kidney. Epidemiological studies suggest that nicotine-induced kidney diseases are prevalent worldwide. However, the impact of duration of exposure on the nicotine-induced adverse effects in normal kidney cells and the underlying molecular mechanism is still unclear. Hence, the objective of this study was to evaluate both acute and long-term effects of nicotine in normal human kidney epithelial cells (HK-2). Cells were treated with 1 and 10 µM nicotine for acute and long-term duration. The result of cell viability showed that the acute exposure to 1 µM nicotine has no significant effect on growth. However, the 10 µM nicotine caused significant decrease in the growth of HK-2 cells. The long-term exposure resulted in significantly increased cell growth in both 1 and 10 µM nicotine-treated groups. Analysis of cell cycle and expression of marker genes related to proliferation and apoptosis further confirmed the effects of nicotine. Additionally, the analysis of growth signaling pathway revealed the decreased level of pAKT in cells with acute exposure whereas the increased level of pAKT in long-term nicotine-exposed cells. This suggests that nicotine, through modulating the AKT pathway, controls the duration-dependent effects on the growth of HK-2 cells. In summary, this is the first report showing long-duration exposure to nicotine causes increased proliferation of human kidney epithelial cells through activation of AKT pathway.  相似文献   

17.
A major cause of alcohol toxicity is the production of reactive oxygen species generated during ethanol metabolism. The aim of this study was to compare the effect of binge drinking‐like alcohol exposure on a panel of genes implicated in oxidative mechanisms in adolescent and adult mice. In adolescent animals, alcohol decreased the expression of genes involved in the repair and protection of oxidative DNA damage such as atr, gpx7, or nudt15 and increased the expression of proapoptotic genes such as casp3. In contrast, in the adult brain, genes activated by alcohol were mainly associated with protective mechanisms that prevent cells from oxidative damage. Whatever the age, iterative binge‐like episodes provoked the same deleterious effects as those observed after a single binge episode. In adolescent mice, multiple binge ethanol exposure substantially reduced neurogenesis in the dentate gyrus and impaired short‐term memory in the novel object and passive avoidance tests. Taken together, our results indicate that alcohol causes deleterious effects in the adolescent brain which are distinct from those observed in adults. These data contribute to explain the greater sensitivity of the adolescent brain to alcohol toxicity.

  相似文献   


18.
Tamm-Horsfall protein (THP) is a glycoprotein expressed exclusively in thick ascending limbs (TAL) of the kidney. We recently described a novel protective role of THP against acute kidney injury (AKI) via downregulation of inflammation in the outer medulla. Our current study investigates the mechanistic relationships among the status of THP, inflammation, and tubular injury. Using an ischemia-reperfusion model in wild-type and THP-/- mice, we demonstrate that it is the S3 proximal segments but not the THP-deficient TAL that are the main targets of tubular injury during AKI. The injured S3 segments that are surrounded by neutrophils in THP-/- mice have marked overexpression of neutrophil chemoattractant MIP-2 compared with wild-type counterparts. Neutralizing macrophage inflammatory protein-2 (MIP-2) antibody rescues S3 segments from injury, decreases neutrophil infiltration, and improves kidney function in THP-/- mice. Furthermore, using immunofluorescence volumetric imaging of wild-type mouse kidneys, we show that ischemia alters the intracellular translocation of THP in the TAL cells by partially shifting it from its default apical surface domain to the basolateral domain, the latter being contiguous to the basolateral surface of S3 segments. Concomitant with this is the upregulation, in the basolateral surface of S3 segments, of the scavenger receptor SRB-1, a putative receptor for THP. We conclude that TAL affects the susceptibility of S3 segments to injury at least in part by regulating MIP-2 expression in a THP-dependent manner. Our findings raise the interesting possibility of a direct role of basolaterally released THP on regulating inflammation in S3 segments.  相似文献   

19.
Glucocorticoids have been proposed to be both adipogenic and lipolytic in action within adipose tissue, although it is unknown whether these actions can occur simultaneously. Here we investigate both the in vitro and in vivo effects of corticosterone (Cort) on adipose tissue metabolism. Cort increased 3T3-L1 preadipocyte differentiation in a concentration-dependent manner, but did not increase lipogenesis in adipocytes. Cort increased lipolysis within adipocytes in a concentration-dependent manner (maximum effect at 1-10 μM). Surprisingly, removal of Cort further increased lipolytic rates (~320% above control, P < 0.05), indicating a residual effect on basal lipolysis. mRNA and protein expression of adipose triglyceride lipase and phosphorylated status of hormone sensitive lipase (Ser563/Ser660) were increased with 48 h of Cort treatment. To test these responses in vivo, Sprague-Dawley rats were subcutaneously implanted with wax pellets with/without Cort (300 mg). After 10 days, adipose depots were removed and cultured ex vivo. Both free fatty acids and glycerol concentrations were elevated in fed and fasting conditions in Cort-treated rats. Despite increased lipolysis, Cort rats had more visceral adiposity than sham rats (10.2 vs. 6.9 g/kg body wt, P < 0.05). Visceral adipocytes from Cort rats were smaller and more numerous than those in sham rats, suggesting that adipogenesis occurred through preadipocyte differentiation rather than adipocyte hypertrophy. Visceral, but not subcutaneous, adipocyte cultures from Cort-treated rats displayed a 1.5-fold increase in basal lipolytic rates compared with sham rats (P < 0.05). Taken together, our findings demonstrate that chronic glucocorticoid exposure stimulates both lipolysis and adipogenesis in visceral adipose tissue but favors adipogenesis primarily through preadipocyte differentiation.  相似文献   

20.
Obesity is associated with an increased risk of infectious diseases. It has been shown to have deleterious effects on cell-mediated immunity, including reducing thymocyte numbers and altering responses of thymocytes to pathogens. In the current study, we examined the efficacy of the antiobesity phytochemical resveratrol in preventing the deleterious effects of a high-fat diet on thymic anatomy and function. Compared to C57Bl/6 male mice fed a low-fat diet, mice on a high-fat diet had a significant increase in thymic weight and lipid content, and a disrupted anatomy, including a reduction of the medullary compartment and absence of a corticomedullary junction. There were a decrease in thymic cellularity and mature T-cell output, and a disrupted T-cell maturation, as evidenced by increased double-negative and decreased single- and double-positive thymocytes. Mice that had been fed resveratrol along with a high-fat diet had a dose-dependent reversal in all these parameters. Western blots from thymi showed that obese mice had lower levels of the key stimulators of lipid metabolism, phospho-5′ adenosine monophosphate-activated protein kinase and its downstream target, carnitine palmitoyl transferase-1; this was restored to normal levels in resveratrol-fed mice. Resveratrol also reversed an increase in glycerol-3-phosphate acyltransferase-1, the enzyme that catalyzes the first step in triglycerol synthesis. Taken together, these results indicate that resveratrol is a potent inhibitor of the deleterious effects of diet-induced obesity on thymic anatomy and function, and this may hold promise in preventing obesity-related deficits in cell-mediated immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号