首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Age-related macular degeneration (AMD) can lead to irreversible central vision loss in the elderly. Although large number of growth factor pathways, including the vascular endothelial growth factor (VEGF), has been implicated in the pathogenesis of AMD, no study has directly assessed the whole proteomic composition in the aqueous humor (AH) among AMD patients. The AH contains proteins secreted from the anterior segment tissue, and these proteins may play an important role in the pathogenesis of AMD. Thus, comparisons between the AH proteomic profiles of AMD patients and non-AMD controls may lead to the verification of novel pathogenic proteins useful as potential clinical biomarkers. In this study, we used discovery-based proteomics and Multiple Reaction Monitoring Mass Spectrometry (MRM-MS) to analyze AH from AMD patients and AH from controls who underwent cataract surgery. A total of 154 proteins with at least two unique peptides were identified in the AH. Of these 154 proteins identified by discovery-based proteomics, 10 AH proteins were novel identifications. The protein composition in the AH was different between AMD patients and non-AMD controls. Subsequently, a systematic MRM-MS assay was performed in seven highly abundant differentially expressed proteins from these groups. Differential expression of three proteins was observed in the AH of AMD patients compared with that of cataract controls (p < 0.0312). Elucidation of the aqueous proteome will establish a foundation for protein function analysis and identify differentially expressed markers associated with AMD. This study demonstrates that integrated proteomic technologies can yield novel biomarkers to detect exudative AMD.  相似文献   

2.
Type 2 diabetes mellitus (T2DM) is the most prevalent and serious metabolic disease affecting people worldwide. T2DM results from insulin resistance of the liver, muscle, and adipose tissue. In this study, we used proteomic and bioinformatic methodologies to identify novel hepatic membrane proteins that are related to the development of hepatic insulin resistance, steatosis, and T2DM. Using FT‐ICR MS, we identified 95 significantly differentially expressed proteins in the membrane fraction of normal and T2DM db/db mouse liver. These proteins are primarily involved in energy metabolism pathways, molecular transport, and cellular signaling, and many of them have not previously been reported in diabetic studies. Bioinformatic analysis revealed that 16 proteins may be related to the regulation of insulin signaling in the liver. In addition, six proteins are associated with energy stress‐induced, nine proteins with inflammatory stress‐induced, and 14 proteins with endoplasmic reticulum stress‐induced hepatic insulin resistance. Moreover, we identified 19 proteins that may regulate hepatic insulin resistance in a c‐Jun amino‐terminal kinase‐dependent manner. In addition, three proteins, 14–3‐3 protein beta (YWHAB), Slc2a4 (GLUT4), and Dlg4 (PSD‐95), are discovered by comprehensive bioinformatic analysis, which have correlations with several proteins identified by proteomics approach. The newly identified proteins in T2DM should provide additional insight into the development and pathophysiology of hepatic steatosis and insulin resistance, and they may serve as useful diagnostic markers and/or therapeutic targets for these diseases.  相似文献   

3.
Antigenic peptide loading of classical major histocompatibility complex (MHC) class II molecules requires the exchange of the endogenous invariant chain fragment CLIP (class II associated Ii peptide) for peptides derived from antigenic proteins. This process is facilitated by the non-classical MHC class II molecule HLA-DM (DM) which catalyzes the removal of CLIP. Up to now it has been unclear whether DM releases self-peptides other than CLIP and thereby modifies the peptide repertoire presented to T cells. Here we report that DM can release a variety of peptides from HLA-DR molecules. DR molecules isolated from lymphoblastoid cell lines were found to carry a sizeable fraction of self-peptides that are sensitive to the action of DM. The structural basis for this DM sensitivity was elucidated by high-performance size exclusion chromatography and a novel mass spectrometry binding assay. The results demonstrate that the overall kinetic stability of a peptide bound to DR determines its sensitivity to removal by DM. We show that DM removes preferentially those peptides that contain at least one suboptimal side chain at one of their anchor positions or those that are shorter than 11 residues. These findings provide a rationale for the previously described ligand motifs and the minimal length requirements of naturally processed DR-associated self-peptides. Thus, in endosomal compartments, where peptide loading takes place, DM can function as a versatile peptide editor that selects for high-stability MHC class II-peptide complexes by kinetic proofreading before these complexes are presented to T cells.  相似文献   

4.
Quantitative proteomic methodologies allow profiling of hundreds to thousands of proteins in a high-throughput fashion. This approach is increasingly applied to cancer biomarker discovery to identify proteins that are differentially regulated in cancers. Fractionation of protein samples based on enrichment of cellular subproteomes prior to mass spectrometric analysis can provide increased coverage of certain classes of molecules. We used a membrane protein enrichment strategy coupled with 18O labeling based quantitative proteomics to identify proteins that are highly expressed in cholangiocarcinomas. In addition to identifying several proteins previously known to be overexpressed in cholangiocarcinoma, we discovered a number of molecules that were previously not associated with cholangiocarcinoma. Using immunoblotting and immunohistochemical labeling of tissue microarrays, we validated Golgi membrane protein 1, Annexin IV and Epidermal growth factor receptor pathway substrate 8 (EPS8) as candidate biomarkers for cholangiocarcinomas. Golgi membrane protein 1 was observed to be overexpressed in 89% of cholangiocarcinoma cases analyzed by staining tissue microarrays. In light of recent reports showing that Golgi membrane protein 1 is detectable in serum, further investigation into validation of this protein has the potential to provide a biomarker for early detection of cholangiocarcinomas.  相似文献   

5.
6.
为分析支气管上皮癌变进程中的差异表达蛋白质,筛选肺鳞癌早期诊断标志物,以人支气管上皮癌变各阶段组织为研究对象,先采用激光捕获显微切割技术(LCM) 纯化人正常支气管上皮组织、鳞状化生、不典型增生、原位癌、浸润性肺鳞癌组织,再用同位素标记相对和绝对定量 (iTRAQ) 技术结合二维液相色谱串联质谱(2D LC-MS/MS)鉴定支气管上皮癌变进程中各阶段的差异表达蛋白质。结果共鉴定了1036个蛋白质,筛选出102个与人支气管上皮癌变相关的差异蛋白质,在这些差异蛋白质中,有的在支气管上皮癌变过程中进行性上调,有的在支气管上皮癌变过程中进行性下调,有的呈阶段特异性改变;功能分析表明,这些差异蛋白质涉及代谢、细胞凋亡、增殖、分化、信号传导、转录、翻译、细胞粘附、免疫反应与发育等。Western blotting 及免疫组织化学技术验证了其中 2个差异蛋白(S100A9和 CKB) 的表达,证实了定量蛋白质组学结果的可靠性。研究结果提示:这些差异表达蛋白质与支气管上皮癌变相关,并可成为肺鳞癌的早期诊断标志物,进一步研究差异蛋白的生物学功能,将有助于阐明支气管上皮的癌变机制,从而为肺鳞癌的早期诊断与发病机制研究提供新思路。  相似文献   

7.
对蛋白质质谱数据进行数据库比对和鉴定是蛋白质组学研究技术中的一个重要步骤。由于公共数据库蛋白质数据信息不全,有些蛋白质质谱数据无法得到有效的鉴定。而利用相关物种的EST序列构建专门的质谱数据库则可以增加鉴定未知蛋白的几率。本文介绍了利用EST序列构建Mascot本地数据库的具体方法和步骤,扩展了Mascot检索引擎对蛋白质质谱数据的鉴定范围,从数据库层面提高了对未知蛋白的鉴别几率,为蛋白质组学研究提供了一种较为实用的生物信息学分析技术。  相似文献   

8.
Potato (Solanum tuberosum) presents a challenging organism for the genetic and molecular dissection of complex traits due to its tetraploidy and high heterozygosity. One such complex trait of high agronomic interest is the tuber susceptibility to bruising upon mechanical impact, which involves an enzymatic browning reaction. We have compared the tuber proteome of two groups of 10 potato cultivars differing in bruising susceptibility to (i) identify de novo proteins that contribute to bruising, based on differential protein expression, and (ii) validate these proteins by combining proteomics with association genetics. The comparison of 20 potato varieties yields insight into the high natural variation of tuber protein patterns due to genetic background. Seven genes or gene families were found that were both differentially expressed on the protein level between groups and for which DNA polymorphisms were associated with the investigated traits. A putative class III lipase was identified as a novel factor contributing to the natural variation of bruising. Additionally, tuber proteome changes triggered by mechanical impact, within and between groups, were monitored over time. Differentially expressed proteins were found, notably lipases, patatins, and annexins, showing remarkable time-dependent protein variation.  相似文献   

9.
Although recent studies have shown that several pro-inflammatory proteins can be used as biomarkers for atherosclerosis, the mechanism of atherogenesis is unclear and little information is available regarding proteins involved in development of the disease. Atherosclerotic tissue samples were collected from patients in order to identify the proteins involved in atherogenesis. The protein expression profile of atherosclerosis patients was analysed using two-dimensional electrophoresis-based proteomics. Thirty-nine proteins were detected that were differentially expressed in the atherosclerotic aorta compared with the normal aorta. Twenty-seven of these proteins were identified in the MS-FIT database. They are involved in a number of biological processes, including calcium-mediated processes, migration of vascular smooth muscle cells, matrix metalloproteinase activation and regulation of pro-inflammatory cytokines. Confirmation of differential protein expression was performed by Western blot analysis. Potential applications of the results include the identification and characterization of signalling pathways involved in atherogenesis, and further exploration of the role of selected identified proteins in atherosclerosis.  相似文献   

10.
Although doxorubicin (Doxo) and docetaxel (Docet) in combination are widely used in treatment regimens for a broad spectrum of breast cancer patients, a major obstacle has emerged in that some patients are intrinsically resistant to these chemotherapeutics. Our study aimed to discover potential prediction markers of drug resistance in needle-biopsied tissues of breast cancer patients prior to neoadjuvant chemotherapy. Tissues collected before chemotherapy were analyzed by mass spectrometry. A total of 2,331 proteins were identified and comparatively quantified between drug sensitive (DS) and drug resistant (DR) patient groups by spectral count. Of them, 298 proteins were differentially expressed by more than 1.5-fold. Some of the differentially expressed proteins (DEPs) were further confirmed by Western blotting. Bioinformatic analysis revealed that the DEPs were largely associated with drug metabolism, acute phase response signaling, and fatty acid elongation in mitochondria. Clinical validation of two selected proteins by immunohistochemistry found that FKBP4 and S100A9 might be putative prediction markers in discriminating the DR group from the DS group of breast cancer patients. The results demonstrate that a quantitative proteomics/bioinformatics approach is useful for discovering prediction markers of drug resistance, and possibly for the development of a new therapeutic strategy.  相似文献   

11.
Although recent studies have shown that several pro-inflammatory proteins can be used as biomarkers for atherosclerosis, the mechanism of atherogenesis is unclear and little information is available regarding proteins involved in development of the disease. Atherosclerotic tissue samples were collected from patients in order to identify the proteins involved in atherogenesis. The protein expression profile of atherosclerosis patients was analysed using two-dimensional electrophoresis-based proteomics. Thirty-nine proteins were detected that were differentially expressed in the atherosclerotic aorta compared with the normal aorta. Twenty-seven of these proteins were identified in the MS-FIT database. They are involved in a number of biological processes, including calcium-mediated processes, migration of vascular smooth muscle cells, matrix metalloproteinase activation and regulation of pro-inflammatory cytokines. Confirmation of differential protein expression was performed by Western blot analysis. Potential applications of the results include the identification and characterization of signalling pathways involved in atherogenesis, and further exploration of the role of selected identified proteins in atherosclerosis.  相似文献   

12.
Preeclampsia (PE) is one of the most significant pregnancy‐related hypertensive disorders. Currently, there are no useful markers to predict the onset of the condition in pregnant women. To provide further insights into the pathogenesis of PE and identify biomarkers of the condition, we used isobaric tags for relative and absolute quantitation (iTRAQ) proteomics coupled with 2‐D LC‐MS/MS, to analyze urinary protein profiles from 7 PE patients and 7 normotensive pregnant women. A total of 294 proteins were abnormally expressed in PE patients. Of these, 233 were significantly down‐regulated and 61 proteins were significantly up‐regulated. Bioinformatics analysis using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database, found that the most differentially expressed proteins (DEPs) were involved in coagulation and complement pathways, the renin‐angiotensin system and cell adhesion molecules (CAMs) pathways. We further validated three of the DEPs, including serotransferrin (TF) and complement factor B (CFB) by immunoblottingand serum paraoxonase/arylesterase 1 (PON1) by ELISA using 14 pairs of urine samples from PE patients and normal pregnant women. Taken together, our results provide the basis for further understanding the pathogenesis of PE and identifying predictive biomarkers.  相似文献   

13.
Chromosome‐centric Human Proteome Project aims at identifying and characterizing protein products encoded from all human protein‐coding genes. As of early 2017, 19 837 protein‐coding genes have been annotated in the neXtProt database including 2691 missing proteins that have never been identified by mass spectrometry. Missing proteins may be low abundant in many cell types or expressed only in a few cell types in human body such as sperms in testis. In this study, we performed expression proteomics of two near‐haploid cell types such as HAP1 and KBM‐7 to hunt for missing proteins. Proteomes from the two haploid cell lines were analyzed on an LTQ Orbitrap Velos, producing a total of 200 raw mass spectrometry files. After applying 1% false discovery rates at both levels of peptide‐spectrum matches and proteins, more than 10 000 proteins were identified from HAP1 and KBM‐7, resulting in the identification of nine missing proteins. Next, unmatched spectra were searched against protein databases translated in three frames from noncoding RNAs derived from RNA‐Seq data, resulting in six novel protein‐coding regions after careful manual inspection. This study demonstrates that expression proteomics coupled to proteogenomic analysis can be employed to identify many annotated and unannotated missing proteins.  相似文献   

14.
Wu J  Lin Q  Lim TK  Liu T  Hew CL 《Journal of virology》2007,81(21):11681-11689
Shrimp subcuticular epithelial cells are the initial and major targets of white spot syndrome virus (WSSV) infection. Proteomic studies of WSSV-infected subcuticular epithelium of Penaeus monodon were performed through two approaches, namely, subcellular fractionation coupled with shotgun proteomics to identify viral and host proteins and a quantitative time course proteomic analysis using cleavable isotope-coded affinity tags (cICATs) to identify differentially expressed cellular proteins. Peptides were analyzed by offline coupling of two-dimensional liquid chromatography with matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry. We identified 27, 20, and 4 WSSV proteins from cytosolic, nuclear, and membrane fractions, respectively. Twenty-eight unique WSSV proteins with high confidence (total ion confidence interval percentage [CI%], >95%) were observed, 11 of which are reported here for the first time, and 3 of these novel proteins were shown to be viral nonstructural proteins by Western blotting analysis. A first shrimp protein data set containing 1,999 peptides (ion score, > or =20) and 429 proteins (total ion score CI%, >95%) was constructed via shotgun proteomics. We also identified 10 down-regulated proteins and 2 up-regulated proteins from the shrimp epithelial lysate via cICAT analysis. This is the first comprehensive study of WSSV-infected epithelia by proteomics. The 11 novel viral proteins represent the latest addition to our knowledge of the WSSV proteome. Three proteomic data sets consisting of WSSV proteins, epithelial cellular proteins, and differentially expressed cellular proteins generated in the course of WSSV infection provide a new resource for further study of WSSV-shrimp interactions.  相似文献   

15.
16.
The study of complex biological questions through comparative proteomics is becoming increasingly attractive to plant biologists as the rapidly expanding plant genomic and expressed sequence tag databases provide improved opportunities for protein identification. This review focuses on practical issues associated with comparative proteomic analysis, including the challenges of effective protein extraction and separation from plant tissues, the pros and cons of two-dimensional gel-based analysis and the problems of identifying proteins from species that are not recognized models for functional genomic studies. Specific points are illustrated using data from an ongoing study of the tomato and pepper fruit proteomes.  相似文献   

17.
Wu  Liwen  Peng  Jing  Wei  Chaoping  Liu  Gu  Wang  Guoli  Li  Kongzhao  Yin  Fei 《Amino acids》2011,40(1):221-238
The objective of the study was to explore the pathogenesis of mesial temporal lobe epilepsy (MTLE) and the mechanism of valproate administration in the early stage of MTLE development. We performed a global comparative analysis and function classification of differentially expressed proteins using proteomics. MTLE models of developmental rats were induced by lithium-pilocarpine. Proteins in the hippocampus were separated by 2-DE technology. PDQuest software was used to analyze 2-DE images, and MALDI-TOF-MS was used to identify the differentially expressed proteins. Western blot was used to determine the differential expression levels of synapse-related proteins synapsin-1, dynamin-1 and neurogranin in both MTLE rat and human hippocampus. A total of 48 differentially expressed proteins were identified between spontaneous and non-spontaneous MTLE rats, while 41 proteins between MTLE rats and post valproate-treatment rats were identified. All of the proteins can be categorized into several groups by biological functions: synaptic and neurotransmitter release, cytoskeletal structure and dynamics, cell junctions, energy metabolism and mitochondrial function, molecular chaperones, signal regulation and others. Western blot results were similar to the changes noted in 2-DE. The differentially expressed proteins, especially the proteins related to synaptic and neurotransmitter release function, such as synapsin-1, dynamin-1 and neurogranin, are probably involved in the mechanism of MTLE and the pharmacological effect of valproate. These findings may provide important clues to elucidate the mechanism of chronic MTLE and to identify an optimum medication intervention time and new biomarkers for the development of pharmacological therapies targeted at epilepsy.  相似文献   

18.
Kim MS  Gu BH  Song S  Choi BC  Cha DH  Baek KH 《Molecular bioSystems》2011,7(5):1430-1440
Recurrent pregnancy loss (RPL) is defined as at least three pregnancy losses in series prior to the 20-28 weeks of pregnancy. There are several etiological factors associated with immunology, anatomy, endocrinology, genetic, infection, chromosomal abnormalities, and environmental factors contributing to the condition. The aim of this study was to identify RPL associated factors in human blood using proteomics. Since it is difficult to obtain tissues or follicular fluids, we used blood samples from normal and RPL patients to conduct a comparative proteomic study. Three RPL blood samples and one cocktailed blood sample from 3 normal women were used. We performed 2-DE and selected spots were analyzed with MALDI-TOF/MS. In the three RPL blood samples, 2-DE analysis revealed 549, 563 and 533 spots to be differentially expressed, respectively. Through a comparative analysis between the control and RPL, 21 spots were shown to be differentially expressed. Of these, 5 proteins were confirmed by Western blot analysis. One of these proteins, ITI-H4 (inter-α trypsin inhibitor-heavy chain 4), was weakly expressed at a molecular weight of 120 kDa, but was highly expressed at a modified molecular weight of 36 kDa in RPL patients. These findings suggest that ITI-H4 expression may be used as a biomarker, which could facilitate the development of novel diagnostic and therapeutic tools.  相似文献   

19.
In the postgenome era, the analysis of entire subproteomes in correlation with their function has emerged due to high throughput technologies. Early approaches have been initiated to identify novel components of the circadian system. For example, in the marine dinoflagellate Lingulodinium polyedra, a chronobiological proteome assay was performed, which resulted in the identification of already known circadian expressed proteins as well as novel temporal controlled proteins involved in metabolic pathways. In the green alga Chlamydomonas reinhardtii, two circadian expressed proteins (a protein disulfide isomerase and a tetratricopeptide repeat protein) were identified by functional proteomics. Also, the first hints of temporal control within chloroplast proteins of Arabidopsis thaliana were identified by proteome analysis.  相似文献   

20.
Susceptibility to stress plays a crucial role in the development of psychiatric disorders such as unipolar depression and post-traumatic stress disorder. In the present study the chronic mild stress rat model of depression was used to reveal stress-susceptible and stress-resilient rats. Large-scale proteomics was used to map hippocampal protein alterations in different stress states. Membrane proteins were successfully captured by two-phase separation and peptide based proteomics. Using iTRAQ labeling coupled with mass spectrometry, more than 2000 proteins were quantified and 73 proteins were found to be differentially expressed. Stress susceptibility was associated with increased expression of a sodium-channel protein (SCN9A) currently investigated as a potential antidepressant target. Differential protein profiling also indicated stress susceptibility to be associated with deficits in synaptic vesicle release involving SNCA, SYN-1, and AP-3. Our results indicate that increased oxidative phosphorylation (COX5A, NDUFB7, NDUFS8, COX5B, and UQCRB) within the hippocampal CA regions is part of a stress-protection mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号