首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Patients with acute kidney injury (AKI) have increased serum proinflammatory cytokines and an increased occurrence of respiratory complications. The aim of the present study was to examine the effect of renal and extrarenal cytokine production on AKI-mediated lung injury in mice. C57Bl/6 mice underwent sham surgery, splenectomy, ischemic AKI, or ischemic AKI with splenectomy and kidney, spleen, and liver cytokine mRNA, serum cytokines, and lung injury were examined. The proinflammatory cytokines IL-6, CXCL1, IL-1β, and TNF-α were increased in the kidney, spleen, and liver within 6 h of ischemic AKI. Since splenic proinflammatory cytokines were increased, we hypothesized that splenectomy would protect against AKI-mediated lung injury. On the contrary, splenectomy with AKI resulted in increased serum IL-6 and worse lung injury as judged by increased lung capillary leak, higher lung myeloperoxidase activity, and higher lung CXCL1 vs. AKI alone. Splenectomy itself was not associated with increased serum IL-6 or lung injury vs. sham. To investigate the mechanism of the increased proinflammatory response, splenic production of the anti-inflammatory cytokine IL-10 was determined and was markedly upregulated. To confirm that splenic IL-10 downregulates the proinflammatory response of AKI, IL-10 was administered to splenectomized mice with AKI, which reduced serum IL-6 and improved lung injury. Our data demonstrate that AKI in the absence of a counter anti-inflammatory response by splenic IL-10 production results in an exuberant proinflammatory response and lung injury.  相似文献   

2.
3.
《遗传学报》2021,48(5):403-410
The UFMylation modification is a novel ubiquitin-like conjugation system, consisting of UBA5(E1), UFC1(E2), UFL1(E3), and the conjugating molecule UFM1. Deficiency in this modification leads to embryonic lethality in mice and diseases in humans. However, the function of UFL1 is poorly characterized. Studies on Ufl1 conditional knockout mice have demonstrated that the deletion of Ufl1 in cardiomyocytes and in intestinal epithelial cells causes heart failure and increases susceptibility to experimentally induced colitis,respectively, suggesting an essential role of UFL1 in the maintenance of the homeostasis in these organs.Yet, its physiological function in other tissues and organs remains completely unknown. In this study, we generate the nephron tubules specific Ufl1 knockout mice and find that the absence of Ufl1 in renal tubular results in kidney atrophy and interstitial fibrosis. In addition, Ufl1 deficiency causes the activation of unfolded protein response and cell apoptosis, which may be responsible for the kidney atrophy and interstitial fibrosis. Collectively, our results have demonstrated the crucial role of UFL1 in regulating kidney function and maintenance of endoplasmic reticulum homeostasis, providing another layer of understanding kidney atrophy.  相似文献   

4.
5.
Contrast-induced acute kidney injury (CI-AKI) is the common hospitalized acute kidney injury (AKI). However, the diagnosis by serum creatinine might not be early enough. Currently, the roles of circulating mitochondria in CI-AKI are still unclear. Since early detection is crucial for treatment, the association between circulating mitochondrial function and CI-AKI was tested as a potential biomarker for detection of CI-AKI. Twenty patients with chronic kidney disease (CKD) undergoing percutaneous coronary intervention (PCI) were enrolled. Blood and urine samples were obtained at the time of PCI, and 6, 24, 48 and 72 h after PCI. Plasma and urine neutrophil gelatinase-associated lipocalin (NGAL) were measured. Oxidative stress, inflammation, mitochondrial function, mitochondrial dynamics and cell death were determined from peripheral blood mononuclear cells. Forty percent of patients developed AKI. Plasma NGAL levels increased after 24 h after receiving contrast media. Cellular and mitochondrial oxidative stress, mitochondrial dysfunction and decreased mitochondrial fusion occurred at 6 h following contrast media exposure. Subgroup of AKI had higher %necroptosis cells and TNF-α mRNA expression than subgroup without AKI. Collectively, circulating mitochondrial dysfunction could be an early predictive biomarker for CI-AKI in CKD patients receiving contrast media. These findings provide novel strategies to prevent CI-AKI according to its pathophysiology.  相似文献   

6.
7.
De novo CD44 and ligand expression at wound margins accompanies cellular proliferation and migration that effect repair of injured mucosal and vascular endothelial tissues. To determine whether CD44 could play a role in recovery from acute ischemic renal injury, we characterized its renal expression and those of two of its ligands, hyaluronic acid and osteopontin. Although no expression is detectable in nonischemic kidneys, several mRNAs for CD44 are present within 1 day after injury. CD44 mRNA is expressed in proximal tubules undergoing repair. CD44 peptide is present in basal and lateral cell membranes. Hyaluronic acid is normally expressed in the interstitium of the renal papilla only. By 1 day postischemia, hyaluronic acid can be detected, in addition, in the interstitium surrounding regenerating tubules. Osteopontin, not normally expressed in the renal proximal tubule, is expressed in regenerating tubules by 3 days after induction of acute ischemic injury. Immunoreactive osteopontin peptide continues to be localized in those tubules still undergoing repair for as long as 7 days after the injury. Our data are consistent with a role for CD44-ligand interactions in the regenerating proximal tubule participating in the process of recovery after ischemic injury.  相似文献   

8.
9.
10.
Acute kidney injury (AKI), caused by various stimuli including ischemia reperfusion, nephrotoxic insult, and sepsis, is characterized by abrupt decline of kidney function. Till now, the molecular mechanisms for AKI have not been fully explored and the effective therapies are still lacking. Noncoding RNAs (ncRNAs), a group of biomolecules function at RNA level, are involved in a wide range of physiopathological processes including AKI. MicroRNAs (miRNAs) are the most extensively studied ncRNAs in AKI. Evidence indicated that miRNAs are altered significantly in various types of AKI. Gain-and-loss-of-function studies demonstrated that miRNAs, such as miR-24, miR-126, miR-494, and miR-687, may bind to the 3′-untranslated region of their target genes to regulate inflammation, programmed cell death, and cell cycle in the injury and repair stages of AKI, indicating their therapeutic potential in AKI. In contrast, functions of long noncoding RNAs and circular RNAs in AKI are hot topics but still largely unknown. Additionally, ncRNAs packaged in exosome can be detected in circulation and urine, they may serve as specific biomarkers for AKI. This review summarized the alteration and functional role of ncRNAs and their therapeutic potential in AKI.  相似文献   

11.
Dimentions of the renal corpuscle, proximal and distal convoluted tubules have been studied in the dog kidney, normal and the morphofunctional state of the organ after cutting and ligation of its different lymphatic vessels (4 series of experiments in 158 dogs). The observations have been performed in 0.5, 1, 3, 10-160 days of the experiments. Histological, histochemical and morphometrical methods have been applied; the residual nitrogen in blood has been determined. During early stages, disturbances in the pathways of lymph outflow result in development of edema and albumin saturation of interstitium. granular distrophy of convoluted tubules epithelium in the kidneys. In 40-160 days stromal diffuse sclerosis of the medullary substance develops. The changes described and deterioration of the nitrogen-excretory function of the organ are especially pronounced after the disturbance in the pathways of lymph outflow are combined with a simultaneous extirpation of the contralateral kidney. Under these conditions the processes of the renal compensatory hypertrophy slow down. The morphofunctional changes after the disturbance in the pathways of lymph outflow from the compensatory hypertrophied kidney are the least pronounced.  相似文献   

12.
Acute kidney injury (AKI) is a major public health problem with high incidence and mortality. As a form of programmed cell death (PCD), ferroptosis could be considered as a process of iron accumulation and enhanced lipid peroxidation. Recently, the fundamental roles of ferroptosis in AKI have attracted much attention. The network mechanism of ferroptosis in AKI and its roles in the AKI to chronic kidney disease (CKD) transition is complicated and multifactorial. Strategies targeting ferroptosis show great potential. Here, we review the research progress on ferroptosis and its participation in AKI. We hope that this work will provide clues for further studies of ferroptosis in AKI.Subject terms: Acute kidney injury, Cell death  相似文献   

13.
Serum IL-6 is increased in patients with acute kidney injury (AKI) and is associated with prolonged mechanical ventilation and increased mortality. Inhibition of IL-6 in mice with AKI reduces lung injury associated with a reduction in the chemokine CXCL1 and lung neutrophils. Whether circulating IL-6 or locally produced lung IL-6 mediates lung injury after AKI is unknown. We hypothesized that circulating IL-6 mediates lung injury after AKI by increasing lung endothelial CXCL1 production and subsequent neutrophil infiltration. To test the role of circulating IL-6 in AKI-mediated lung injury, recombinant murine IL-6 was administered to IL-6-deficient mice. To test the role of CXCL1 in AKI-mediated lung injury, CXCL1 was inhibited by use of CXCR2-deficient mice and anti-CXCL1 antibodies in mice with ischemic AKI or bilateral nephrectomy. Injection of recombinant IL-6 to IL-6-deficient mice with AKI increased lung CXCL1 and lung neutrophils. Lung endothelial CXCL1 was increased after AKI. CXCR2-deficient and CXCL1 antibody-treated mice with ischemic AKI or bilateral nephrectomy had reduced lung neutrophil content. In summary, we demonstrate for the first time that circulating IL-6 is a mediator of lung inflammation and injury after AKI. Since serum IL-6 is increased in patients with either AKI or acute lung injury and predicts prolonged mechanical ventilation and increased mortality in both conditions, our data suggest that serum IL-6 is not simply a biomarker of poor outcomes but a pathogenic mediator of lung injury.  相似文献   

14.
15.
Activation of either the A(1) or the A(3) adenosine receptor (A(1)R or A(3)R, respectively) elicits delayed cardioprotection against infarction, ischemia, and hypoxia. Mitochondrial contribution to the progression of cardiomyocyte injury is well known; however, the protective effects of adenosine receptor activation in cardiac cells with a respiratory chain deficiency are poorly elucidated. The aim of our study was to further define the role of A(1)R and A(3)R activation on functional tolerance after inhibition of the terminal link of the mitochondrial respiratory chain with sodium azide, in a state of normoxia or hypoxia, compared with the effects of the mitochondrial ATP-sensitive K(+) channel opener diazoxide. Treatment with 10 mM sodium azide for 2 h in normoxia caused a considerable decrease in the total ATP level; however, activation of adenosine receptors significantly attenuated this decrease. Diazoxide (100 muM) was less effective in protection. During treatment of cultured cardiomyocytes with hypoxia in the presence of 1 mM sodium azide, the A(1)R agonist 2-chloro-N(6)-cyclopentyladenosine was ineffective, whereas the A(3)R agonist 2-chloro-N(6)-iodobenzyl-5'-N-methylcarboxamidoadenosine (Cl-IB-MECA) attenuated the decrease in ATP level and prevented cell injury. Cl-IB-MECA delayed the dissipation in the mitochondrial membrane potential during hypoxia in cells impaired in the mitochondrial respiratory chain. In cells with elevated intracellular Ca(2+) concentration after hypoxia and treatment with NaN(3) or after application of high doses of NaN(3), Cl-IB-MECA immediately decreased the elevated intracellular Ca(2+) concentration toward the diastolic control level. The A(1)R agonist was ineffective. This may be especially important for the development of effective pharmacological agents, because mitochondrial dysfunction is a leading factor in the pathophysiological cascade of heart disease.  相似文献   

16.
《Phytomedicine》2015,22(9):787-795
IntroductionAcute kidney injury (AKI) remains a great problem in clinical practice. Renal ischemia/reperfusion (I/R) injury is a complex pathophysiological process. Propolis is a natural polyphenol-rich resinous substance collected by honeybees from a variety of plant sources that has anti-inflammatory and anti-oxidative properties. Red propolis (RP) protection in renal I/R injury was investigated.MethodsMale Wistar rats underwent unilateral nephrectomy and contralateral renal I/R (60 min). Rats were divided into four groups: (1) sham group, (2) RP group (sham-operated rats treated with RP), 3) IR group (rats submitted to ischemia) and (4) IR-RP (rats treated with RP before ischemia). At 48 h after reperfusion, renal function was assessed and kidneys were removed for analysis.ResultsI/R increased plasma levels of creatinine and reduced creatinine clearance (CrCl), and RP provided protection against this renal injury. Red propolis significantly improves oxidative stress parameters when compared with the IR group. Semiquantitative assessment of the histological lesions showed marked structural damage in I/R rats compared with the IR-RP rats. RP attenuates I/R-induced endothelial nitric oxide-synthase down regulation and increased heme-oxygenase expression in renal tissue.ConclusionRed propolis protects kidney against acute ischemic renal failure and this protection is associated with reduced oxidative stress and eNOS and heme-oxygenase up regulation.  相似文献   

17.
Mitochondrial matrix cyclophilin D (CyPD) is known to promote development of the mitochondrial permeability transition (MPT). Kidney proximal tubule cells are especially prone to deleterious effects of mitochondrial damage because of their dependence on oxidative mitochondrial metabolism for ATP production. To clarify the role of CyPD and the MPT in proximal tubule injury during ischemia-reperfusion (I/R) and hypoxia-reoxygenation (H/R), we assessed freshly isolated tubules and in vivo injury in wild-type (WT) and Ppif(-/-) CyPD-null mice. Isolated mouse tubules developed a sustained, nonesterified fatty acid-mediated energetic deficit after H/R in vitro that could be substantially reversed by delipidated albumin and supplemental citric acid cycle substrates but was not modified by the absence of CyPD. Susceptibility of WT and Ppif(-/-) tubules to the MPT was increased by H/R but was less in normoxic and H/R Ppif(-/-) than WT tubules. Correction of the energetic deficit that developed during H/R strongly increased resistance to the MPT. Ppif(-/-) mice were resistant to I/R injury in vivo spanning a wide range of severity. The data clarify involvement of the MPT in oxygen deprivation-induced tubule cell injury by showing that the MPT does not contribute to the initial bioenergetic deficit produced by H/R but the deficit predisposes to subsequent development of the MPT, which contributes pathogenically to kidney I/R injury in vivo.  相似文献   

18.
Recently, latent transforming growth factor beta binding protein 4 (LTBP4) was implicated in the pathogenesis of renal damage through its modulation of mitochondrial dynamics. The seminal article written by Su et al. entitled “LTBP4 (Latent Transforming Growth Factor Beta Binding Protein 4) Protects Against Renal Fibrosis via Mitochondrial and Vascular Impacts” uncovers LTBP4's renoprotective role against acute kidney injury via modulating mitochondrial dynamics. Recently, LTBP4 has emerged as a driver in the mitochondrial-dependent modulation of age-related organ pathologies. This article aims to expand our understanding of LTBP4's diverse roles in these diseases in the context of these recent findings.  相似文献   

19.
20.
Andrew J. Ghio 《Biometals》2016,29(5):751-779
Over several decades, asthma has evolved from being recognized as a single disease to include a diverse group of phenotypes with dissimilar natural histories, pathophysiologies, responses to treatment, and distinctive molecular pathways. With the application of Occam’s razor to asthma, it is proposed that there is one cause underlying the numerous phenotypes of this disease and that the responsible molecular pathway is a deficiency of iron in the lung tissues. This deficiency can be either absolute (e.g. asthma in the neonate and during both pregnancy and menstruation) or functional (e.g. asthma associated with infections, smoking, and obesity). Comparable associations between asthma co-morbidity (e.g. eczema, urticaria, restless leg syndrome, and pulmonary hypertension) with iron deficiency support such a shared mechanistic pathway. Therapies directed at asthma demonstrate a capacity to impact iron homeostasis, further strengthening the relationship. Finally, pathophysiologic events producing asthma, including inflammation, increases in Th2 cells, and muscle contraction, can correlate with iron availability. Recognition of a potential association between asthma and an absolute and/or functional iron deficiency suggests specific therapeutic interventions including inhaled iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号