首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fine regulation of water reabsorption by the antidiuretic hormone [8-arginine]vasopressin (AVP) occurs in principal cells of the collecting duct and is largely dependent on regulation of the aquaporin-2 (AQP2) water channel. AVP-inducible long term AQP2 expression was investigated in immortalized mouse cortical collecting duct principal cells. Combined RNase protection assay, Western blot, and immunofluorescence analyses revealed that physiological concentrations of AVP added to the basal side, but not to the apical side, of cells grown on filters induced both AQP2 mRNA and apical protein expression. The stimulatory effect of AVP on AQP2 expression followed a V(2) receptor-dependent pathway because [deamino-8-d-arginine]vasopressin (dDAVP), a specific V(2) receptor agonist, produced the same effect as AVP, whereas the V(2) antagonist SR121463B antagonized action of both AVP and dDAVP. Moreover, forskolin and cyclic 8-bromo-AMP fully reproduced the effects of AVP on AQP2 expression. Analysis of protein degradation pathways showed that inhibition of proteasomal activity prevented synthesis of AVP-inducible AQP2 mRNA and protein. Once synthesized, AQP2 protein was quickly degraded, a process that involves both the proteasomal and lysosomal pathways. This is the first study that delineates induction and degradation mechanisms of AQP2 endogenously expressed by a renal collecting duct principal cell line.  相似文献   

2.
Arginine vasopressin (AVP) plays a major role in the modulation of water reabsorption in mammalian kidney. In addition to short-term regulation of aquaporin 2 (AQP2) trafficking, AVP also has long-term effects to regulate the expression of AQP2 in renal collecting duct. However, the detailed mechanism of the long-term effects of AVP in kidney remains to be elucidated. We have searched for genes induced by AVP using the polymerase chain reaction-based suppression subtractive hybridization technique in AVP-responsive AQP2-transfected MDCK cells. We found that the expression of the genes such as VIP17/MAL, annexin II, stimulatory GTP binding protein, tubulin, and mitochondrial ATP synthase was induced by AVP treatment for 4h. These results suggest that AVP might induce the expression of several genes related to the apical targeting of newly synthesized AQP2 as well as that of AQP2 for the long-term modification of water permeability in renal collecting duct.  相似文献   

3.
Y Terashima  K Kondo  Y Oiso 《Life sciences》1999,64(16):1447-1453
Oxytocin (OT) binds to the vasopressin V2 receptor (V2R) because of its structural similarity to arginine vasopressin (AVP). Though the affinity of OT for V2R is low, it is known that OT causes antidiuresis. To clarify the effect of OT as an agonist of V2R, we investigated the influence of acute elevation of plasma OT levels on the rat mRNA expression of V2R and aquaporin-2 (AQP2), the water channel regulated by V2R. The plasma OT level increased from 11.1+/-1.6 pg/ml to 331.0+/-67.9 pg/ml by 1 h after subcutaneousinjection of 20 microg OT. V2R mRNA expression decreased to 68.3+/-4.1% of the control at 3 h, and AQP2 mRNA expression increased to 239.3+/-26.8% of the control at 6 h. The plasma AVP level did not change significantly during the experiment. The influence of a subcutaneous injection of 20 microg OT on V2R and AQP2 mRNA expression is comparable to that of 10 microg AVP that we documented in the previous study. In conclusion, OT can downregulate V2R mRNA expression and upregulate AQP2 mRNA expression in the collecting duct as an agonist of the V2R like AVP.  相似文献   

4.
In mammals, the regulation of water homeostasis is mediated by the aquaporin-1 (AQP1) water channel, which localizes to the basolateral and apical membranes of the early nephron segment, and AQP2, which is translocated from intracellular vesicles to the apical membrane of collecting duct cells after vasopressin stimulation. Because a similar localization and regulation are observed in transfected Madin-Darby Canine Kidney (MDCK) cells, we investigated which segments of AQP2 are important for its routing to forskolin-sensitive vesicles and the apical membrane through analysis of AQP1-AQP2 chimeras. AQP1 with the entire COOH tail of AQP2 was constitutively localized in the apical membrane, whereas chimeras with shorter COOH tail segments of AQP2 were localized in the apical and basolateral membrane. AQP1 with the NH2 tail of AQP2 was constitutively localized in both plasma membranes, whereas AQP1 with the NH2 and COOH tail of AQP2 was sorted to intracellular vesicles and translocated to the apical membrane with forskolin. These data indicate that region N220-S229 is essential for localization of AQP2 in the apical membrane and that the NH2 and COOH tail of AQP2 are essential for trafficking of AQP2 to intracellular vesicles and its shuttling to and from the apical membrane. routing signals; chimera; Madin-Darby canine kidney cells; regulated trafficking  相似文献   

5.
BACKGROUND INFORMATION: Aquaporin 2 (AQP2) plays an important, VP (vasopressin)-regulated role in water reabsorption by the kidney. The amount of AQP2 expressed at the surface of principal cells results from an equilibrium between the AQP2 in intracellular vesicles and the AQP2 on the plasma membrane. VP shifts the equilibrium in favour of the plasma membrane and this allows osmotic equilibration to occur between the collecting duct lumen and the interstitial space. Membrane accumulation of AQP2 could result from a VP-induced increase in exocytosis, a decrease in endocytosis, or both. In the present study, we further investigated AQP2 accumulation at the cell surface, and compared it with V2R (VP type 2 receptor) trafficking using cells that express epitope-tagged AQP2 and V2R. RESULTS: Endocytosis of V2R and of AQP2 are independent events that can be separated temporally and spatially. The burst of endocytosis seen after VP addition to target cells, when AQP2 accumulates at the cell surface, is primarily due to internalization of the V2R. Increased endocytosis is not induced by forskolin, which also induces membrane accumulation of AQP2 by direct stimulation of adenylate cyclase. This indicates that cAMP elevation is not the primary cause of the initial, VP-induced endocytic process. After VP exposure, AQP2 is not located in endosomes with internalized V2R. Instead, it remains at the cell surface in 'endocytosis-resistant' membrane domains, visualized by confocal imaging. After VP washout, AQP2 is progressively internalized with the fluid-phase marker FITC-dextran, indicating that VP washout releases an endocytotic block that maintains AQP2 at the cell surface. Finally, polarized application of VP to filter-grown cells shows that apical VP can induce basolateral endocytosis and V2R down-regulation, and vice versa. CONCLUSIONS: After VP stimulation of renal epithelial cells, AQP2 accumulates at the cell surface, while the V2R is actively internalized. This endocytotic block may involve a reduced capacity of phosphorylated AQP2 to interact with components of the endocytotic machinery. In addition, a complex cross-talk exists between the apical and basolateral plasma-membrane domains with respect to endocytosis and V2R down-regulation. This may be of physiological significance in down-regulating the VP response in the kidney in vivo.  相似文献   

6.
ANG II plays a major role in renal water and sodium regulation. In the immortalized mouse renal collecting duct principal cells (mpkCCD(cl4)) cell line, we treated cells with ANG II and examined aquaporin-2 (AQP2) protein expression, trafficking, and mRNA levels, by immunoblotting, immunofluorescence, and RT-PCR. After 24-h incubation, ANG II-induced AQP2 protein expression was observed at the concentration of 10(-10) M and increased in a dose-dependent manner. ANG II (10(-7) M) increased AQP2 protein expression and mRNA levels at 0.5, 1, 2, 6, and 24 h. Immunofluorescence studies showed that ANG II increased the apical membrane targeting of AQP2 from 30 min to 6 h. Next, the signaling pathways underlying the ANG II-induced AQP2 expression were investigated. The PKC inhibitor Ro 31-8220 (5 × 10(-6) M) and the PKA inhibitor H89 (10(-5) M) blocked ANG II-induced AQP2 expression, respectively. Calmodulin inhibitor W-7 markedly reduced ANG II- and/or dDAVP-stimulated AQP2 expression. ANG II (10(-9) M) and/or dDAVP (10(-10) M) stimulated AQP2 protein levels and cAMP accumulation, which was completely blocked by pretreatment with the vasopressin V2 receptor (V2R) antagonist SR121463B (10(-8) M). Pretreatment with the angiotensin AT(1) receptor (AT1R) antagonist losartan (3 × 10(-6) M) blocked ANG II (10(-9) M)-stimulated AQP2 protein expression and cAMP accumulation, and partially blocked dDAVP (10(-10) M)- and dDAVP+ANG II-induced AQP2 protein expression and cAMP accumulation. In conclusion, ANG II regulates AQP2 protein, trafficking, and gene expression in renal collecting duct principal cells. ANG II-induced AQP2 expression involves cAMP, PKC, PKA, and calmodulin signaling pathways via V2 and AT(1) receptors.  相似文献   

7.
One mechanism proposed for reducing the risk of calcium renal stones is activation of the calcium-sensing receptor (CaR) on the apical membranes of collecting duct principal cells by high luminal calcium. This would reduce the abundance of aquaporin-2 (AQP2) and in turn the rate of water reabsorption. While evidence in cells and in hypercalciuric animal models supports this hypothesis, the relevance of the interplay between the CaR and AQP2 in humans is not clear. This paper reports for the first time a detailed correlation between urinary AQP2 excretion under acute vasopressin action (DDAVP treatment) in hypercalciuric subjects and in parallel analyzes AQP2-CaR crosstalk in a mouse collecting duct cell line (MCD4) expressing endogenous and functional CaR. In normocalciurics, DDAVP administration resulted in a significant increase in AQP2 excretion paralleled by an increase in urinary osmolality indicating a physiological response to DDAVP. In contrast, in hypercalciurics, baseline AQP2 excretion was high and did not significantly increase after DDAVP. Moreover DDAVP treatment was accompanied by a less pronounced increase in urinary osmolality. These data indicate reduced urinary concentrating ability in response to vasopressin in hypercalciurics. Consistent with these results, biotinylation experiments in MCD4 cells revealed that membrane AQP2 expression in unstimulated cells exposed to CaR agonists was higher than in control cells and did not increase significantly in response to short term exposure to forskolin (FK). Interestingly, we found that CaR activation by specific agonists reduced the increase in cAMP and prevented any reduction in Rho activity in response to FK, two crucial pathways for AQP2 translocation. These data support the hypothesis that CaR-AQP2 interplay represents an internal renal defense to mitigate the effects of hypercalciuria on the risk of calcium precipitation during antidiuresis. This mechanism and possibly reduced medulla tonicity may explain the lower concentrating ability observed in hypercalciuric patients.  相似文献   

8.
Aquaporin (AQP)5, an exocrine-type water channel, was detected in the rat duodenum by Western blot analysis, and was localized by immunohistochemistry in the secretory granule membranes as well as in the apical and lateral aspects of the plasma membrane of Brunner's gland cells. Incubation of duodenal slices with vasoactive intestinal polypeptide (VIP) in vitro significantly increased the amount of AQP5 in the apical membrane fraction in a dose- and time-dependent manner with the amount reaching a plateau at 100 nM VIP and becoming near maximal after a 30-s incubation. Protein kinase inhibitors, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7, 50 muM), and N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89; PKA-specific, 1 muM) blocked this increase, but PKC-specific inhibitor calphostin C did not, implying the involvement of PKA but not PKC in this cellular event. Intravenous injection with VIP (40 mug/kg body wt) provoked dilation of the lumen of the Brunner's gland at 2 and 7 min and increased the staining intensity of AQP5 in the apical and lateral membranes. AQP1 (both nonglycosylated and glycosylated forms) was also found to localize in the apical and basolateral membranes of cells of Brunner's gland. VIP, however, did not provoke any significant change in the AQP1 level in the apical membrane, as judged from the results of the above in vitro and in vivo experiments. These results suggest that VIP induced the exocytosis of granule contents and simultaneously caused translocation of AQP5 but not of AQP1 to the apical membrane in Brunner's gland cells.  相似文献   

9.
Polycystic kidney disease (PKD) is a common hereditary disorder which is characterized by fluid-filled cysts in the kidney. Mutation in either PKD1, encoding polycystin-1 (PC1), or PKD2, encoding polycystin-2 (PC2), are causative genes of PKD. Recent studies indicate that renal cilia, known as mechanosensors, detecting flow stimulation through renal tubules, have a critical function in maintaining homeostasis of renal epithelial cells. Because most proteins related to PKD are localized to renal cilia or have a function in ciliogenesis. PC1/PC2 heterodimer is localized to the cilia, playing a role in calcium channels. Also, disruptions of ciliary proteins, except for PC1 and PC2, could be involved in the induction of polycystic kidney disease. Based on these findings, various PKD mice models were produced to understand the roles of primary cilia defects in renal cyst formation. In this review, we will describe the general role of cilia in renal epithelial cells, and the relationship between ciliary defects and PKD. We also discuss mouse models of PKD related to ciliary defects based on recent studies. [BMB Reports 2013; 46(2): 73-79]  相似文献   

10.
It is well recognized that ANG II interacts with arginine vasopressin (AVP) to regulate water reabsorption and urine concentration in the kidney. The present study used ANG II type 1a (AT(1a)) receptor-deficient (Agtr1a(-/-)) mice to test the hypothesis that AT(1a) receptor signaling is required for basal and water deprivation-induced urine concentration in the renal medulla. Eight groups of wild-type (WT) and Agtr1a(-/-) mice were treated with or without 24-h water deprivation and 1-desamino-8-d-AVP (DDAVP; 100 ng/h ip) for 2 wk or with losartan (10 mg/kg ip) during water deprivation. Under basal conditions, Agtr1a(-/-) mice had lower systolic blood pressure (P < 0.01), greater than threefold higher 24-h urine excretion (WT mice: 1.3 ± 0.1 ml vs. Agtr1a(-/-) mice: 5.9 ± 0.7 ml, P < 0.01), and markedly decreased urine osmolality (WT mice: 1,834 ± 86 mosM/kg vs. Agtr1a(-/-) mice: 843 ± 170 mosM/kg, P < 0.01), without significant changes in 24-h urinary Na(+) excretion. These responses in Agtr1a(-/-) mice were associated with lower basal plasma AVP (WT mice: 105 ± 8 pg/ml vs. Agtr1a(-/-) mice: 67 ± 6 pg/ml, P < 0.01) and decreases in total lysate and membrane aquaporin-2 (AQP2; 48.6 ± 7% of WT mice, P < 0.001) and adenylyl cyclase isoform III (55.6 ± 8% of WT mice, P < 0.01) proteins. Although 24-h water deprivation increased plasma AVP to the same levels in both strains, 24-h urine excretion was still higher, whereas urine osmolality remained lower, in Agtr1a(-/-) mice (P < 0.01). Water deprivation increased total lysate AQP2 proteins in the inner medulla but had no effect on adenylyl cyclase III, phosphorylated MAPK ERK1/2, and membrane AQP2 proteins in Agtr1a(-/-) mice. Furthermore, infusion of DDAVP for 2 wk was unable to correct the urine-concentrating defects in Agtr1a(-/-) mice. These results demonstrate that AT(1a) receptor-mediated ANG II signaling is required to maintain tonic AVP release and regulate V(2) receptor-mediated responses to water deprivation in the inner medulla.  相似文献   

11.
In the renal collecting duct (CD) the major physiological role of aldosterone is to promote Na+ reabsorption. In addition, aldosterone may also influence CD water permeability elicited by vasopressin (AVP). We have previously shown that endogenous expression of the aquaporin-2 (AQP2) water channel in immortalized mouse cortical CD principal cells (mpkCCDC14) grown on filters is dramatically increased by administration of physiological concentrations of AVP. In the present study, we investigated the influence of aldosterone on AQP2 expression in mpkCCDC14 cells by RNase protection assay and Western blot analysis. Aldosterone reduced AQP2 mRNA and protein expression when administered together with AVP for short periods of time (< or =24 h). For longer periods of time, however, aldosterone increased AQP2 protein expression despite sustained low expression levels of AQP2 mRNA. Both events were dependent on mineralocorticoid receptor occupancy because they were both induced by a low concentration of aldosterone (10-9 m) and were abolished by the mineralocorticoid receptor antagonist canrenoate. Inhibition of lysosomal AQP2 protein degradation increased AQP2 protein expression in AVP-treated cells, an effect that was potentiated by aldosterone. Finally, both aldosterone and actinomycin D delayed AQP2 protein decay following AVP washout, but in a non-cumulative manner. Taken together, our data suggest that aldosterone tightly modulates AQP2 protein expression in cultured mpkCCDC14 cells by increasing AQP2 protein turnover while maintaining low levels of AQP2 mRNA expression.  相似文献   

12.
Collecting duct (CD) adenylyl cyclase VI (AC6) has been implicated in arginine vasopressin (AVP)-stimulated renal water reabsorption. To evaluate the role of CD-derived AC6 in regulating water homeostasis, mice were generated with CD-specific knockout (KO) of AC6 using the Cre/loxP system. CD AC6 KO and controls were studied under normal water intake, chronically water loaded, or water deprived; all of these conditions were repeated in the presence of continuous administration of 1-desamino-8-d-arginine vasopressin (DDAVP). During normal water intake or after water deprivation, urine osmolality (U(osm)) was reduced in CD AC6 KO animals vs. controls. Similarly, U(osm) was decreased in CD AC6 KO mice vs. controls after water deprivation+DDAVP administration. Pair-fed (with controls) CD AC6 KO mice also had lower urine osmolality vs. controls. There were no detectable differences between KO and control animals in fluid intake or urine volume under any conditions. CD AC6 KO mice did not have altered plasma AVP levels vs. controls. AVP-stimulated cAMP accumulation was reduced in acutely isolated inner medullary CD (IMCD) from CD A6 KO vs. controls. Medullary aquaporin-2 (AQP2) protein expression was lower in CD AC6 KO mice vs. controls. There were no differences in urinary urea excretion or IMCD UT-A1 expression; however, IMCD UT-A3 expression was reduced in CD AC6 KO mice vs. controls. In summary, AC6 in the CD regulates renal water excretion, most likely through control of AVP-stimulated cAMP accumulation and AQP2.  相似文献   

13.
Aquaporin-1 (AQP1) water channel plays a critical role for water reabsorption in the urinary concentrating mechanism. AQP1 expression in renal cells is upregulated by hypertonicity, but not urea, suggesting the requirement of an osmotic gradient. To investigate whether AQP1 expression is regulated by apical and/or basolateral hypertonicity, murine renal medullary mIMCD-K2 cells grown on permeable support were exposed to hypertonic medium. When the medium on the apical or basolateral membrane side was switched to hypertonic, the transcellular osmotic gradient was dissipated within 8h. Basolateral hypertonicity increased AQP1 expression more than apical hypertonicity. Comparable apical and basolateral hypertonicity without a transcellular hypertonic gradient, however, increased AQP1 expression. Cell surface biotinylation experiments revealed that hypertonicity promoted AQP1 trafficking to both plasma cell membranes. These results indicate that AQP1 expression is predominantly mediated by basolateral hypertonicity but a transcellular osmotic gradient is not necessary for its induction.  相似文献   

14.
The arginine vasopressin (AVP) type 1a receptor (V1a) is well known to mediate vasoconstriction. In pregnancy, blood flow in the placenta is crucial for sustaining normal growth and development of the fetus. This is the first AVP receptor study in the placenta and fetal membranes. The aim was to compare, quantitatively, the level of V1a gene expression with that of a known marker for vascularization, aquaporin 1 (AQP1). V1a and AQP1 gene expression did not correlate; placental V1a mRNA levels were significantly upregulated at 45 and 66+/-1 compared with 27, 100+/-4, and 140 days (term approximately 150 days). V1a mRNA levels were much lower in fetal membranes in which no significant difference across gestation was observed. In situ hybridization histochemistry localized V1a gene expression in the maternal component of the placenta similar to the receptor-binding studies using 125I-labeled [d(CH2)5, sarcosine7] vasopressin. No AVP gene expression was observed in the placenta and fetal membranes, which eliminates local AVP production. This increase in V1a expression at 45 and 66+/-1 days of gestation correlates with the period of maximal placental growth in the sheep and suggests that AVP and V1a receptors may play a hitherto unrecognized role in placental growth, differentiation, and/or function, particularly in the deleterious effects of heat stress, early in pregnancy, on fetal growth.  相似文献   

15.
 Aquaporin 2 (AQP2) transfected into LLC-PK1 cells functions as a vasopressin-regulated water channel that recycles between intracellular vesicles and the plasma membrane upon vasopressin stimulation. The green fluorescent protein (GFP) of the jellyfish, Aequorea victoria, was used as an autofluorescent tag to monitor AQP2 trafficking in transfected LLC-PK1 cells. Two chimeras were constructed, one in which GFP was fused to the amino-terminus of AQP2 [GFP-AQP2(NT)] and the second in which it was fused to the carboxyl-terminus [AQP2-GFP(CT)]. The GFP-AQP2(NT) chimera trafficked in a regulated pathway from intracellular vesicles to the basolateral plasma membrane in response to vasopressin or forskolin stimulation of cells. In contrast, the AQP2-GFP(CT) chimera expressed in LLC-PK1 cells was localized constitutively on both apical and basolateral plasma membranes. The cellular location of this chimera was not modified by vasopressin or forskolin. Thus, while the GFP-AQP2(NT) chimera will be useful to study AQP2 trafficking in vitro, the abnormal, constitutive membrane localization of the AQP2-GFP(CT) chimera suggests that one or more trafficking signals exist on the carboxyl-terminus of the AQP2 protein. Accepted: 8 April 1998  相似文献   

16.
Polycystic kidney disease (PKD) is a common human genetic illness. It is characterized by the formation of multiple kidney cysts that are thought to result from over-proliferation of epithelial cells. Zebrafish larvae can also develop kidney cysts. In an insertional mutagenesis screen in zebrafish, we identified 12 genes that can cause cysts in the glomerular-tubular region when mutated and we cloned 10 of these genes. Two of these genes, vhnf1 (tcf2) and pkd2, are already associated with human cystic kidney diseases. Recently, defects in primary cilia have been linked to PKD. Strikingly, three out of the 10 genes cloned in this screen are homologues of Chlamydomonas genes that encode components of intraflagellar transport (IFT) particles involved in cilia formation. Mutation in a fourth blocks ciliary assembly by an unknown mechanism. These results provide compelling support for the connection between cilia and cystogenesis. Our results also suggest that lesions in genes involved in cilia formation and function are the predominant cause of cystic kidney disease, and that the genes identified here are excellent candidates for novel human PKD genes.  相似文献   

17.
To understand the mechanisms of G protein-coupled receptor delivery and steady state localization, we examined the trafficking itineraries of wild type (WT) and mutant V2 vasopressin receptors (V2Rs) in polarized Madin-Darby canine kidney II (MDCK II) cells and in COS M6 cells; the mutant V2Rs represent selected alleles responsible for X-linked nephrogenic diabetes insipidus. The WT V2R is localized on the plasma membrane and mediates arginine vasopressin (AVP)-stimulated cAMP accumulation, whereas the clinically relevant V2R mutants, L292P V2R, Delta V278 V2R, and R337X V2R, are retained intracellularly, are insensitive to extracellularly added AVP, and are not processed beyond initial immature glycosylation, manifest by their endoglycosidase H sensitivity. Reduced temperature and pharmacological, but not chemical, strategies rescue mutant V2Rs to the cell surface of COS M6 cells; surface rescue of L292P V2R and R337X V2R, but not of Delta V278 V2R, parallels acquisition of AVP-stimulated cAMP production. Pharmacological rescue of the L292P or R337X V2R by incubation with the membrane-permeant V2R antagonist, SR121463B, leads to a mature glycosylated form of the receptor that achieves localization on the basolateral surface of polarized MDCK II cells indistinguishable from that of the WT V2R. Surprisingly, however, the immature form of the mutant L292P V2R escapes to the apical, but not basolateral, surface of polarized MDCK II cells, even in the absence of SR121463B. These findings are consistent with the interpretation that the receptor conformation that allows appropriate processing through the N-linked glycosylation pathway is also essential for V2R targeting to the appropriate surface of polarized epithelial cells.  相似文献   

18.
Aquaporins (AQPs) are a recently discovered family of proteins that function as transmembrane water channels. These proteins regulate the delicate osmotic balance across the cell plasma membrane. Given that osmotic damage is the major contributing factor to cell death during freezing, we hypothesized that regulation of AQPs may have an unrealized role in protecting cells from osmotic damage during cryopreservation. Rat kidney inner medullar collecting duct (IMCD) cells were treated with arginine vasopressin (AVP) to increase the amount of AQP2 in the external plasma membrane before freezing in University of Wisconsin solution at -4 degrees C for 24 h. This resulted in a significant increase in cell viability on warming. Conversely, treatment of IMCD cells with AVP and W7 (which inhibits AQP2 protein trafficking to the plasma membrane) before freezing resulted in a 55% decrease in cell viability. These preliminary data indicate that regulation of AQP2 can attenuate cold-induced osmotic damage in rat kidney IMCD cells.  相似文献   

19.
Treating H441 cells with dexamethasone raised the abundance of mRNA encoding the epithelial Na(+) channel alpha- and beta-subunits and increased transepithelial ion transport (measured as short-circuit current, I(sc)) from <4 microA.cm(-2) to 10-20 microA.cm(-2). This dexamethasone-stimulated ion transport was blocked by amiloride analogs with a rank order of potency of benzamil >or= amiloride > EIPA and can thus be attributed to active Na(+) absorption. Studies of apically permeabilized cells showed that this increased transport activity did not reflect a rise in Na(+) pump capacity, whereas studies of basolateral permeabilized cells demonstrated that dexamethasone increased apical Na(+) conductance (G(Na)) from a negligible value to 100-200 microS.cm(-2). Experiments that explored the ionic selectivity of this dexamethasone-induced conductance showed that it was equally permeable to Na(+) and Li(+) and that the permeability to these cations was approximately fourfold greater than to K(+). There was also a small permeability to N-methyl-d-glucammonium, a nominally impermeant cation. Forskolin, an agent that increases cellular cAMP content, caused an approximately 60% increase in I(sc), and measurements made after these cells had been basolaterally permeabilized demonstrated that this response was associated with a rise in G(Na). This cAMP-dependent control over G(Na) was disrupted by brefeldin A, an inhibitor of vesicular trafficking. Dexamethasone thus stimulates Na(+) transport in H441 cells by evoking expression of an amiloride-sensitive apical conductance that displays moderate ionic selectivity and is subject to acute control via a cAMP-dependent pathway.  相似文献   

20.
We studied the role played by the intracellular COOH-terminal region of the human arginine vasopressin (AVP) V1-vascular receptor (V1R) in ligand binding, trafficking, and mitogenic signal transduction in Chinese hamster ovary cells stably transfected with the human AVP receptor cDNA clones that we had isolated previously. Truncations, mutations, or chimeric alterations of the V1R COOH terminus did not alter ligand binding, but agonist-induced V1R internalization and recycling were reduced in the absence of the proximal region of the V(1)R COOH terminus. Coupling to phospholipase C was altered as a function of the COOH-terminal length. Deletion of the proximal portion of the V1R COOH terminus or its replacement by the V2-renal receptor COOH terminus prevented AVP stimulation of DNA synthesis and progression through the cell cycle. Mutation of a kinase consensus motif in the proximal region of the V1R COOH terminus also abolished the mitogenic response. Thus the V1R cytoplasmic COOH terminus is not involved in ligand specificity but is instrumental in receptor trafficking and facilitates the interaction between the intracellular loops of the receptor, G protein, and phospholipase C. It is absolutely required for transmission of the mitogenic action of AVP, probably via a specific kinase phosphorylation site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号