首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method was developed that allows conversion of changes in maximum Ca(2+)-dependent fluorescence of a fixed amount of fluo-3 into volume changes of the fluo-3-containing solution. This method was then applied to investigate by confocal microscopy the osmotic properties of the sealed tubular (t-) system of toad and rat mechanically skinned fibers in which a certain amount of fluo-3 was trapped. When the osmolality of the myoplasmic environment was altered by simple dilution or addition of sucrose within the range 190-638 mosmol kg(-1), the sealed t-system of toad fibers behaved almost like an ideal osmometer, changing its volume inverse proportionally to osmolality. However, increasing the osmolality above 638 to 2,550 mosmol kg(-1) caused hardly any change in t-system volume. In myoplasmic solutions made hypotonic to 128 mosmol kg(-1), a loss of Ca(2+) from the sealed t-system of toad fibers occurred, presumably through either stretch-activated cationic channels or store-operated Ca(2+) channels. In contrast to the behavior of the t-system in toad fibers, the volume of the sealed t-system of rat fibers changed little (by <20%) when the osmolality of the myoplasmic environment changed between 210 and 2,800 mosmol kg(-1). Results were also validated with calcein. Clear differences between rat and toad fibers were also found with respect to the t-system permeability for glycerol. Thus, glycerol equilibrated across the rat t-system within seconds to minutes, but was not equilibrated across the t-system of toad fibers even after 20 min. These results have broad implications for understanding osmotic properties of the t-system and reversible vacuolation in muscle fibers. Furthermore, we observed for the first time in mammalian fibers an orderly lateral shift of the t-system networks whereby t-tubule networks to the left of the Z-line crossover to become t-tubule networks to the right of the Z-line in the adjacent sarcomere (and vice versa). This orderly rearrangement can provide a pathway for longitudinal continuity of the t-system along the fiber axis.  相似文献   

2.
Antidiuretic hormone (ADH) stimulation increases the apical membrane water permeability of granular cells in toad urinary bladder. This response correlates closely with the fusion of tubular cytoplasmic vesicles with the membrane and delivery of intramembrane particle (IMP) aggregates from the tubules (aggrephores) to the apical membrane. These aggregates are believed to be associated with the channels responsible for the water permeability increase. Removal of ADH triggers apical membrane endocytosis and disappearance of aggregates from the apical membrane. However, it has been unclear whether aggregate disappearance is due to disassembly of aggregates within the apical membrane or to their endocytic retrieval as intact structures. Using colloidal gold and horseradish peroxidase to follow endocytosis from the apical surface after ADH removal, we have directly observed in cross-fractured bladder cells the intramembrane structure of intracellular vesicles that contain these fluid-phase markers. Under these conditions, intact aggregates can be identified in the membrane of tubular endocytosed vesicles. This directly demonstrates that conditions which lower apical membrane water permeability cause the tubular aggrephores to "shuttle" intact aggregates from the apical membrane back into the cytoplasm. An additional population of vesicles with tracer are found which are spherical and display structural features of the apical membrane, as well as occasional aggregates. These vesicles may be responsible for retrieval of aggregates from the surface apical membrane.  相似文献   

3.
4.
Vesicular membrane fractions prepared from rat kidney cortices by a series of differential centrifugations can be frozen in 15% glycerol and stored at ?70°C. These vesicles can be reclaimed with removal of glycerol by two brief centrifugations. Such frozen/reclaimed vesicles are osmotically active and show transport characteristics for d-glucose and l-alanine which are similar in many respects to those exhibited by freshly prepared vesicles.  相似文献   

5.
We report that caffeine, in millimolar concentrations, interacts strongly with four common calcium indicator dyes: mag-fura-2, magnesium green, fura-2, and fluo-3. Fluorescence intensities are either noticeably enhanced (mag-fura-2, fura-2) or diminished (magnesium green, fluo-3). The caffeine-induced changes in the fluorescence spectra are clearly distinct from those of metal ion binding at the indicator chelation sites. Binding affinities for calcium of either mag-fura-2 or magnesium green increased only slightly in the presence of caffeine. Caffeine also alters the fluorescence intensities of two other fluorescent dyes lacking a chelation site, fluorescein and sulforhodamine 101, implicating the fluorophore itself as the interaction site for caffeine. In the absence of caffeine, variation of solution hydrophobicity by means of water/dioxane mixtures yielded results similar to those for caffeine. These observations suggest that hydrophobic substances, in general, can alter dye fluorescence in a dye-specific manner. For the particular case of caffeine, and perhaps other commonly used pharmacological agents, the dye interactions can seriously distort fluorescence measurements of intracellular ion concentrations with metal indicator dyes.  相似文献   

6.
The regulation of transepithelial water permeability in toad urinary bladder is believed to involve a cycling of endocytic vesicles containing water transporters between an intracellular compartment and the cell luminal membrane. Endocytic vesicles arising from luminal membrane were labeled selectively in the intact toad bladder with the impermeant fluid-phase markers 6-carboxyfluorescein (6CF) or fluorescein-dextran. A microsomal preparation containing labeled endocytic vesicles was prepared by cell scraping, homogenization, and differential centrifugation. Osmotic water permeability was measured by a stopped-flow fluorescence technique in which microsomes containing 50 mM mannitol, 5 mM K phosphate, pH 8.5 were subject to a 60-mM inwardly directed gradient of sucrose; the time course of endosome volume, representing osmotic water transport, was inferred from the time course of fluorescence self-quenching. Endocytic vesicles were prepared from toad bladders with hypoosmotic lumen solution treated with (group A) or without (group B) serosal vasopressin at 23 degrees C, and bladders in which endocytosis was inhibited by treatment with vasopressin at 0-2 degrees C (group C), or with vasopressin plus sodium azide at 23 degrees C (group D). Stopped-flow results in all four groups showed a slow rate of 6CF fluorescence decrease (time constants 1.0-1.7 s for exponential fit) indicating a component of nonendocytic 6CF entrapment into sealed vesicles. However, in vesicles from group A only, there was a very rapid 6CF fluorescence decrease (time constant 9.6 +/- 0.2 ms, SEM, 18 separate preparations) with an osmotic water permeability coefficient (Pf) of greater than 0.1 cm/s (18 degrees C) and activation energy of 3.9 +/- 0.8 kcal/mol (16 kJ/mol). Pf was inhibited reversibly by greater than 60% by 1 mM HgCl2. The rapid fluorescence decrease was absent in vesicles in groups B, C, and D. These results demonstrate the presence of functional water transporters in vasopressin-induced endocytic vesicles from toad bladder, supporting the hypothesis that water channels are cycled to and from the luminal membrane and providing a functional marker for the vasopressin-sensitive water channel. The calculated Pf in the vasopressin-induced endocytic vesicles is the highest Pf reported for any biological or artificial membrane.  相似文献   

7.
INTESTINAL TRANSPORT OF ANTIBODIES IN THE NEWBORN RAT   总被引:25,自引:11,他引:14       下载免费PDF全文
Evidence has been reported that the proximal small intestine of the neonatal rat selectively transports antibodies into the circulation. This study describes the morphology of the absorptive epithelial cells in this region of the intestine and their transport of several immunoglobulin tracers: ferritin-conjugated immunoglobulins (IgG-Ft) and antiperoxidase antibodies. Cells exposed to rat IgG-Ft bound the tracer on the membrane of tubular invaginations of the apical cell surface. Tubular and coated vesicles within the cell also contained the tracer, as did the intercellular spaces. Uptake of tracer was highly selective and occurred only with rat or cow IgG-Ft; when cells were exposed to chicken IgG-Ft, ferritin-conjugated bovine serum albumin, or free ferritin, tracer did not enter the cell or appear in the intercellular spaces. Experiments with rat and chicken antiperoxidase showed a similar selective uptake and transport of only the homologous antibody. When cells from the distal small intestine were exposed to the tracers, all tracers were absorbed nonselectively but none were released from the cells. Cells from the proximal small intestine of the 22-day-old rat failed to absorb even rat IgG-Ft. A model is presented for selective antibody transport in proximal cells of the neonatal rat in which antibodies are selectively absorbed at the apical cell surface by pinocytosis within tubular vesicles. The antibodies are then transferred to the intercellular space within coated vesicles. Distal cells function only to digest proteins nonselectively.  相似文献   

8.
Data reported in the literature suggest that crossbridges in rapid equilibrium between attached and detached states (weakly binding bridges), demonstrated in relaxed skinned fibres at low ionic strength, could be present also in intact fibres under physiological conditions. In addition, it was suggested that the well known leading of stiffness over force during the tension development in stimulated muscle fibres could be due to an increased number of weakly binding bridges induced by the stimulation. The experiments reviewed in this paper were made to investigate these possibilities. Fast ramp length changes were applied to single frog muscle fibres at rest and during the early phases of activation. The corresponding force changes were analysed, searching for the components expected from the presence of weakly binding bridges. The results showed no mechanical indication for the presence of weakly binding bridges in both skinned and intact fibres, either at rest or during activation. It was also found that a portion of the fibre stiffness increase induced by stimulation leads the formation of crossbridges.  相似文献   

9.
Phosphorylation of secretory and integral membrane proteins and of proteoglycans also occurs in the lumen of the Golgi apparatus. ATP, the phosphate donor in these reactions, must first cross the Golgi membrane before it can serve as substrate. The existence of a specific ATP transporter in the Golgi membrane has been previously demonstrated in vitro using intact Golgi membrane vesicles from rat liver and mammary gland. We have now identified and purified the rat liver Golgi membrane ATP transporter. The transporter was purified to apparent homogeneity by a combination of conventional ion exchange, dye color, and affinity chromatography. An approximately 70,000-fold purification (2% yield) was achieved starting from crude rat liver Golgi membranes. A protein with an apparent molecular mass of 60 kDa was identified as the putative transporter by a combination of column chromatography, photoaffinity labeling with an analog of ATP, and native functional size determination on a glycerol gradient. The purified transporter appears to exist as a homodimer within the Golgi membrane, and when reconstituted into phosphatidylcholine liposomes, was active in ATP but not nucleotide sugar or adenosine 3'-phosphate 5'-phosphosulfate transport. The transport activity was saturable with an apparent Km very similar to that of intact Golgi vesicles.  相似文献   

10.
Single skeletal muscle fibres were isolated from the toad (Bufo marinus) and isometric force and myoplasmic free calcium concentration ([Ca2+]i) were measured. Brief applications of 4-chloro- m-cresol (4-CmC, 0.2-5 mM) elevated [Ca2+]i reversibly in a dose-dependent manner. The lowest concentration of 4-CmC which reliably gave maximal [Ca2+]i was 2 mM and it was, therefore, used for measurement of sarcoplasmic reticulum (SR) Ca2+ content. Tetanic stimulations (100 Hz) increased [Ca2+]i from a resting level of 105 +/- 47 nM (n = 10) to 1370 +/- 220 nM (n = 6). Application of 2 mM 4-CmC produced a contracture that was 54 +/- 16% (n = 6) of the tetanic force and elevated [Ca2+]i to a peak of 3520 +/- 540 nM (n = 8). Both force and [Ca2+]i levels (resting and tetanic) were restored after 10 min of washout of 4-CmC. In skinned muscle fibres, the myofibrillar Ca(2+)-sensitivity was not changed by 4-CmC, but maximal force was reduced to 74 +/- 10% (n = 4). The magnitude of the peak of the 4-CmC-induced Ca2+ transient was not significantly changed by removal of extracellular Ca2+ nor by inhibiting the SR Ca2+ pump with 2,5-di-tert-butylhydroquinone. Treatment of intact fibres with 30 mM caffeine produced a peak Ca2+ level that was indistinguishable from 2 mM 4-CmC. These results indicate that it is possible to measure the SR Ca2+ content in the same fibre with 4-CmC without loss of normal muscle function.  相似文献   

11.
We describe a procedure for the preparation of sealed nuclear-envelope vesicles from rat liver nuclei. These vesicles are strikingly similar in their polypeptide composition when compared with those of nuclear envelopes prepared conventionally using deoxyribonuclease I. Subfractionation analysis by means of extraction with high salt and urea show that the components of the nuclear envelope, e.g. the pore-complex/lamina fraction, are present. The residual DNA content is only 1.5%, and typical preparations consist of about 80% vesicles, with the vesicular character of these envelopes shown by microscopic and biochemical studies. The vesicles can be obtained in high yield, are tight and stable for at least two days and are enriched in a nucleoside triphosphatase thought to be involved in nucleocytoplasmic transport processes. Because the vesicles are largely free of components of the nuclear interior, but retain properties of intact nuclei, we believe that they are a valuable model system to study nucleocytoplasmic transport. Although in transport studies with isolated nuclei interference from intranuclear events has to be considered, the nuclear-envelope vesicles provide the possibility of studying translocation alone. Furthermore, the less complex nature of these vesicles compared with whole nuclei should facilitate investigation of the components involved in the regulation of nuclear transport processes.  相似文献   

12.
Brefeldin A (BFA) induces the formation of an extensively fused network of membranes derived from the trans-Golgi network (TGN) and early endosomes (EE). We describe in detail here the unaffected passage of endocytosed material through the fused TGN/EE compartments to lysosomes in BFA-treated cells. We also confirmed that BFA caused the formation of tubular lysosomes, although the kinetics and extent of tubulation varied greatly between different cell types. The BFA-induced tubular lysosomes were often seen to form simple networks. Formation of tubular lysosomes was microtubule-mediated and energy-dependent; interestingly, however, maintenance of the tubulated lysosomes only required microtubules and was insensitive to energy poisons. Upon removal of BFA, the tubular lysosomes rapidly recovered in an energy-dependent process. In most cell types examined, the extensive TGN/EE network is ephemeral, eventually collapsing into a compact cluster of tubulo-vesicular membranes in a process that precedes the formation of tubular lysosomes. However, in primary bovine testicular cells, the BFA-induced TGN/EE network was remarkably stable (for > 12 h). During this time, the TGN/EE network coexisted with tubular lysosomes, however, the two compartments remained completely separate. These results show that BFA has multiple, profound effects on the morphology of various compartments of the endosome-lysosome system. In spite of these changes, endocytic traffic can continue through the altered compartments suggesting that transport occurs through noncoated vesicles or through vesicles that are insensitive to BFA.  相似文献   

13.
Plasma membrane vesicles were isolated from homogenised yeast cells by filtration, differential centrifugation and aggregation of the mitochondrial vesicles at pH 4. As judged by biochemical, cell electrophoretic and electron microscopic criteria a pure plasma membrane vesicle preparation was obtained.The surface charge density of the plasma membrane vesicles is similar to that of intact yeast cells with an isoelectric point below pH 3. The mitochondrial vesicles have a higher negative surface charge density in the alkaline pH range. Their isoelectric point is near pH 4.5, where aggregation is maximal.The yield of vesicles sealed to K+ was maximal at pH 4 and accounted for about one third of the total vesicle volume.The plasma membrane vesicles demonstrate osmotic behaviour, they shrink in NaCl solutions when loosing K+.As in intact yeast cells the entry and exit of sugars like glucose or galactose in plasma membrane vesicles is inhibited by UO22+.Counter transport in plasma membrane vesicles with glucose and mannose and iso-counter transport with glucose suggests that a mobile carrier for sugar transport exists in the plasma membrane.After galactose pathway induction in the yeast cells and subsequent preparation of plasma membrane vesicles the uptake of galactose into the vesicles increased by almost 100% over the control value without galactose induction. This increase is explained by the formation of a specific galactose carrier in the plasma membrane.  相似文献   

14.
E. K. Hawkins  J. J. Lee 《Protoplasma》2001,216(3-4):227-238
Mechanisms of transport of secretory products across the Golgi apparatus (GA) as well as of scale formation in prymnesiophytes have remained controversial. We have used a quantitative morphological approach to study formation and transport of scales across the GA in haploid cells of Pleurochrysis sp. The GA of these cells differs from the GA of higher plants in at least six morphological characteristics. Our results show that scales form in the trans-Golgi network (TGN) and transit the TGN in heretofore unrecognized prosecretory vesicles. Prosecretory vesicles differentiate into secretory vesicles prior to exocytosis of scales to the cell surface. Because prosecretory vesicles are only fragments of TGN cisternae, the classical model of cisternal progression is not a valid mechanism of transport in this alga. TGN transport vesicles are also involved in scale formation; however, the role of tubular connections between cisternae of a single stack-TGN unit is not clear. The relationship of two morphological types of cisternal dilations to a membrane-associated, bottlebrush-shaped macromolecule of novel morphology suggests a new hypothesis for the biogenesis of scales.  相似文献   

15.
Summary The development of ultrastructural changes in the T-system of isolated muscle fibres of the crayfish by the glycerol procedure is described in correlation with the dissociation of excitation-contraction (E-C) coupling as well as with recoupling of the E-C link. The sequence of events in the process of disconnection of the tubules is as follows: dilation of the T-system tubules, disconnection of the constricted tubular segments from the surface membrane and from the T-system vesicle, disappearance of the lumen and its disintegration. The decoupled state is characterised by the presence of round vesicles uniformly distributed in the entire volume of the fibre. The volume of vesicles accounts well for the residual postglycerol volume increase (15%) of the muscle fibres. Functional and structural recovery can be induced by reapplication of glycerol to fibres decoupled and vesiculated with concentrations of glycerol300mmol · l-1 in crayfish saline. The restitution starts with the organisation of the material of the disintegrated connecting segment of the T-system tubule into small vesicles which coalesce to form the tubule from the vesicular site. At the same time the surface membrane is invaginated toward the vesicle, thus forming the tubule from the surface membrane site. Recovery starts already in the first minute after application of glycerol and is completed within approximately 15min.  相似文献   

16.
17.
The stimulation of sodium transport by aldosterone in target tissues requires the synthesis of both mRNA and proteins. Aldosterone-induced mRNA and proteins have been demonstrated in toad urinary bladder and rat kidney. We have isolated total RNA and poly(A)-containing RNA from hormone-treated and untreated toad bladder mucosal cells for translation in a rabbit reticulocyte lysate system. Aldosterone-induced proteins synthesized in this system have physical properties similar to those of aldosterone-induced proteins synthesized in the intact toad bladder.  相似文献   

18.
P R Hartig  M A Raftery 《Biochemistry》1979,18(7):1146-1150
Intact vesicles enriched in acetylcholine receptor from Torpedo californica electroplaque membranes can be separated from collapsed or leaky vesicles and membrane sheets on sucrose density gradients. alpha-Bungarotoxin binding in intact vesicles reveals that approximately 95% of the acetylcholine receptor containing vesicles are formed outside-out (with the synaptic membrane face exposed on the vesicle exterior). The binding data also indicated that only 5% or less of the sites for alpha-bungarotoxin binding to synaptic membranes are located on the interior, cytoplasmic face. Intact vesicles are stable to gentle pelleting and resuspension but are easily osmotically shocked. The vesicles are impermeable to sucrose and Ficoll, but glycerol readily transverses to membrane barrier. Intact vesicles provide a sealed, oriented membrane preparation for studies of vectorial acetylcholine receptor mediated processes.  相似文献   

19.
The particular compositions of the intracellular membrane organelles rely on the proteins and lipids received frequently through membrane trafficking. The delivery of these molecules is driven by the membrane-bound organelles known as transport carriers (TCs). Advanced microscopy approaches have revealed that TC morphology ranges from small vesicles to complex tubular membrane structures. These tubular TCs (TTCs) support effectively both sorting and transport events within the biosynthetic and endocytic pathways, while a coherent picture of the processes that define the formation and further fate of TTCs is still missing. Here, we present an overview of the mechanisms operating during the TTC life cycle, as well as of the emerging role of tubular carriers in different intracellular transport routes.  相似文献   

20.
The effect of ruthenium red (RR) on the electrical and contractile responses, membrane Ca currents, staining patterns of the external and internal membrane system were tested in intact and mechanically skinned muscle fibres of the crayfish Astacus fluviatilis. The following results were obtained: 1. Depression of the contractile responses following membrane depolarization (twitch, tetanus, potassium contractures). 2. Caffeine contractures were unaffected in intact (100 mumol/l - 1 mmol/l RR) and blocked in skinned fibres (30 mumol/l RR). 3. Mechanical threshold and mechanical latency were increased and/or prolonged. 4. The rate of depolarization of the action potentials (AP) was decreased and decremental spread of AP was recorded. 5. Both fast and slowly inactivating Ca ionic currents were decreased and the time constants of activation (tau(m] and inactivation (tau(h] were prolonged after RR (100 mumol/l) pretreatment. 6. The penetration of RR into the T-system was inversely related to its binding to the sarcolemma. The depression of depolarization-induced contractions was most pronounced in fibres with unstained sarcolemma and stained T-tubules. In intact fibres, neither terminal cisternae nor other elements of SR were stained. On the contrary, all internal membrane structures were stained in skinned fibres. There was a gradient of staining intensity from surface toward the interior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号