首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A simple, rapid and sensitive high-performance liquid chromatographic method was developed for determination of ibuprofen, (+/-)-(R, S)-2-(4-isobutylphenyl)-propionic acid, enantiomers in rat serum. Serum (0.1 ml) was extracted with 2,2,4-trimethylpentane/isopropanol (95:5, v/v) after addition of the internal standard, (S)-naproxen, and acidification with H(2)SO(4). Enantiomeric resolution of ibuprofen was achieved on ChiralPak AD-RH column with ultraviolet (UV) detection at 220 nm without interference from endogenous co-extracted solutes. The calibration curve demonstrated excellent linearity between 0.1 and 50 microg/ml for each enantiomer. The mean extraction efficiency was >92%. Precision of the assay was within 11% (relative standard deviation (R.S.D.)) and bias of the assay was lower than 15% at the limit of quantitation (0.1 microg/ml). The assay was applied successfully to an oral pharmacokinetic study of ibuprofen in rats.  相似文献   

2.
A modified specific, sensitive and reproducible chiral gas chromatographic (GC) method for the resolution and quantification of ethosuximide enantiomers in urine and plasma was developed. The samples were extracted by liquid-liquid extraction, using diethylether and the enantiomers were separated and quantified on a chiral gas chromatographic column (25QC2 / CYDEX- beta 0.25). The method involved the use of GC/MS instrumentation for the acquisition of data in the electron impact selective-ion monitoring mode, collecting ions characteristic of both ethosuximide and alpha, alpha - dimethyl - beta - methylsuccinimide, the internal standard and of mass-to-charge ratio (m/z) exactly equal to 55 and 70 units. The limit of quantitation of the method was 2.5 microg/ml for both urine and plasma with both enantiomers. The method proved to be linear, precise and reproducible in the 5-300 microg/ml concentration range for urine samples and in the 10-250 microg/ml concentration range for plasma samples. Future research work envisaged the application of this method in pharmacokinetic and pharmacodynamic studies.  相似文献   

3.
The method of high-performance liquid chromatography (HPLC) with UV-vis detection was used and validated for the simultaneous determination of six flavonoids (puerarin, rutin, morin, luteolin, quercetin, kaempferol) and troxerutin in rat urine and chicken plasma. Chromatographic separation was performed using a VP-ODS column (150 mm x 4.6 mm, 5.0 microm) maintained at 35.0 degrees C. The mobile phase was a mixture of water, methanol and acetic acid (57:43:1, v/v/v, pH 3.0) at the flow rate of 0.8 mL/min. Six flavonoids and troxerutin were analyzed simultaneously with good separation. On optimum conditions, calibration curves were found to be linear with the ranges of 0.10-70.00 microg/mL (puerarin, rutin, morin, luteolin, quercetin, kaempferol) and 0.50-350.00 microg/mL (troxerutin). The detection limits were 0.010-0.050 microg/mL. The method was validated for accuracy and precision, and it was successfully applied to determine drug concentrations in rat urine and chicken plasma samples from rat and chicken that had been orally administered with six flavonoids and troxerutin.  相似文献   

4.
The chiral separation of norgestrel enantiomers using reversed-phase high-performance liquid chromatography (RP-HPLC) was studied with hydroxypropyl-beta-cyclodextrin (HP-beta-CD) as chiral mobile phase additive. The effect of mobile phase composition, concentration of HP-beta-CD and column temperature on enantioselective separation were investigated. The quantification properties of the developed RP-HPLC method were examined. A baseline separation of norgestrel enantiomers was achieved on a Agilent ZORBAX Eclipse XDB-C8 column (150 mm x 4.6 mm i.d., 5 microm). The mobile phase was a mixture of acetonitrile and phosphate buffer (pH 5.0, 20 mM) containing 25 mM HP-beta-CD (30:70, v/v) with a flow rate of 1.0 ml/min. The UV detector was set at 240 nm. Calibration curves were linear (n=8) in the range of 0.2-25 microg/ml, the limit of detection and quantitation were 0.10 and 0.20 microg/ml, respectively, for racemic norgestrel. The values of RSD of repeatability and intermediate precision for spiked sample were less than 4.8%. The method was successfully applied to the enantioselective determination of this drug in stereoselective skin permeation study.  相似文献   

5.
A stereoselective reversed-phase HPLC assay to determine S-(-) and R-(+) enantiomers of esmolol in human plasma was developed. The method involved liquid-liquid extraction of esmolol from human plasma, using S-(-)-propranolol as the internal standard, and employed 2,3,4,6-tetra-O-acetyl-beta-d-glucopyranosyl isothiocyanate as a pre-column chiral derivatization reagent. The derivatized products were separated on a 5-microm reversed-phase C18 column with a mixture of acetonitrile/0.02 mol/L phosphate buffer (pH 4.5) (55:45, v/v) as mobile phase. The detection of esmolol derivatives was made at lambda=224 nm with UV detector. The assay was linear from 0.035 to 12 microg/ml for each enantiomer. The analytical method afforded average recoveries of 94.8% and 95.5% for S-(-)- and R-(+)-esmolol, respectively. For each enantiomer, the limit of detection was 0.003 microg/ml and the limit of quantification for the method was 0.035 microg/ml (RSD<14%). The reproducibility of the assay was satisfactory.  相似文献   

6.
We have developed a new analytical method to quantify the DL-homoalanine-4-yl(methyl)phosphinate (DL-GLUF) enantiomers in biological specimens using a reversed-phase high-performance liquid chromatography system with a fluorescence detection system. The derivatization of DL-GLUF enantiomers with (+)-1-(9-fluorenyl)ethyl chloroformate was carried out under mild conditions (40 degrees C for 30 min) without inducing racemization. The lower limit of quantitation was 0.01 microg/ml for both D-GLUF and L-GLUF, and the detection limit was 5 ng/ml. When DL-GLUF enantiomers were added to serum to produce concentrations between 0.1 and 100 microg/ml, the mean recovery rate was at least 93.8%. The recovery rate from urine was also satisfactory.  相似文献   

7.
A sensitive and enantioselective method was developed and validated for the determination of ondansetron enantiomers in human plasma using enantioselective liquid chromatography-tandem mass spectrometry. The enantiomers of ondansetron were extracted from plasma using ethyl acetate under alkaline conditions. HPLC separation was performed on an ovomucoid column using an isocratic mobile phase of methanol-5 mM ammonium acetate-acetic acid (20:80:0.02, v/v/v) at a flow rate of 0.40 mL/min. Acquisition of mass spectrometric data was performed in multiple reaction monitoring mode, using the transitions of m/z 294-->170 for ondansetron enantiomers, and m/z 285-->124 for tropisetron (internal standard). The method was linear in the concentration range of 0.10-40 ng/mL for each enantiomer using 200 microL of plasma. The lower limit of quantification (LLOQ) for each enantiomer was 0.10 ng/mL. The intra- and inter-assay precision was 3.7-11.6% and 5.6-12.3% for R-(-)-ondansetron and S-(+)-ondansetron, respectively. The accuracy was 100.4-107.1% for R-(-)-ondansetron and 103.3-104.9% for S-(+)-ondansetron. No chiral inversion was observed during the plasma storage, preparation and analysis. The method was successfully applied to characterize the pharmacokinetic profiles of ondansetron enantiomers in healthy volunteers after an intravenous infusion of 8 mg racemic ondansetron.  相似文献   

8.
An attempt for the simultaneous separation of salbutamol (Sal) and bupivacaine (Bup) enantiomers was performed by capillary elecytrophoresis with a dual mixture of neutral cyclodextrins as chiral selector. The influence on the separation of several parameters such as buffer composition, pH, the concentration ratio of 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CD) to dimethyl-beta-cyclodextrin (DM-beta-CD) was investigated. A better separation was obtained for Sal and Bup with the CD mixtures compared to the use of HP-beta-CD or DM-beta-CD alone. The best simultaneous separation of Sal and Bup enantiomers was achieved with a 20 mM HP-beta-CD and 20 mM DM-beta-CD at pH 2.5 in a triethanolamine (TEA)/phosphate buffer. This method-utilized chlorphenamine (Chl) as an internal standard was found to be linear in the range 0.5-100 microg/mL and 0.5-150 microg/mL for Sal and Bup enantiomers, respectively. The limits of detection for both enantiomers of Sal and Bup were 0.18 and 0.24 microg/mL, respectively. The proposed method was applied to monitor Sal and Bup enantiomers concentration change in rat blood samples obtained from a male rat after celiac doses administration 0-30 min of Sal and Bup racemate. The method could also be used to determine Sal enantiomers in a pharmaceutical aerosol.  相似文献   

9.
A stereospecific method of analysis of racemic isosakuranetin (5,7-dihydroxy-4'-methoxyflavanone) in biological fluids is necessary to study pharmacokinetics. A simple high-performance liquid chromatographic method was developed for the determination of isosakuranetin enantiomers. Separation was achieved on a Chiralpak AD-RH column with ultraviolet (UV)-detection at 286 nm. The standard curves in urine were linear ranging from 0.5 to 100.0 microg/ml for each enantiomer. The mean extraction efficiency was >88.0%. Precision of the assay was <15% (CV) and was within 12% at the limit of quantitation (0.5 microg/ml). Bias of the assay was <15% and was within 6% at the limit of quantitation. The assay was applied successfully to stereospecific disposition of isosakuranetin enantiomers in rat urine.  相似文献   

10.
A simple high-performance liquid chromatographic (HPLC) method has been developed for the determination of epimedin C in rat plasma and applied to a pharmacokinetic study in rats after administration of Herba Epimedii extract. After addition of carbamazepine as an internal standard plasma samples were extracted with ethyl acetate. HPLC analysis of the extracts was performed on a Hypersil ODS2 analytical column using acetonitrile -0.4% acetic acid (25:75, v/v) as the mobile phase. The UV detector was set at 260 nm. The standard curve was linear over the range 0.05-4.0 microg/mL. The lower limit of quantification was 0.05 microg/mL. The HPLC method developed could be easily applied to the determination and pharmacokinetic study of epimedin C in rat plasma after giving the animals Herba Epimedii extract.  相似文献   

11.
Warfarin is the most common agent used for control and prevention of venous as well as arterial thromboembolism. Although warfarin is administered as a racemic mixture of two stereoisomers (S and R), the S-form is mainly responsible for the anticoagulant effect. The anticoagulant effect of the drug is monitored by analysis of prothrombin complex (International Normalised Ratio,INR). In some cases, however, the measurements of plasma warfarin concentration are needed. Here, we present a new, rapid, sensitive and cost-effective HPLC-method for the determination of warfarin enantiomers in plasma. The chromatographic system consisted of Waters 616 gradient pump, Waters 996 photo diode array detector, Gilson 230 autoinjector and Pirkle (R,R) Whelk-O1 column (25 cmx4.6 mm I.D., 5 microm). An isocratic mobile phase of methanol/acetonitrile/water (50/10/40, v/v) with 0.1% glacial acetic acid was used. The follow rate was 1 mL/min. Data analysis was carried out with Waters Millennium32. The absorbance at 305 nm was measured with a total run-time of 15 min. Method linearity was studied by establishing regression data containing eight points over the range 0.08-10 microg/mL. In this range, warfarin showed to be linear (r2=0.9997 for S-warfarin and r2=0.9998 for R-warfarin). The limit of detection in plasma was 16 ng/mL for S-warfarin and 18 ng/mL for R-warfarin. Limit of quatitation was defined as 10xLOD. The extraction recovery was approximately 80%. Also the relation between INR and warfarin concentration was investigated. As expected, there was a low correlation between these two variables (r=0.23, y=0.3044x+0.9712). This method offers a rapid and cost-effective determination of warfarin enantiomers in human plasma.  相似文献   

12.
Qiu J  Wang Q  Zhu W  Jia G  Wang X  Zhou Z 《Chirality》2007,19(1):51-55
A chiral high-performance liquid chromatography method with diode array detector was developed and validated for stereoselective determination of benalaxyl (BX) in rabbit plasma. Good separation was achieved at 20 degrees C using cellulose tris-(3,5-dimethylphenylcarbamate) as chiral stationary phase, a mixture of n-hexane and 2-propanol (97:3) as mobile phase at a flow rate of 1.0 ml/min. The assay method was linear over a range of concentrations (0.25-25 microg/ml) in plasma and the mean recovery was greater than 90% for both enantiomers. The limits of quantification and detection for both enantiomers in plasma were 0.25 and 0.1 microg/ml, respectively. Intra- and interday relative standard deviations (RSDs) did not exceed 10% for three-tested concentrations. The method was successfully applied to pharmacokinetic studies of BX enantiomers in rabbits. The result suggested that the pharmacokinetics of BX enantiomers was stereoselective in rabbits.  相似文献   

13.
A selective, accurate and reproducible high-performance liquid chromatographic (HPLC) method for the separation of individual enantiomers of DRF 2725 [R(+)-DRF 2725 and S(-)-DRF 2725 or ragaglitazar] was obtained on a chiral HPLC column (Chiralpak). During method optimization, the separation of enantiomers of DRF 2725 was investigated to determine whether mobile phase composition, flow-rate and column temperature could be varied to yield the base line separation of the enantiomers. Following liquid-liquid extraction, separation of enantiomers of DRF 2725 and internal standard (I.S., desmethyl diazepam) was achieved using an amylose based chiral column (Chiralpak AD) with the mobile phase, n-hexane-propanol-ethanol-trifluoro acetic acid (TFA) in the ratio of 89.5:4:6:0.5 (v/v). Baseline separation of DRF 2725 enantiomers and I.S., free from endogenous interferences, was achieved in less than 25 min. The eluate was monitored using an UV detector set at 240 nm. Ratio of peak area of each enantiomer to I.S. was used for quantification of plasma samples. Nominal retention times of R(+)-DRF 2725, S(-)-DRF 2725 and I.S. were 15.8, 17.7 and 22.4 min, respectively. The standard curves for DRF 2725 enantiomers were linear (R(2) > 0.999) in the concentration range 0.3-50 microg/ml for each enantiomer. Absolute recovery, when compared to neat standards, was 70-85% for DRF 2725 enantiomers and 96% for I.S. from rat plasma. The lower limit of quantification (LLOQ) for each enantiomers of DRF 2725 was 0.3 microg/ml. The inter-day precisions were in the range of 1.71-4.60% and 3.77-5.91% for R(+)-DRF 2725, S(-)-DRF 2725, respectively. The intra-day precisions were in the range of 1.06-11.5% and 0.58-12.7% for R(+)-DRF 2725, S(-)-DRF 2725, respectively. Accuracy in the measurement of quality control (QC) samples was in the range 83.4-113% and 83.3-113% for R(+)-DRF 2725, S(-)-DRF 2725, respectively. Both enantiomers and I.S. were stable in the battery of stability studies viz., bench-top (up to 6 h), auto-sampler (up to 12 h) and freeze/thaw cycles (n = 3). Stability of DRF 2725 enantiomers was established for 15 days at -20 degrees C. The application of the assay to a pharmacokinetic study of ragaglitazar [S(-)-DRF 2725] in rats is described. It was unequivocally demonstrated that ragaglitazar does not undergo chiral inversion to its antipode in vivo in rat plasma.  相似文献   

14.
A liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed to quantify colistin in human plasma and urine, and perfusate and urine from the isolated perfused rat kidney (IPK). Solid phase extraction (SPE) preceded chromatography on a Synergi Fusion-RP column with a mobile phase of acetonitrile, water and acetic acid (80/19/1) at 0.2mL/min. Ions were generated using electrospray ionization and detected in the positive-ion mode. Multiple reaction monitoring was performed using precursor-product ion combinations. Calibration curves were linear from 0.028microg/mL (human plasma, IPK perfusate and urine)/0.056microg/mL (human urine) to 1.78microg/mL (all four media) for colistin A sulfate; corresponding values for colistin B sulfate were 0.016/0.032 to 1.01microg/mL. Accuracy and precision were within 10%. The LLOQ for colistin A sulfate was 0.028microg/mL in human plasma, IPK perfusate and urine and 0.056microg/mL in human urine; corresponding values for colistin B sulfate were 0.016 and 0.032microg/mL. The low sample volume, short analysis time and low LLOQ are ideal for pre-clinical and human pharmacokinetic studies of colistin.  相似文献   

15.
The development and validation of a direct injection high-performance liquid chromatographic (HPLC) method, with column switching, for the determination of metyrapol enantiomers and metyrapone in human plasma is described. The system used in this work was composed of a restricted access media (RAM) bovine serum albumin (BSA) octyl column coupled to an amylose tris(3,5-dimethoxyphenylcarbamate) chiral column. Water was used as eluent for the first 5 min at a flow rate of 1.0 ml/min for the elution of the plasma proteins and then acetonitrile-water (30:70 v/v) for the transfer and analysis of metyrapol enantiomers and metyrapone, which were detected by UV at lambda = 260 nm. The total analysis time was about 32 min. The calibration curves for each enantiomer and for the metyrapone were linear in the ranges 0.075-0.75 microg/ml and 0.150-1.50 microg/ml, respectively. Recoveries, intra- and interday precision and accuracy were determined using three quality controls, one low (0.18 microg/ml), one medium (0.75 microg/ml), and one high (1.35 microg/ml) plasma concentration. Quantitative recoveries and good precision and accuracy were obtained. The limit of quantitation were 0.045 microg/ml for both enantiomers and for the metyrapone.  相似文献   

16.
A highly sensitive and enantioselective assay has been developed and validated for the estimation of torcetrapib (TTB) enantiomers [(+)-TTB and (-)-TTB] in hamster plasma with chiral liquid chromatography coupled to tandem mass spectrometry with an atmospheric pressure chemical ionization interface in the negative-ion mode. The assay procedure involves liquid-liquid extraction of TTB enantiomers and IS (DRL-16126) from 100 microL hamster plasma with acetonitrile. TTB enantiomers were separated using n-hexane:propanol (80:20, v/v) at a flow rate of 0.7 mL/min on a Chiralpak AD column. The MS/MS ion transitions monitored were 599.2-->340.2 for TTB and 623.2-->298.1 for IS. Absolute recovery was found to be between 64 and 68% for TTB enantiomers and >100% for IS. The standard curves for TTB enantiomers were linear (r(2)>0.995) in the concentration range 5-2500 ng/mL for each enantiomer with an LLOQ of 5 ng/mL for each enantiomer. The inter- and intra-day precisions were in the range of 10.5-12.4 and 9.15-11.5% and 3.75-12.9 and 5.16-12.5% for (+)-TTB and (-)-TTB, respectively. Accuracy in the measurement of quality control (QC) samples was in the range 91.3-105 and 88.6-111% for (+)-TTB and (-)-TTB, respectively. This novel method has been applied to the study of stereoselective oral pharmacokinetics of (-)-TTB.  相似文献   

17.
M Enquist  J Hermansson 《Chirality》1989,1(3):209-215
A method for the determination of (R)- and (S)-atenolol in human plasma and urine is described. The enantiomers of atenolol are extracted into dichloromethane containing 3% heptafluorobutanol followed by acetylation with acetic anhydride at 60 degrees C for 2 h. The acetylated enantiomers were separated on a chiral alpha 1-AGP column. Quantitation was performed using fluorescence detection. A phosphate buffer pH 7.1 (0.01 M phosphate) containing 0.25% (v/v) acetonitrile was used as mobile phase. The described procedure allows the detection of less than 6 ng of each enantiomer in 1 ml plasma. The relative standard deviation is 4.4% at 30 ng/ml of each enantiomer in plasma. The plasma concentration of (R)- and (S)-atenolol did not differ significantly in two subjects who received a single tablet of racemic atenolol. The R/S ratio of atenolol in urine was approximately 1.  相似文献   

18.
A rapid, selective and highly sensitive reversed-phase high-performance liquid chromatography (HPLC) method was developed for the determination of levosulpiride, 5-(aminosulfonyl)-N-[(1-ethyl-2-pyrrolidinyl)methyl]-2-methoxy benzamide, in human serum and urine. The method involved the extraction with a dichloromethane followed by back-extraction into 0.025 M sulfuric acid. HPLC analysis was carried out using reversed-phase isocratic elution with a Luna C(18)(2) 5 microm column, a mobile phase of acetonitrile-0.01 M potassium hydrogen phosphate (30:70, v/v, adjusted to pH 8.5 with triethylamine), and a fluorescence detector with excitation at 300 nm and emission at 365 nm. The chromatograms showed good resolution and sensitivity and no interference of human serum and urine. The calibration curves were linear over the concentration range 0.25-200 ng/ml for serum and 0.2-20 microg/ml for urine with correlation coefficients greater than 0.997. Intra- and inter-day assay precision and accuracy fulfilled the international requirements. The mean absolute recovery for human serum was 89.8+/-3.7%. The lower limits of quantitation in human serum and urine were 0.25 ng/ml and 0.2 microg/ml, respectively, which were sensitive enough for pharmacokinetic studies. Stability studies showed that levosulpiride in human serum and urine was stable during storage, or during the assay procedure. This method was successfully applied to the study of pharmacokinetics of levosulpiride in human volunteers following a single oral administration of levosulpiride (25 mg) tablet.  相似文献   

19.
Indomethacin (IND) is the drug of choice for the closure of a patent ductus arteriosus (PDA) in neonates. This paper describes a simple, sensitive, accurate and precise microscale HPLC method suitable for the analysis of IND in plasma of premature neonates. Samples were prepared by plasma protein precipitation with acetonitrile containing the methyl ester of IND as the internal standard (IS). Chromatography was performed on a Hypersil C(18) column. The mobile phase of methanol, water and orthophosphoric acid (70:29.5:0.5, v/v, respectively), was delivered at 1.5 mL/min and monitored at 270 nm. IND and the IS were eluted at 2.9 and 4.3 min, respectively. Calibrations were linear (r>0.999) from 25 to 2500 microg/L. The inter- and intra-day assay imprecision was less than 4.3 % at 400-2000 microg/L, and less than 22.1% at 35 microg/L. Inaccuracy ranged from -6.0% to +1.0% from 35 to 2000 microg/L. The absolute recovery of IND over this range was 93.0-113.3%. The IS was stable for at least 36 h when added to plasma at ambient temperature. This method is suitable for pharmacokinetic studies of IND and has potential for monitoring therapy in infants with PDA when a target therapeutic range for IND has been validated.  相似文献   

20.
Multidimensional HPLC is a powerful tool for the analysis of samples of a high degree of complexity. This work reports the use of multidimensional HPLC by coupling a RAM column with a chiral polysaccharide column to the analysis of Pantoprazole in human plasma by direct injection. The enantiomers from the plasma samples were separated with high resolution on a tris(3,5-dimethoxyphenylcarbamate) of amylose phase after clean-up by a RAM BSA octyl column. Water was used as solvent for the first 5 min in a flow-rate of 1.0 ml/min for the elution of the plasmatic proteins and then acetonitrile-water (35:65 v/v) for the transfer and analysis of pantoprazole enantiomers, which were detected by UV at 285 nm. Analysis time was 28 min with no time spent on sample preparation. A good linear relationship was obtained in the concentration range of 0.20 to 1.5 microg/ml for each enantiomer. Inter and intra-day precision and accuracy were determined by one low (0.24 microg/ml), one medium (0.70 microg/ml) and one high (1.3 microg/ml) plasma concentration and gave a C.V. varying from 1.80 to 8.43% and accuracy from 86 to 92%. Recoveries of pantoprazole enantiomers were in the range of 93.7-101.2%. The validated method was applied to the analysis of the plasma samples obtained from ten Brazilian volunteers who received an 80 mg oral dose of racemic pantoprazole and was able to quantify the enantiomers of pantoprazole in all clinical samples analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号