首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The coalescent process in the human-chimpanzee ancestral population is investigated using a model, which incorporates a certain time period of gene flow during the speciation process. a is a parameter to represent the degree and time of gene flow, and the model is identical to the null model with an instantaneous species split when a=infinity. A maximum likelihood (ML) method is developed to estimate a, and its power and reliability is investigated by coalescent simulations. The ML method is applied to nucleotide divergence data between human and chimpanzee. It is found that the null model with an instantaneous species split explains the data best, and no strong evidence for gene flow is detected. The result is discussed in the view of the mode of speciation. Another ML method is developed to estimate the male-female ratio (alpha) of mutation rate, in which the coalescent process in the ancestral population is taken into account.  相似文献   

2.
Estimation of population parameters for the common ancestors of humans and the great apes is important in understanding our evolutionary history. In particular, inference of population size for the human-chimpanzee common ancestor may shed light on the process by which the 2 species separated and on whether the human population experienced a severe size reduction in its early evolutionary history. In this study, the Bayesian method of ancestral inference of Rannala and Yang (2003. Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics. 164:1645-1656) was extended to accommodate variable mutation rates among loci and random species-specific sequencing errors. The model was applied to analyze a genome-wide data set of approximately 15,000 neutral loci (7.4 Mb) aligned for human, chimpanzee, gorilla, orangutan, and macaque. We obtained robust and precise estimates for effective population sizes along the hominoid lineage extending back approximately 30 Myr to the cercopithecoid divergence. The results showed that ancestral populations were 5-10 times larger than modern humans along the entire hominoid lineage. The estimates were robust to the priors used and to model assumptions about recombination. The unusually low X chromosome divergence between human and chimpanzee could not be explained by variation in the male mutation bias or by current models of hybridization and introgression. Instead, our parameter estimates were consistent with a simple instantaneous process for human-chimpanzee speciation but showed a major reduction in X chromosome effective population size peculiar to the human-chimpanzee common ancestor, possibly due to selective sweeps on the X prior to separation of the 2 species.  相似文献   

3.
Due to genetic variation in the ancestor of two populations or two species, the divergence time for DNA sequences from two populations is variable along the genome. Within genomic segments all bases will share the same divergence-because they share a most recent common ancestor-when no recombination event has occurred to split them apart. The size of these segments of constant divergence depends on the recombination rate, but also on the speciation time, the effective population size of the ancestral population, as well as demographic effects and selection. Thus, inference of these parameters may be possible if we can decode the divergence times along a genomic alignment. Here, we present a new hidden Markov model that infers the changing divergence (coalescence) times along the genome alignment using a coalescent framework, in order to estimate the speciation time, the recombination rate, and the ancestral effective population size. The model is efficient enough to allow inference on whole-genome data sets. We first investigate the power and consistency of the model with coalescent simulations and then apply it to the whole-genome sequences of the two orangutan sub-species, Bornean (P. p. pygmaeus) and Sumatran (P. p. abelii) orangutans from the Orangutan Genome Project. We estimate the speciation time between the two sub-species to be thousand years ago and the effective population size of the ancestral orangutan species to be , consistent with recent results based on smaller data sets. We also report a negative correlation between chromosome size and ancestral effective population size, which we interpret as a signature of recombination increasing the efficacy of selection.  相似文献   

4.
Rannala B  Yang Z 《Genetics》2003,164(4):1645-1656
The effective population sizes of ancestral as well as modern species are important parameters in models of population genetics and human evolution. The commonly used method for estimating ancestral population sizes, based on counting mismatches between the species tree and the inferred gene trees, is highly biased as it ignores uncertainties in gene tree reconstruction. In this article, we develop a Bayes method for simultaneous estimation of the species divergence times and current and ancestral population sizes. The method uses DNA sequence data from multiple loci and extracts information about conflicts among gene tree topologies and coalescent times to estimate ancestral population sizes. The topology of the species tree is assumed known. A Markov chain Monte Carlo algorithm is implemented to integrate over uncertain gene trees and branch lengths (or coalescence times) at each locus as well as species divergence times. The method can handle any species tree and allows different numbers of sequences at different loci. We apply the method to published noncoding DNA sequences from the human and the great apes. There are strong correlations between posterior estimates of speciation times and ancestral population sizes. With the use of an informative prior for the human-chimpanzee divergence date, the population size of the common ancestor of the two species is estimated to be approximately 20,000, with a 95% credibility interval (8000, 40,000). Our estimates, however, are affected by model assumptions as well as data quality. We suggest that reliable estimates have yet to await more data and more realistic models.  相似文献   

5.
The human and chimpanzee X chromosomes are less divergent than expected based on autosomal divergence. We study incomplete lineage sorting patterns between humans, chimpanzees and gorillas to show that this low divergence can be entirely explained by megabase-sized regions comprising one-third of the X chromosome, where polymorphism in the human-chimpanzee ancestral species was severely reduced. We show that background selection can explain at most 10% of this reduction of diversity in the ancestor. Instead, we show that several strong selective sweeps in the ancestral species can explain it. We also report evidence of population specific sweeps in extant humans that overlap the regions of low diversity in the ancestral species. These regions further correspond to chromosomal sections shown to be devoid of Neanderthal introgression into modern humans. This suggests that the same X-linked regions that undergo selective sweeps are among the first to form reproductive barriers between diverging species. We hypothesize that meiotic drive is the underlying mechanism causing these two observations.  相似文献   

6.
Profound knowledge of demographic history is a prerequisite for the understanding and inference of processes involved in the evolution of population differentiation and speciation. Together with new coalescent-based methods, the recent availability of genome-wide data enables investigation of differentiation and divergence processes at unprecedented depth. We combined two powerful approaches, full Approximate Bayesian Computation analysis (ABC) and pairwise sequentially Markovian coalescent modeling (PSMC), to reconstruct the demographic history of the split between two avian speciation model species, the pied flycatcher and collared flycatcher. Using whole-genome re-sequencing data from 20 individuals, we investigated 15 demographic models including different levels and patterns of gene flow, and changes in effective population size over time. ABC provided high support for recent (mode 0.3 my, range <0.7 my) species divergence, declines in effective population size of both species since their initial divergence, and unidirectional recent gene flow from pied flycatcher into collared flycatcher. The estimated divergence time and population size changes, supported by PSMC results, suggest that the ancestral species persisted through one of the glacial periods of middle Pleistocene and then split into two large populations that first increased in size before going through severe bottlenecks and expanding into their current ranges. Secondary contact appears to have been established after the last glacial maximum. The severity of the bottlenecks at the last glacial maximum is indicated by the discrepancy between current effective population sizes (20,000–80,000) and census sizes (5–50 million birds) of the two species. The recent divergence time challenges the supposition that avian speciation is a relatively slow process with extended times for intrinsic postzygotic reproductive barriers to evolve. Our study emphasizes the importance of using genome-wide data to unravel tangled demographic histories. Moreover, it constitutes one of the first examples of the inference of divergence history from genome-wide data in non-model species.  相似文献   

7.
To study the genomic divergences among hominoids and to estimate the effective population size of the common ancestor of humans and chimpanzees, we selected 53 autosomal intergenic nonrepetitive DNA segments from the human genome and sequenced them in a human, a chimpanzee, a gorilla, and an orangutan. The average sequence divergence was only 1.24% +/- 0.07% for the human-chimpanzee pair, 1.62% +/- 0.08% for the human-gorilla pair, and 1.63% +/- 0.08% for the chimpanzee-gorilla pair. These estimates, which were confirmed by additional data from GenBank, are substantially lower than previous ones, which included repetitive sequences and might have been based on less-accurate sequence data. The average sequence divergences between orangutans and humans, chimpanzees, and gorillas were 3.08% +/- 0.11%, 3.12% +/- 0.11%, and 3.09% +/- 0.11%, respectively, which also are substantially lower than previous estimates. The sequence divergences in other regions between hominoids were estimated from extensive data in GenBank and the literature, and Alus showed the highest divergence, followed in order by Y-linked noncoding regions, pseudogenes, autosomal intergenic regions, X-linked noncoding regions, synonymous sites, introns, and nonsynonymous sites. The neighbor-joining tree derived from the concatenated sequence of the 53 segments--24,234 bp in length--supports the Homo-Pan clade with a 100% bootstrap value. However, when each segment is analyzed separately, 22 of the 53 segments (approximately 42%) give a tree that is incongruent with the species tree, suggesting a large effective population size (N(e)) of the common ancestor of Homo and Pan. Indeed, a parsimony analysis of the 53 segments and 37 protein-coding genes leads to an estimate of N(e) = 52,000 to 96,000. As this estimate is 5 to 9 times larger than the long-term effective population size of humans (approximately 10,000) estimated from various genetic polymorphism data, the human lineage apparently had experienced a large reduction in effective population size after its separation from the chimpanzee lineage. Our analysis assumes a molecular clock, which is in fact supported by the sequence data used. Taking the orangutan speciation date as 12 to 16 million years ago, we obtain an estimate of 4.6 to 6.2 million years for the Homo-Pan divergence and an estimate of 6.2 to 8.4 million years for the gorilla speciation date, suggesting that the gorilla lineage branched off 1.6 to 2.2 million years earlier than did the human-chimpanzee divergence.  相似文献   

8.
Quantifying the role of gene flow during the divergence of closely related species is crucial to understanding the process of speciation. We collected DNA sequence data from 20 loci (one mitochondrial, 13 autosomal, and six sex‐linked) for population samples of Lazuli Buntings (Passerina amoena) and Indigo Buntings (Passerina cyanea) (Aves: Cardinalidae) to test explicitly between a strict allopatric speciation model and a model in which divergence occurred despite postdivergence gene flow. Likelihood ratio tests of coalescent‐based population genetic parameter estimates indicated a strong signal of postdivergence gene flow and a strict allopatric speciation model was rejected. Analyses of partitioned datasets (mitochondrial, autosomal, and sex‐linked) suggest the overall gene flow patterns are driven primarily by autosomal gene flow, as there is no evidence of mitochondrial gene flow and we were unable to reject an allopatric speciation model for the sex‐linked data. This pattern is consistent with either a parapatric divergence model or repeated periods of allopatry with gene flow occurring via secondary contact. These results are consistent with the low fitness of female avian hybrids under Haldane's rule and demonstrate that sex‐linked loci likely are important in the initial generation of reproductive isolation, not just its maintenance.  相似文献   

9.
Grasshoppers in the genus Melanoplus have undergone a radiation in the 'sky islands' of western North America, with many species originating during the Pleistocene. Despite their recent origins, phylogenetic analyses indicate that all the species exhibit monophyletic or paraphyletic gene trees. The objectives of this study were to determine whether the monophyletic genealogies are the result of a bottleneck at speciation and to investigate the extent to which the different phylogenetic states of eight species (i.e. monophyletic versus paraphyletic gene trees) can be ascribed to the effects of speciation. A coalescent simulation was used to test for a bottleneck at speciation in each species. The effective population sizes and demographic histories of species were compared across taxa to evaluate the possibility that the paraphyly versus monophyly of the species reflects differential rates of lineage loss rather than speciation mode. While coalescent analyses indicate that the monophyly of Melanoplus species might not be indicative of bottlenecks at speciation, the results suggest that the paraphyletic gene trees may reflect the demography of speciation, involving localized divergences in the ancestral species. With respect to different models of Pleistocene divergence, the data do not support a model of founder-effect speciation but are compatible with divergence in allopatric refugia.  相似文献   

10.
Dating the time of divergence and understanding speciation processes are central to the study of the evolutionary history of organisms but are notoriously difficult. The difficulty is largely rooted in variations in the ancestral population size or in the genealogy variation across loci. To depict the speciation processes and divergence histories of three monophyletic Takydromus species endemic to Taiwan, we sequenced 20 nuclear loci and combined with one mitochondrial locus published in GenBank. They were analysed by a multispecies coalescent approach within a Bayesian framework. Divergence dating based on the gene tree approach showed high variation among loci, and the divergence was estimated at an earlier date than when derived by the species‐tree approach. To test whether variations in the ancestral population size accounted for the majority of this variation, we conducted computer inferences using isolation‐with‐migration (IM) and approximate Bayesian computation (ABC) frameworks. The results revealed that gene flow during the early stage of speciation was strongly favoured over the isolation model, and the initiation of the speciation process was far earlier than the dates estimated by gene‐ and species‐based divergence dating. Due to their limited dispersal ability, it is suggested that geographical isolation may have played a major role in the divergence of these Takydromus species. Nevertheless, this study reveals a more complex situation and demonstrates that gene flow during the speciation process cannot be overlooked and may have a great impact on divergence dating. By using multilocus data and incorporating Bayesian coalescence approaches, we provide a more biologically realistic framework for delineating the divergence history of Takydromus.  相似文献   

11.
Yang Z 《Genetics》2002,162(4):1811-1823
Polymorphisms in an ancestral population can cause conflicts between gene trees and the species tree. Such conflicts can be used to estimate ancestral population sizes when data from multiple loci are available. In this article I extend previous work for estimating ancestral population sizes to analyze sequence data from three species under a finite-site nucleotide substitution model. Both maximum-likelihood (ML) and Bayes methods are implemented for joint estimation of the two speciation dates and the two population size parameters. Both methods account for uncertainties in the gene tree due to few informative sites at each locus and make an efficient use of information in the data. The Bayes algorithm using Markov chain Monte Carlo (MCMC) enjoys a computational advantage over ML and also provides a framework for incorporating prior information about the parameters. The methods are applied to a data set of 53 nuclear noncoding contigs from human, chimpanzee, and gorilla published by Chen and Li. Estimates of the effective population size for the common ancestor of humans and chimpanzees by both ML and Bayes methods are approximately 12,000-21,000, comparable to estimates for modern humans, and do not support the notion of a dramatic size reduction in early human populations. Estimates published previously from the same data are several times larger and appear to be biased due to methodological deficiency. The divergence between humans and chimpanzees is dated at approximately 5.2 million years ago and the gorilla divergence 1.1-1.7 million years earlier. The analysis suggests that typical data sets contain useful information about the ancestral population sizes and that it is advantageous to analyze data of several species simultaneously.  相似文献   

12.
Probabilities of monophyly, paraphyly, and polyphyly of two-species gene genealogies are computed for modest sample sizes and compared for two different Λ coalescent processes. Coalescent processes belonging to the Λ coalescent family admit asynchronous multiple mergers of active ancestral lineages. Assigning a timescale to the time of divergence becomes a central issue when different populations have different coalescent processes running on different timescales. Clade probabilities in single populations are also computed, which can be useful for testing for taxonomic distinctiveness of an observed set of monophyletic lineages. The coalescence rates of multiple merger coalescent processes are functions of coalescent parameters. The effect of coalescent parameters on the probabilities studied depends on the coalescent process, and if the population is ancestral or derived. The probability of reciprocal monophyly tends to be somewhat lower, when associated with a Λ coalescent, under the null hypothesis that two groups come from the same population. However, even for fairly recent divergence times, the probability of monophyly tends to be higher as a function of the number of generations for coalescent processes that admit multiple mergers, and is sensitive to the parameter of one of the example processes.  相似文献   

13.
Abstract We present moments and likelihood methods that estimate a DNA substitution rate from a group of closely related sister species pairs separated at an assumed time, and we test these methods with simulations. The methods also estimate ancestral population size and can test whether there is a significant difference among the ancestral population sizes of the sister species pairs. Estimates presented in the literature often ignore the ancestral coalescent prior to speciation and therefore should be biased upward. The simulations show that both methods yield accurate estimates given sample sizes of five or more species pairs and that better likelihood estimates are obtained if there is no significant difference among ancestral population sizes. The model presented here indicates that the larger than expected variation found in multitaxa datasets can be explained by variation in the ancestral coalescence and the Poisson mutation process. In this context, observed variation can often be accounted for by variation in ancestral population sizes rather than invoking variation in other parameters, such as divergence time or mutation rate. The methods are applied to data from two groups of species pairs (sea urchins and Alpheus snapping shrimp) that are thought to have separated by the rise of Panama three million years ago.  相似文献   

14.
There is a long-standing debate over whether or not the Pleistocene glaciations promoted speciation. While some models predict that extensive mixing of populations during interglacial expansion would have inhibited divergence, others postulate that divergence among allopatric glacial refuges or founder events during recolonization of previously glaciated areas would have promoted differentiation. Using a combination of traditional and coalescent based population genetic approaches, this study finds that the glaciations did not inhibit divergence among populations of the grasshopper Melanoplus oregonensis. Instead, drift associated with recolonization of previously glaciated areas, as well as divergence among multiple allopatric glacial refugia, have both contributed to differentiation in this montane grasshopper from the 'sky islands' of the northern Rocky Mountains. Significant population structure was detected by phylogenetic and FST analyses, including significant FST values among individual pairs of sky-island populations. In addition to clustering of haplotypes within populations, there is some evidence of regional phylogeographic structure, although none of the 'regional groups' form a monophyletic clade and there is a lack of concordance between the genealogical and geographical positions of some haplotypes. However, coalescent simulations confirm there is significant regional phylogeographic structure that most likely reflects divergence among multiple ancestral refugial populations, and indicate that it is very unlikely that the observed gene tree could have been produced by the fragmentation of a single widespread ancestral population. Thus, rather than inhibiting differentiation, the glaciations appear to have promoted population divergence in M. oregonensis, suggesting that they may have contributed to the radiation of Melanoplus species during the Pleistocene.  相似文献   

15.
The genealogical relationship of human, chimpanzee, and gorilla varies along the genome. We develop a hidden Markov model (HMM) that incorporates this variation and relate the model parameters to population genetics quantities such as speciation times and ancestral population sizes. Our HMM is an analytically tractable approximation to the coalescent process with recombination, and in simulations we see no apparent bias in the HMM estimates. We apply the HMM to four autosomal contiguous human–chimp–gorilla–orangutan alignments comprising a total of 1.9 million base pairs. We find a very recent speciation time of human–chimp (4.1 ± 0.4 million years), and fairly large ancestral effective population sizes (65,000 ± 30,000 for the human–chimp ancestor and 45,000 ± 10,000 for the human–chimp–gorilla ancestor). Furthermore, around 50% of the human genome coalesces with chimpanzee after speciation with gorilla. We also consider 250,000 base pairs of X-chromosome alignments and find an effective population size much smaller than 75% of the autosomal effective population sizes. Finally, we find that the rate of transitions between different genealogies correlates well with the region-wide present-day human recombination rate, but does not correlate with the fine-scale recombination rates and recombination hot spots, suggesting that the latter are evolutionarily transient.  相似文献   

16.
The completion of the Panamanian Isthmus is one of the greatest natural experiments in evolution, sending multiple species pairs from a broad range of taxonomic groups on independent evolutionary trajectories. The resulting transisthmian sister species have been used as model systems for examining consequences that accompany cessation of gene flow in formerly panmictic populations. However, variance in pairwise genetic distances of these "geminates" often exceeds expectations, seemingly conflicting with the assumption that separation of populations was contemporaneous with the final closure of the Isthmus. Multilocus datasets and coalescent-based analytical methods can be used to estimate divergence times while accounting for variance in gene divergence that predates isolation, thus removing the need to invoke unequal divergence times. Here we present results from Bayesian analyses of sequence data from seven nuclear and one mitochondrial marker in eight transisthmian species pairs in the snapping shrimp genus Alpheus . Divergence times in two species pairs were shown to occur much earlier than the Isthmus final closure, but much of the variance in pairwise genetic distances from cytochrome oxidase I (COI) was explained when ancestral polymorphisms were accounted for. Results illustrate how coalescent approaches may be more appropriate for dating recent divergences than for estimating ancient speciation events.  相似文献   

17.
High‐latitude diversification is a process characterized by speciation and extinction due to climatically driven vicariance and dispersal events. McKay’s buntings (Plectrophenax hyperboreus) are high‐latitude island endemic songbirds, and their global range is restricted to Beringia. Snow buntings (P. nivalis), their closest relatives, are distributed throughout the Holarctic, breeding in available habitat surrounding the island range of McKay’s buntings. We sequenced 1123 base pairs of mitochondrial DNA for 40 individuals of each species and analysed a total of 913 AFLPs for 57 individuals. Both marker types suggested weak but significant genetic differentiation. Analysis of sequence data indicated divergence occurring when the current breeding range of McKay’s buntings was a hill on the Beringian steppe (~18 400 to ~73 700 years before present), suggesting that snow buntings were restricted to lower latitudes by ice sheets. Ancestral effective population size estimates indicate a founder event in McKay’s buntings followed by an expansion and then a reduction in effective size. Rising sea levels and asymmetric hybridization from McKay’s buntings into the postglacially‐colonizing population of snow buntings could account for this reduction. Reproductive isolation is likely maintained through differential arrival dates on breeding grounds and the high breeding density of McKay’s buntings. This recent, high‐latitude divergence best fits a model of founder event speciation driven by vicariance and oscillations in habitat due to climate change.  相似文献   

18.
Wall JD 《Genetics》2003,163(1):395-404
This article presents a new method for jointly estimating species divergence times and ancestral population sizes. The method improves on previous ones by explicitly incorporating intragenic recombination, by utilizing orthologous sequence data from closely related species, and by using a maximum-likelihood framework. The latter allows for efficient use of the available information and provides a way of assessing how much confidence we should place in the estimates. I apply the method to recently collected intergenic sequence data from humans and the great apes. The results suggest that the human-chimpanzee ancestral population size was four to seven times larger than the current human effective population size and that the current human effective population size is slightly >10,000. These estimates are similar to previous ones, and they appear relatively insensitive to assumptions about the recombination rates or mutation rates across loci.  相似文献   

19.
The human and chimpanzee karyotypes are distinguishable in terms of nine pericentric inversions. According to the recombination suppression model of speciation, these inversions could have promoted the process of parapatric speciation between hominoid populations ancestral to chimpanzees and humans. Were recombination suppression to have occurred in inversion heterozygotes, gene flow would have been reduced, resulting in the accumulation of genetic incompatibilities leading to reproductive isolation and eventual speciation. In an attempt to detect the molecular signature of such events, the sequence divergence of non-coding DNA was compared between humans and chimpanzees. Precise knowledge of the locations of the inversion breakpoints permitted accurate discrimination between inverted and non-inverted regions. Contrary to the predictions of the recombination suppression model, sequence divergence was found to be lower in inverted chromosomal regions as compared to non-inverted regions, albeit with borderline statistical significance. Thus, no signature of recombination suppression resulting from inversion heterozygosity appears to be detectable by analysis of extant human and chimpanzee non-coding DNA. The precise delineation of the inversion breakpoints may nevertheless still prove helpful in identifying potential speciation-relevant genes within the inverted regions.  相似文献   

20.
Walsh HE  Jones IL  Friesen VL 《Genetics》2005,171(4):1885-1894
Whether speciation results more frequently from the genetic consequences of founder events or from gradual genetic divergence of large populations is a matter of debate. In this study, multiple analyses were applied to data from three loci (cytochrome b, alpha-enolase intron VIII, and MHC class II B) to test for founder effects associated with speciation in Aethia (Aves: Alcidae), a genus of seabirds thought to have undergone a rapid founder-induced radiation. Effective population sizes (N(e)) were derived from estimators of based on allelic diversity and the coalescent and from data on trans-species polymorphism. Results indicated that N(e) has been on the order of 10(5)-10(6) individuals throughout the evolutionary histories of least and crested auklets (A. pusilla and A. cristatella, respectively) and that N(e) of the ancestral species was at least 16,000 individuals. Computer simulations of MHC evolution indicated that a single-generation bottleneck at speciation could not have involved <85 individuals for each species. More moderate simulation scenarios indicated that population size could not have dropped below 2000 individuals at the time of species founding. Demographic history appears to have been stable for the auklets throughout the past several million years, and a founder effect associated with their speciation is unlikely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号