共查询到20条相似文献,搜索用时 15 毫秒
1.
Langergraber KE Siedel H Mitani JC Wrangham RW Reynolds V Hunt K Vigilant L 《PloS one》2007,2(10):e973
A large body of theoretical work suggests that analyses of variation at the maternally inherited mitochondrial (mt)DNA and the paternally inherited non-recombining portion of the Y chromosome (NRY) are a potentially powerful way to reveal the differing migratory histories of men and women across human societies. However, the few empirical studies comparing mtDNA and NRY variation and known patterns of sex-biased migration have produced conflicting results. Here we review some methodological reasons for these inconsistencies, and take them into account to provide an unbiased characterization of mtDNA and NRY variation in chimpanzees, one of the few mammalian taxa where males routinely remain in and females typically disperse from their natal groups. We show that patterns of mtDNA and NRY variation are more strongly contrasting in patrilocal chimpanzees compared with patrilocal human societies. The chimpanzee data we present here thus provide a valuable comparative benchmark of the patterns of mtDNA and NRY variation to be expected in a society with extremely female-biased dispersal. 相似文献
2.
Szamalek JM Cooper DN Hoegel J Hameister H Kehrer-Sawatzki H 《Cytogenetic and genome research》2007,116(1-2):53-60
The human and chimpanzee karyotypes are distinguishable in terms of nine pericentric inversions. According to the recombination suppression model of speciation, these inversions could have promoted the process of parapatric speciation between hominoid populations ancestral to chimpanzees and humans. Were recombination suppression to have occurred in inversion heterozygotes, gene flow would have been reduced, resulting in the accumulation of genetic incompatibilities leading to reproductive isolation and eventual speciation. In an attempt to detect the molecular signature of such events, the sequence divergence of non-coding DNA was compared between humans and chimpanzees. Precise knowledge of the locations of the inversion breakpoints permitted accurate discrimination between inverted and non-inverted regions. Contrary to the predictions of the recombination suppression model, sequence divergence was found to be lower in inverted chromosomal regions as compared to non-inverted regions, albeit with borderline statistical significance. Thus, no signature of recombination suppression resulting from inversion heterozygosity appears to be detectable by analysis of extant human and chimpanzee non-coding DNA. The precise delineation of the inversion breakpoints may nevertheless still prove helpful in identifying potential speciation-relevant genes within the inverted regions. 相似文献
3.
Doxorubicin is co-transported with glutathione by several multidrug resistance proteins (MRPs). In order to check whether weak non-covalent aggregates between doxorubicin and glutathione can be formed, which might be substrates for the transporter, the effect of glutathione on the partition coefficient of doxorubicin was studied. No evidence of an effect of glutathione (at levels up to 20 microM) on the partition coefficient of doxorubicin was found in the pH range of 4.0-7.4. These results indicate that non-covalent doxorubicin-glutathione complexes do not form. 相似文献
4.
5.
This paper tests the proposal that chimpanzees (Pan troglodytes) and humans have similar rates of death from intraspecific aggression, whereas chimpanzees have higher rates of non-lethal physical attack (Boehm 1999, Hierarchy in the forest: the evolution of egalitarian behavior. Harvard University Press). First, we assembled data on lethal aggression from long-term studies of nine communities of chimpanzees living in five populations. We calculated rates of death from intraspecific aggression both within and between communities. Variation among communities in mortality rates from aggression was high, and rates of death from intercommunity and intracommunity aggression were not correlated. Estimates for average rates of lethal violence for chimpanzees proved to be similar to average rates for subsistence societies of hunter–gatherers and farmers. Second, we compared rates of non-lethal physical aggression for two populations of chimpanzees and one population of recently settled hunter–gatherers. Chimpanzees had rates of aggression between two and three orders of magnitude higher than humans. These preliminary data support Boehms hypothesis. 相似文献
6.
Antonios A. Augustinos Elena Drosopoulou Aggeliki Gariou-Papalexiou Elias D. Asimakis Carlos Cáceres George Tsiamis Kostas Bourtzis Penelope Mavragani-Tsipidou Antigone Zacharopoulou 《ZooKeys》2015,(540):273-298
The Bactrocera
dorsalis species complex, currently comprising about 90 entities has received much attention. During the last decades, considerable effort has been devoted to delimiting the species of the complex. This information is of great importance for agriculture and world trade, since the complex harbours several pest species of major economic importance and other species that could evolve into global threats. Speciation in Diptera is usually accompanied by chromosomal rearrangements, particularly inversions that are assumed to reduce/eliminate gene flow. Other candidates currently receiving much attention regarding their possible involvement in speciation are reproductive symbionts, such as Wolbachia, Spiroplasma, Arsenophonus, Rickettsia and Cardinium. Such symbionts tend to spread quickly through natural populations and can cause a variety of phenotypes that promote pre-mating and/or post-mating isolation and, in addition, can affect the biology, physiology, ecology and evolution of their insect hosts in various ways. Considering all these aspects, we present: (a) a summary of the recently gained knowledge on the cytogenetics of five members of the Bactrocera
dorsalis complex, namely Bactrocera
dorsalis
s.s., Bactrocera
invadens, Bactrocera
philippinensis, Bactrocera
papayae and Bactrocera
carambolae, supplemented by additional data from a Bactrocera
dorsalis
s.s. colony from China, as well as by a cytogenetic comparison between the dorsalis complex and the genetically close species, Bactrocera
tryoni, and, (b) a reproductive symbiont screening of 18 different colonized populations of these five taxa. Our analysis did not reveal any chromosomal rearrangements that could differentiate among them. Moreover, screening for reproductive symbionts was negative for all colonies derived from different geographic origins and/or hosts. There are many different factors that can lead to speciation, and our data do not support chromosomal and/or symbiotic-based speciation phenomena in the taxa under study. 相似文献
7.
Despite more than a century of interest in the evolution ofhumans from our close relatives the great apes, the genes responsiblefor phenotypic differences between humans and chimpanzees haveremained elusive. Sequencing of the chimpanzee genome is expectedto identify some 42 million nucleotide differences between humansand chimpanzee. How can we identify the small proportion ofthese differences which are the essential elements of beinghuman? We have analyzed the draft human genome to find regionswhich may have experienced recent strong selection in the humanline. Included in the identified regions are several genes forneural development and function, skeletal development, and fatmetabolism. These observations provide a starting point in thesearch to identify the salient genetic differences between modernhumans and our immediate hominid ancestors. Strong directional selection for a favorable new allele cancause 相似文献
8.
Biochemical and genetic evidence for a macromolecular -glucuronidase complex in microsomal membranes 总被引:10,自引:0,他引:10
In the mouse β-glucuronidase is present in both microsomes and lysosomes and the enzyme at both sites is coded by the same structural gene. Electrophoresis on polyacrylamide gels showed that liver, kidney and lung from normal strains contained five enzyme forms designated L, M1, M2, M3 and M4 in order of decreasing mobility toward the anode. Band L is found primarily in lysosomes and is a tetramer of 260,000 molecular weight. Bands M1 to M4 are found exclusively in microsomes and range in molecular weight from 310,000 to 470,000. The increase in molecular weight is due to sequential addition of an accessory protein chain. When glucuronidase is highly induced in kidneys of female mice by injection of dihydrotestosterone, a sixth electrophoretic form of glucuronidase, designated X, appears. Form X appears early in induction, is localized in microsomes, and has a molecular weight (260,000) equal to that of the tetramer form L.Mice homozygous for the eg ° mutation, and thus deficient in microsomal glucuronidase, completely lack the microsomal forms M1 to M4. They do contain form X, and this increases after testosterone induction in kidney. The form X present in eg ° mice is indistinguishable from the form X seen in normal induced kidney.It appears that mice synthesize two different tetrameric forms of glucuronidase from the same structural gene. One, form L, is lysosomal; the other, form X, gives rise to microsomal enzyme forms M1 to M4 by the successive addition of up to four accessory protein chains. The eg ° mutant is blocked in the conversion of X to M1. 相似文献
9.
Evidence for a complex demographic history of chimpanzees 总被引:12,自引:4,他引:12
To characterize patterns of genomic variation in central chimpanzees(Pan troglodytes troglodytes) and gain insight into their evolution,we sequenced nine unlinked, intergenic regions, representinga total of 19,000 base pairs, in 14 individuals. When theseDNA sequences are compared with homologous sequences previouslycollected in humans and in western chimpanzees (Pan troglodytesverus), nucleotide diversity is higher in central chimpanzeesthan in western chimpanzees or in humans. Consistent with alarger effective population size of central chimpanzees, levelsof linkage disequilibrium are lower than in humans. Patternsof linkage disequilibrium further suggest that homologous geneconversion may be an important contributor to genetic exchangeat short distances, in agreement with a previous study of thesame DNA sequences in humans. In central chimpanzees, but notin western chimpanzees, the allele frequency spectrum is significantlyskewed towards rare alleles, pointing to population size changesor fine-scale population structure. Strikingly, the extent ofgenetic differentiation between western and central chimpanzeesis much stronger than what is seen between human populations.This suggests that careful attention should be paid to geographicsampling in studies of chimpanzee genetic variation. 相似文献
10.
A total of 8,859 DNA sequences encompassing ~1.9 million base pairs of the chimpanzee genome were sequenced and compared to corresponding human DNA sequences. Although the average sequence difference is low (1.24%), the extent of changes is markedly different among sites and types of substitutions. Whereas ~15% of all CpG sites have experienced changes between humans and chimpanzees, owing to a 23-fold excess of transitions and a 7-fold excess of transversions, substitutions at other sites vary in frequency, between 0.1% and 0.5%. If the nucleotide diversity in the common ancestral species of humans and chimpanzees is assumed to have been about fourfold higher than in contemporary humans, all possible comparisons between autosomes and X and Y chromosomes result in estimates of the ratio between male and female mutation rates of ~3. Thus, the relative time spent in the male and female germlines may be a major determinant of the overall accumulation of nucleotide substitutions. However, since the extent of divergence differs significantly among autosomes, additional unknown factors must also influence the accumulation of substitutions in the human genome. 相似文献
11.
Background
Large-scale genetic mapping projects require data management systems that can handle complex phenotypes and detect and correct high-throughput genotyping errors, yet are easy to use. 相似文献12.
Mott R 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2006,361(1467):393-401
I survey the state of the art in complex trait analysis, including the use of new experimental and computational technologies and resources becoming available, and the challenges facing us. I also discuss how the prospects of rodent model systems compare with association mapping in humans. 相似文献
13.
Li W Cama V Feng Y Gilman RH Bern C Zhang X Xiao L 《International journal for parasitology》2012,42(3):287-293
Genotyping based on sequence analysis of the ribosomal internal transcribed spacer has revealed significant genetic diversity in Enterocytozoonbieneusi. Thus far, the population genetics of E. bieneusi and its significance in the epidemiology of microsporidiosis have not been examined. In this study, a multilocus sequence typing of E. bieneusi in AIDS patients in Lima, Peru was conducted, using 72 specimens previously genotyped as A, D, IV, EbpC, WL11, Peru7, Peru8, Peru10 and Peru11 at the internal transcribed spacer locus. Altogether, 39 multilocus genotypes were identified among the 72 specimens. The observation of strong intragenic linkage disequilibria and limited genetic recombination among markers were indicative of an overall clonal population structure of E. bieneusi. Measures of pair-wise intergenic linkage disequilibria and a standardised index of association (IAS) based on allelic profile data further supported this conclusion. Both sequence-based and allelic profile-based phylogenetic analyses showed the presence of two genetically isolated groups in the study population, one (group 1) containing isolates of the anthroponotic internal transcribed spacer genotype A, and the other (group 2) containing isolates of multiple internal transcribed spacer genotypes (mainly genotypes D and IV) with zoonotic potential. The measurement of linkage disequilibria and recombination indicated group 2 had a clonal population structure, whereas group 1 had an epidemic population structure. The formation of the two sub-populations was confirmed by STRUCTURE and Wright's fixation index (FST) analyses. The data highlight the power of MLST in understanding the epidemiology of E. bieneusi. 相似文献
14.
Calvert JT Burns S Riney TJ Sahoo T Orlow SJ Nevin NC Haisley-Royster C Prose N Simpson SA Speer MC Marchuk DA 《Human heredity》2001,51(3):180-182
Venous malformations are a common abnormality of the vasculature that may occur sporadically or, more rarely, as an autosomal dominant trait. One familial form of venous malformations has previously been linked to chromosome 9p. Mutations in the gene encoding Tie2, an endothelial specific receptor tyrosine kinase, have been identified in four different families. Glomangiomas are a subtype of venous malformations with glomus cell involvement. These cutaneous lesions can be inherited as an autosomal dominant disease with reduced penetrance and variable expressivity. We present evidence of linkage to chromosome 1p21-1p22 using four new glomangioma families, with a combined maximum two-point lod score of 7.32 at marker D1S2804. Markers D1S2129 and D1S2881 define the 24-cM linkage interval determined by recombination within affected individuals. A recent report also showed linkage of the glomangioma locus to chromosome 1p. A total of 9 families now map to this region, suggesting a decreased likelihood of locus heterogenity in familial glomangiomas. Investigation of candidate genes within the interval should provide new insights into lesion formation in inherited venous malformations. 相似文献
15.
Background
Introns, which constitute the largest fraction of eukaryotic genes and which had been considered to be neutral sequences, are increasingly acknowledged as having important functions. Several studies have investigated levels of evolutionary constraint along introns and across classes of introns of different length and location within genes. However, thus far these studies have yielded contradictory results. 相似文献16.
Satta Y 《Genes & genetic systems》2001,76(3):159-168
To examine the nucleotide diversity at silent (synonymous + intron + untranslated) and non-silent (nonsynonymous) sites in chimpanzees and humans, genes at six nuclear loci from two chimpanzees were sequenced. The average silent diversity was 0.19%, which was significantly higher than that in humans (0.05%). This observation suggests a significantly larger effective population size and a higher extent of neutral polymorphism in chimpanzees than in humans. On the other hand, the non-silent nucleotide diversity is similar in both species, resulting in a larger fraction of neutral mutations at non-silent sites in humans than in chimpanzees. Other types of polymorphism data were collected from the literature or databases to examine whether or not they are consistent with the nuclear DNA sequence polymorphism observed here. The nucleotide diversity at both silent and non-silent sites in mitochondrial (mt) DNA genes was compatible with that of the nuclear genes. Microsatellite loci showed a similar high extent of heterozygosity in both species, perhaps due to the combined effect of a high mutation rate and a recent population expansion in humans. At protein loci, humans are more heterozygous than chimpanzees, and the estimated fraction of neutral alleles in humans (0.84) is much larger than that in chimpanzees (0.26). These data show that the neutral fraction in non-silent changes is relatively large in the human population. This difference may be due to a relaxation of the functional constraint against proteins in the human lineage. To evaluate this possibility, it will be necessary to examine nucleotide sequences in relation to the physiological or biochemical properties of proteins. 相似文献
17.
Familial high myopia: evidence of an autosomal dominant mode of inheritance and genetic heterogeneity. 总被引:10,自引:0,他引:10
L Naiglin J Clayton C Gazagne F Dallongeville F Malecaze P Calvas 《Annales de génétique》1999,42(3):140-146
High myopia, defined as a refractive error inferior to -6 diopters, often appears as a familial disease. In order to precise its genetic background, we performed a segregation analysis on 32 French families (320 subjects including 120 individuals with clinical data) containing at least one high myopic person in their genealogy. Under the assumption of a two-alleles single gene model, the autosomal dominant transmission mode showed a much greater likelihood than the autosomal recessive mode, which therefore was rejected. From the segregation model obtained, a two-point linkage analysis was made on 18 families (107 subjects), among the 32 used for the segregation analysis. Different candidate loci were tested: collagen genes including Stickler syndrome types 1 and 2, proteoglycan genes, Marfan 1 syndrome and a Marfan like disorder localised in 3p24.2-p25. No evidence of linkage was found with any of the studied markers. In addition, the absence of linkage with chromosome 18p11.31 markers, a locus linked to familial high myopia in 6 North American families and 1 family of Chinese descent, demonstrated the genetic heterogeneity of the disease. 相似文献
18.
Autosomal dominant retinitis pigmentosa: no evidence for nonallelic genetic heterogeneity on 3q.
下载免费PDF全文

Since the initial report of linkage of autosomal dominant retinitis pigmentosa (adRP) to the long arm of chromosome 3, several mutations in the gene encoding rhodopsin, which also maps to 3q, have been reported in adRP pedigrees. However, there has been some discussion as to the possibility of a second adRP locus on 3q. This suggestion has important diagnostic and research implications and must raise doubts about the usefulness of linked markers for reliable diagnosis of RP patients. In order to address this issue we have performed an admixture test (A-test) on 10 D3S47-linked adRP pedigrees and have found a likelihood ratio of heterogeneity versus homogeneity of 4.90. We performed a second A-test, combining the data from all families with known rhodopsin mutations. In this test we obtained a reduced likelihood ratio of heterogeneity versus homogeneity, of 1.0. On the basis of these statistical analyses we have found no significant support for two adRP loci on chromosome 3q. Furthermore, using 40 CEPH families, we have localized the rhodopsin gene to the D3S47-D3S20 interval, with a maximum lod score (Zm) of 20 and have found that the order qter-D3S47-rhodopsin-D3S20-cen is significantly more likely than any other order. In addition, we have mapped (Zm = 30) the microsatellite marker D3S621 relative to other loci in this region of the genome. 相似文献
19.
Synaptonemal complex analysis by electron microscopy of a trisomy 28 in a male horse demonstrated a trivalent or a bivalent plus a univalent in primary spermatocytes. Two of the chromosomes making up the trivalent were, most often, completely paired with each other and only partially paired or associated with the third one. Half of the spermatocytes analysed demonstrated heterologous pairing or association between the free axis of the trivalent and the sex bivalent. The pairings remained, to a large extent, into diakinesis-metaphase I. In most pachytene cells one autosomal bivalent showed proximal asynapsis and paired often, heterologously, with the trivalent or the sex bivalent. The horse demonstrated azoospermy, which was due, at least in part, to degeneration at both the spermatocyte and spermatid levels. 相似文献
20.
Langergraber K Schubert G Rowney C Wrangham R Zommers Z Vigilant L 《Proceedings. Biological sciences / The Royal Society》2011,278(1717):2546-2552
It has been proposed that human cooperation is unique among animals for its scale and complexity, its altruistic nature and its occurrence among large groups of individuals that are not closely related or are even strangers. One potential solution to this puzzle is that the unique aspects of human cooperation evolved as a result of high levels of lethal competition (i.e. warfare) between genetically differentiated groups. Although between-group migration would seem to make this scenario unlikely, the plausibility of the between-group competition model has recently been supported by analyses using estimates of genetic differentiation derived from contemporary human groups hypothesized to be representative of those that existed during the time period when human cooperation evolved. Here, we examine levels of between-group genetic differentiation in a large sample of contemporary human groups selected to overcome some of the problems with earlier estimates, and compare them with those of chimpanzees. We find that our estimates of between-group genetic differentiation in contemporary humans are lower than those used in previous tests, and not higher than those of chimpanzees. Because levels of between-group competition in contemporary humans and chimpanzees are also similar, these findings suggest that the identification of other factors that differ between chimpanzees and humans may be needed to provide a compelling explanation of why humans, but not chimpanzees, display the unique features of human cooperation. 相似文献