首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vertebrate Homologue of Drosophila GAGA Factor   总被引:1,自引:0,他引:1  
Polycomb group (PcG) and trithorax group (trxG) proteins are chromatin-mediated regulators of a number of developmentally important genes including the homeotic genes. In Drosophila melanogaster, one of the trxG members, Trithorax like (Trl), encodes the essential multifunctional DNA binding protein called GAGA factor (GAF). While most of the PcG and trxG genes are conserved from flies to humans, a Trl-GAF homologue has been conspicuously missing in vertebrates. Here, we report the first identification of c-Krox/Th-POK as the vertebrate homologue of GAF on the basis of sequence similarity and comparative structural analysis. The in silico structural analysis of the zinc finger region showed preferential interaction of vertebrate GAF with GAGA sites similar to that of fly GAF. We also show by cross-immunoreactivity studies that both fly and vertebrate GAFs are highly conserved and share a high degree of structural similarity. Electrophoretic mobility shift assays show that vertebrate GAF binds to GAGA sites in vitro. Finally, in vivo studies by chromatin immunoprecipitation confirmed that vertebrate GAF binds to GAGA-rich DNA sequences present in hox clusters. Identification of vertebrate GAF and the presence of its target sites at various developmentally regulated loci, including hox complexes, highlight the evolutionarily conserved components involved in developmental mechanisms across the evolutionary lineage and answer a long-standing question of the presence of vertebrate GAF.  相似文献   

2.
The GAGA factor of Drosophila melanogaster uses a single Cys2-His2-type zinc finger for specific DNA binding. Comparative sequence alignment of the GAGA zinc finger core with other structurally characterized zinc fingers reveals that the beta-hairpin of the GAGA zinc finger prefers amino acids with an aliphatic side-chain different from those of other zinc fingers. To probe the substitution effect of aromatic amino acids in the beta-hairpin on the DNA binding, three mutant peptides were designed by substituting consensus phenylalanine, an aromatic amino acid, at key positions in the beta-hairpin region. The metal-binding and the overall fold of the mutant peptides are very similar to those of the wild-type as shown by UV-vis absorption spectroscopy and circular dichroism spectroscopy. However, the gel mobility shift assay and isothermal calorimetric studies demonstrated that none of the mutants are able to bind the cognate DNA substrate, although the mutation is confined only to the beta-hairpin region. The present results suggest that the nature of the amino acids in the beta-hairpin plays an important role in the DNA-binding of the GAGA factor protein.  相似文献   

3.
Silencing of homeotic gene expression requires the function of cis-regulatory elements known as Polycomb Response Elements (PREs). The MCP silencer element of the Drosophila homeotic gene Abdominal-B has been shown to behave as a PRE and to be required for silencing throughout development. Using deletion analysis and reporter gene assays, we defined a 138 bp sequence within the MCP silencer that is sufficient for silencing of a reporter gene in the imaginal discs. Within the MCP138 fragment, there are four binding sites for the Pleiohomeotic protein (PHO) and two binding sites for the GAGA factor (GAF), encoded by the Trithorax-like gene. PHO and the GAF proteins bind to these sites in vitro. Mutational analysis of PHO and GAF binding sequences indicate that these sites are necessary for silencing in vivo. Moreover, silencing by MCP138 depends on the function of the Trithorax-like gene, and on the function of the PcG genes, including pleiohomeotic. Deletion and mutational analyses show that, individually, either PHO or GAF binding sites retain only weak silencing activity. However, when both PHO and GAF binding sites are present, they achieve strong silencing. We present a model in which robust silencing is achieved by sequential and facilitated binding of PHO and GAF.  相似文献   

4.
The upstream regulatory region of the Drosophila melanogaster hsp26 gene includes two DNase I-hypersensitive sites (DH sites) that encompass the critical heat shock elements. This chromatin structure is required for heat shock-inducible expression and depends on two (CT)n*(GA)n elements bound by GAGA factor. To determine whether GAGA factor alone is sufficient to drive formation of the DH sites, we have created flies with an hsp26/lacZ transgene wherein the entire DNA segment known to interact with the TFIID complex has been replaced by a random sequence. The replacement results in a loss of heat shock-inducible hsp26 expression and drastically diminishes nuclease accessibility in the chromatin of the regulatory region. Chromatin immunoprecipitation experiments show that the decrease in TFIID binding does not reduce GAGA factor binding. In contrast, the loss of GAGA factor binding resulting from (CT)n mutations decreases TFIID binding. These data suggest that both GAGA factor and TFIID are necessary for formation of the appropriate chromatin structure at the hsp26 promoter and predict a regulatory mechanism in which GAGA factor binding precedes and contributes to the recruitment of TFIID.  相似文献   

5.
The GAGA factor of Drosophila melanogaster uses a single Cys 2His 2-type zinc finger for specific DNA binding. The conformation and DNA binding mode of the GAGA zinc finger are similar to those of other structurally characterized zinc fingers. In almost all Cys 2His 2-type zinc fingers, the fourth position of the DNA-recognizing helix is occupied by the Leu residue involved in the formation of the minimal hydrophobic core. However, no systematic study on the precise role of the Leu residue in the hydrophobic core formation and DNA binding function has been reported. In this study, the Leu residue is substituted with other aliphatic amino acids having different side chain lengths and hydrophobicities, namely, Ile, Val, Aib, and Ala. The metal binding properties were studied by UV-vis spectroscopy. The peptide conformations were examined by CD and NMR spectroscopies. Furthermore, the DNA binding ability was examined with a gel mobility shift assay. Though the Ile, Val, and Aib mutants exhibited conformations similar to those of the wild type, the DNA binding affinity decreased as the side chain length of the amino acid decreased. Interestingly, the Val mutant can bind to the cognate DNA, while Aib cannot, in spite of the similarity in their secondary structures based on the CD measurements. Variable-temperature NMR experiments clearly indicated differences in the stability of the hydrophobic core between the Val and Aib mutants. This study demonstrates that the bulkiness of the conserved aliphatic residue is important in the formation of the well-packed minimal hydrophobic core and proper ternary structure and that the hydrophobic core stabilization is apparently related to the DNA binding function of the GAGA zinc finger.  相似文献   

6.
一种特异识别SV40启动子的人工转录因子的构建   总被引:6,自引:3,他引:3  
转录因子是真核表达调控中非常重要的一类反式作用因子,通常由DNA结合域与效应域两部分组成,而锌指结构是DNA结合域的常见组成单元。人工转录因子就是基于转录因子的这种结构特点,人为地选择针对特定序列的DNA结合域与具有特定作用的效应域组合而成。利用噬菌体展示技术,筛选到与SV40启动子上9bp序列特异结合的锌指结构,再连接KOX1的KRAB域构建了一种人工转录因子。转染实验表明它对SV40下游的报告基因的表达有很显著的抑制作用。  相似文献   

7.
GAGA factor (GAF) binds to specific DNA sequences and participates in a complex spectrum of chromosomal activities.Products of the Trithorax-like locus (Trl), which encodes multiple GAF isoforms, are required for homeotic gene expression and are essential for Drosophila development. While homozygous null mutations in Trl are lethal, heterozygotes display enhanced position effect variegation (PEV) indicative of the broad role of GAF in chromatin architecture and its positive role in gene expression.The distribution of GAF on chromosomes is complex, as it is associated with hundreds of chromosomal loci in euchromatin of salivary gland polytene chromosomes, however, it also displays a strong association with pericentric heterochromatin in diploid cells, where it appears to have roles in chromosome condensation and segregation. At higher resolution GAF binding sites have been identified in the regulatory regions of many genes. In some cases, the positive role of GAF in gene expression has been examined in detail using a variety of genetic, biochemical, and cytological approaches. Here we review what is currently known of GAF and, in the context of the heat shock genes of Drosophila, we examine the effects of GAF on multiple steps in gene expression.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
Multiple genes encoding zinc finger domains are expressed in human T cells   总被引:13,自引:0,他引:13  
Proteins containing zinc finger domains have been implicated in developmental control of gene expression in Drosophila, Xenopus, mouse, and humans. Multiple cDNAs encoding zinc (II) finger structures were isolated from human cell lines of T-cell origin to explore whether zinc finger genes participate in the differentiation of human hematopoietic cells. Initial restriction analysis, genomic Southern blotting, and partial sequence comparisons revealed at least 30 nonoverlapping cDNAs designated cKox(1-30) encoding zinc finger motifs. Analysis of cKox1 demonstrated that Kox1 is a single-copy gene that is expressed in a variety of hematopoietic and nonhaematopoietic cell lines. cKox1 encodes 11 zinc fingers that were shown to bind zinc when expressed as a beta-gal-Kox1 fusion protein. Further analysis of the predicted amino acid sequence revealed a heptad repeat of leucines NH2-terminal to the finger region, which suggests a potential domain for homo- or heterodimer protein formation. On the basis of screening results it was estimated that approximately 70 zinc finger genes are expressed in human T cells. Zinc finger motifs are probably present in a large family of proteins with quite diverse and distinct functions. However, comparisons of individual finger regions in cKox1 with finger regions of cKox2 to cKox30 showed that some zinc fingers are highly conserved in their putative alpha-helical DNA binding region, supporting the notion of a zinc finger-specific DNA recognition code.  相似文献   

16.
17.
We examined the heterochromatic binding of GAGA factor and proliferation disrupter (Prod) proteins during the cell cycle in Drosophila melanogaster and sibling species. GAGA factor binding to the brownDominant AG-rich satellite sequence insertion was seen at metaphase, however, no binding of GAGA factor to AG-rich sequences was observed at interphase in polytene or diploid nuclei. Comparable mitosis-specific binding was found for Prod protein to its target satellite in pericentric heterochromatin. At interphase, these proteins bind numerous dispersed sites in euchromatin, indicating that they move from euchromatin to heterochromatin and back every cell cycle. The presence of Prod in heterochromatin for a longer portion of the cell cycle than GAGA factor suggests that they cycle between euchromatin and heterochromatin independently. We propose that movement of GAGA factor and Prod from high affinity sites in euchromatin occurs upon condensation of metaphase chromosomes. Upon decondensation, GAGA factor and Prod shift from low affinity sites within satellite DNA back to euchromatic sites as a self-assembly process.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号