首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
Dendritic cells (DC) have important functions in T cell immunity and T cell tolerance. Previously, it was believed that T cell unresponsiveness induced by immature DC (iDC) is caused by the absence of inflammatory signals in steady-state in vivo conditions and by the low expression levels of costimulatory molecules on iDC. However, a growing body of evidence now indicates that iDC can also actively maintain peripheral T cell tolerance by the induction and/or stimulation of regulatory T cell populations. In this study, we investigated the in vitro T cell stimulatory capacity of iDC and mature DC (mDC) and found that both DC types induced a significant increase in the number of transforming growth factor (TGF)-beta and interleukin (IL)-10 double-positive CD4(+) T cells within 1 week of autologous DC/T cell co-cultures. In iDC/T cell cultures, where antigen-specific T cell priming was significantly reduced as compared to mDC/T cell cultures, we demonstrated that the tolerogenic effect of iDC was mediated by soluble TGF-beta and IL-10 secreted by CD4(+)CD25(-)FOXP3(-) T cells. In addition, the suppressive capacity of CD4(+) T cells conditioned by iDC was transferable to already primed antigen-specific CD8(+) T cell cultures. In contrast, addition of CD4(+) T cells conditioned by mDC to primed antigen-specific CD8(+) T cells resulted in enhanced CD8(+) T cell responses, notwithstanding the presence of TGF-beta(+)/IL-10(+) T cells in the transferred fraction. In summary, we hypothesize that DC have an active role in inducing immunosuppressive cytokine-secreting regulatory T cells. We show that iDC-conditioned CD4(+) T cells are globally immunosuppressive, while mDC induce globally immunostimulatory CD4(+) T cells. Furthermore, TGF-beta(+)/IL-10(+) T cells are expanded by DC independent of their maturation status, but their suppressive function is dependent on immaturity of DC.  相似文献   

2.
Proinflammatory molecules, including IFN-gamma and IL-12, play a crucial role in the elimination of causative agents. To allow healing, potent anti-inflammatory processes are required to down-regulate the inflammatory response. In this study, we first show that CD47/integrin-associated protein, a ubiquitous multispan transmembrane protein highly expressed on T cells, interacts with signal-regulator protein (SIRP)-alpha, an immunoreceptor tyrosine-based inhibition motif-containing molecule selectively expressed on myelomonocytic cells, and next demonstrate that this pair of molecules negatively regulates human T and dendritic cell (DC) function. CD47 ligation by CD47 mAb or L-SIRP-alpha transfectants inhibits IL-12R expression and down-regulates IL-12 responsiveness of activated CD4(+) and CD8(+) adult T cells without affecting their response to IL-2. Human CD47-Fc fusion protein binds SIRP-alpha expressed on immature DC and mature DC. SIRP-alpha engagement by CD47-Fc prevents the phenotypic and functional maturation of immature DC and still inhibits cytokine production by mature DC. Finally, in allogeneic MLR between mDC and naive T cells, CD47-Fc decreases IFN-gamma production after priming and impairs the development of a Th1 response. Therefore, CD47 on T cells and its cognate receptor SIRP-alpha on DC define a novel regulatory pathway that may be involved in the maintenance of homeostasis by preventing the escalation of the inflammatory immune response.  相似文献   

3.
We describe a phenotypically and functionally novel monocyte-derived dendritic cell (DC) subset, designated mDC2, that lacks IL-12 synthesis, produces high levels of IL-10, and directs differentiation of Th0/Th2 cells. Like conventional monocyte-derived DC, designated mDC1, mDC2 expressed high levels of CD11c, CD40, CD80, CD86, and MHC class II molecules. However, in contrast to mDC1, mDC2 lacked expression of CD1a, suggesting an association between cytokine production profile and CD1a expression in DC. mDC2 could be matured into CD83+ DC cells in the presence of anti-CD40 mAbs and LPS plus IFN-gamma, but they remained CD1a- and lacked IL-12 production even upon maturation. The lack of IL-12 and CD1a expression by mDC2 did not affect their APC capacity, because mDC2 stimulated MLR to a similar degree as mDC1. However, while mDC1 strongly favored Th1 differentiation, mDC2 directed differentiation of Th0/Th2 cells when cocultured with purified human peripheral blood T cells, further indicating functional differences between mDC1 and mDC2. Interestingly, the transfection efficiency of mDC2 with plasmid DNA vectors was significantly higher than that of mDC1, and therefore mDC2 may provide improved means to manipulate Ag-specific T cell responses after transfection ex vivo. Taken together, these data indicate that peripheral blood monocytes have the capacity to differentiate into DC subsets with different cytokine production profiles, which is associated with altered capacity to direct Th cell differentiation.  相似文献   

4.
Alcohol consumption inhibits accessory cell function and Ag-specific T cell responses. Myeloid dendritic cells (DCs) coordinate innate immune responses and T cell activation. In this report, we found that in vivo moderate alcohol intake (0.8 g/kg of body weight) in normal volunteers inhibited DC allostimulatory capacity. Furthermore, in vitro alcohol treatment during DC differentiation significantly reduced allostimulatory activity in a MLR using naive CD4(+) T cells, and inhibited tetanus toxoid Ag presentation by DCs. Alcohol-treated DCs showed reduced IL-12, increased IL-10 production, and a decrease in expression of the costimulatory molecules CD80 and CD86. Addition of exogenous IL-12 and IL-2, but not neutralization of IL-10, during MLR ameliorated the reduced allostimulatory capacity of alcohol-treated DCs. Naive CD4(+) T cells primed with alcohol-treated DCs showed decreased IFN-gamma production that was restored by exogenous IL-12, indicating inhibition of Th1 responses. Furthermore, CD4(+) T cells primed with alcohol-treated DCs were hyporesponsive to subsequent stimulation with the same donor-derived normal DCs, suggesting the ability of alcohol-treated DCs to induce T cell anergy. LPS-induced maturation of alcohol-treated immature DCs partially restored the reduced allostimulatory activity, whereas alcohol given only during DC maturation failed to inhibit DC functions, suggesting that alcohol primarily impairs DC differentiation rather than maturation. NFkappaB activation, a marker of DC maturation was not affected by alcohol. Taken together, alcohol both in vitro and in vivo can impair generation of Th1 immune responses via inhibition of DC differentiation and accessory cell function through mechanisms that involve decreased IL-12 induction.  相似文献   

5.
APC infection and dysfunction may contribute to the immunopathogenesis of HIV disease. In this study, we examined immunologic function of highly enriched populations of HIV-infected monocyte-derived dendritic cells (DC). Compared with uninfected DC, HIV-infected DC markedly down-regulated surface expression of CD4. HIV p24(+) DC were then enriched by negative selection of CD4(+)HIV p24(-) DC and assessed for cytokine secretion and immunologic function. Although enriched populations of HIV-infected DC secreted increased IL-12p70 and decreased IL-10, these cells were poor stimulators of allogeneic CD4(+) T cell proliferation and IL-2 production. Interestingly, HIV-infected DC secreted HIV gp120 and the addition of soluble (s) CD4 (a known ligand for HIV gp120) to DC-CD4(+) T cell cocultures restored T cell proliferation in a dose-dependent manner. By contrast, addition of antiretroviral drugs did not affect CD4(+) T cell proliferation. Furthermore, recombinant HIV gp120 inhibited proliferation in uninfected cocultures of allogeneic DC and CD4(+) T cells, an effect that was also reversed by addition of sCD4. In summary, we show that HIV gp120 produced by DC infected by HIV in vitro impairs normal CD4(+) T cell function and that sCD4 completely reverses HIV gp120-mediated immunosuppression. We hypothesize that HIV-infected DC may contribute to impaired CD4(+) T cell-mediated immune responses in vivo and that agents that block this particular immunosuppression may be potential immune adjuvants in HIV-infected individuals.  相似文献   

6.
Current immunological opinion holds that myeloid dendritic cell (mDC) precursors migrate from the blood to the tissues, where they differentiate into immature dermal- and Langerhans-type dendritic cells (DC). Tissue DC require appropriate signals from pathogens or inflammatory cytokines to mature and migrate to secondary lymphoid tissue. We show that purified blood mDC cultured in vitro with GM-CSF and IL-4, but in the absence of added exogenous maturation stimuli, rapidly differentiate into two maturational and phenotypically distinct populations. The major population resembles immature dermal DC, being positive for CD11b, CD1a, and DC-specific ICAM-3-grabbing nonintegrin. They express moderate levels of MHC class II and low levels of costimulatory molecules. The second population is CD11b(-/low) and lacks CD1a and DC-specific ICAM-3-grabbing nonintegrin but expresses high levels of MHC class II and costimulatory molecules. Expression of CCR7 on the CD11b(-/low) population and absence on the CD11b(+) cells further supports the view that these cells are mature and immature, respectively. Differentiation into mature and immature populations was not blocked by polymyxin B, an inhibitor of LPS. Neither population labeled for Langerin, E-cadherin, or CCR6 molecules expressed by Langerhans cells. Stimulation of 48-h cultured DC with LPS, CD40L, or poly(I:C) caused little increase in MHC or costimulatory molecule expression in the CD11b(-/low) DC but caused up-regulated expression in the CD11b(+) cells. In HIV-infected individuals, there was a marked decrease in the viability of cultured blood mDC, a failure to differentiate into the two populations described for normal donors, and an impaired ability to stimulate T cell proliferation.  相似文献   

7.
4-1BB is a costimulatory member of the TNFR family, expressed on activated CD4(+) and CD8(+) T cells. Previous results showed that 4-1BB-mediated T cell costimulation is CD28-independent and involves recruitment of TNFR-associated factor 2 (TRAF2) and activation of the stress-activated protein kinase cascade. Here we describe a role for the p38 mitogen-activated protein kinase (MAPK) pathway in 4-1BB signaling. Aggregation of 4-1BB alone induces p38 activation in a T cell hybridoma, whereas, in normal T cells, p38 MAPK is activated synergistically by immobilized anti-CD3 plus immobilized 4-1BB ligand. 4-1BB-induced p38 MAPK activation is inhibited by the p38-specific inhibitor SB203580 in both a T cell hybridoma and in murine T cells. T cells from TRAF2 dominant-negative mice are impaired in 4-1BB-mediated p38 MAPK activation. A link between TRAF2 and the p38 cascade is provided by the MAPK kinase kinase, apoptosis-signal-regulating kinase 1. A T cell hybrid transfected with a kinase-dead apoptosis-signal-regulating kinase 1 fails to activate p38 MAPK in response to 4-1BB signaling. To assess the role of p38 activation in an immune response, T cells were stimulated in an MLR in the presence of SB203580. In a primary MLR, SB203580 blocked IL-2, IFN-gamma, and IL-4 secretion whether the costimulatory signal was delivered via 4-1BB or CD28. In contrast, following differentiation into Th1 or Th2 cells, p38 inhibition blocked IL-2 and IFN-gamma without affecting IL-4 secretion. Nevertheless, IL-4 secretion by Th2 cells remained costimulation-dependent. Thus, critical T cell signaling events diverge following Th1 vs Th2 differentiation.  相似文献   

8.
Two distinct dendritic cell (DC) subpopulations have been evidenced in mice on the basis of their differential CD8alpha expression and their localization in lymphoid organs. Several reports suggest that CD8alpha(+) and CD8alpha(-) DC subsets could be functionally different. In this study, using a panel of MHC class I- and/or class II-restricted peptides, we analyzed CD4(+) and CD8(+) T cell responses obtained after i.v. injection of freshly purified peptide-pulsed DC subsets. First, we showed that both DC subsets efficiently induce specific CTL responses and Th1 cytokine production in the absence of CD4(+) T cell priming. Second, we showed that in vivo activation of CD4(+) T cells by CD8alpha(+) or CD8alpha(-) DC, injected i.v., leads to a nonpolarized Th response with production of both Th1 and Th2 cytokines. The CD8alpha(-) subset induced a higher production of Th2 cytokines such as IL-4 and IL-10 than the CD8alpha(+) subset. However, IL-5 was produced by CD4(+) T cells activated by both DC subsets. When both CD4(+) and CD8(+) T cells were primed by DC injected i.v., a similar pattern of cytokines was observed, but, under these conditions, Th1 cytokines were mainly produced by CD8(+) T cells, while Th2 cytokines were produced by CD4(+) T cells. Thus, this study clearly shows that CD4(+) T cell responses do not influence the development of specific CD8(+) T cell cytotoxic responses induced either by CD8alpha(+) or CD8alpha(-) DC subsets.  相似文献   

9.
Costimulatory ligands CD80 and CD86 have different binding preferences and affinities to their receptors, CD28 and CTLA-4. Earlier, we demonstrated that CD80 binds to CTLA-4 with higher affinity and has a role in suppressing T cell response. The current study demonstrates that not only did blockade of CD86 upon Ag presentation by bone marrow-derived dendritic cells (DC) to OVA-specific T cells result in induction of hyporesponsive T cells but also that these T cells could suppress the proliferative response of effector T cells. These T cells showed TGF-beta1 on their surface and secreted TGF-beta1 and IL-10 upon restimulation. Although blockade of CTLA-4 and neutralization of IL-10 profoundly inhibited the induction of these TGF-beta1(+) T cells, their ability to suppress the effector T cell proliferation was abrogated by neutralization of TGF-beta1 alone. Induction of TGF-beta1(+) and IL-10(+) T cells was found to be independent of natural CD4(+)CD25(+) regulatory T cells, demonstrating that preferential ligation of CTLA-4 by CD80 induced IL-10 production by effector T cells, which in turn promoted the secretion of TGF-beta1. Treatment of prediabetic NOD mice with islet beta cell Ag-pulsed CD86(-/-) DCs, but not CD80(-/-) DCs, resulted in the induction of TGF-beta1- and IL-10-producing cells, significant suppression of insulitis, and delay of the onset of hyperglycemia. These observations demonstrate not only that CD80 preferentially binds to CTLA-4 but also that interaction during Ag presentation can result in IL-10-dependent TGF-beta1(+) regulatory T cell induction, reinstating the potential of approaches to preferentially engage CTLA-4 through CD80 during self-Ag presentation in suppressing autoimmunity.  相似文献   

10.
During the course of a microbial infection, different antigen presenting cells (APCs) are exposed and contribute to the ensuing immune response. CD8α(+) dendritic cells (DCs) are an important coordinator of early immune responses to the intracellular bacteria Listeria monocytogenes (Lm) and are crucial for CD8(+) T cell immunity. In this study, we examine the contribution of different primary APCs to inducing immune responses against Lm. We find that CD8α(+) DCs are the most susceptible to infection while plasmacytoid DCs are not infected. Moreover, CD8α(+) DCs are the only DC subset capable of priming an immune response to Lm in vitro and are also the only APC studied that do so when transferred into β2 microglobulin deficient mice which lack endogenous cross-presentation. Upon infection, CD11b(+) DCs primarily secrete low levels of TNFα while CD8α(+) DCs secrete IL-12 p70. Infected monocytes secrete high levels of TNFα and IL-12p70, cytokines associated with activated inflammatory macrophages. Furthermore, co-culture of infected CD8α(+) DCs and CD11b+ DCs with monocytes enhances production of IL-12 p70 and TNFα. However, the presence of monocytes in DC/T cell co-cultures attenuates T cell priming against Lm-derived antigens in vitro and in vivo. This suppressive activity of spleen-derived monocytes is mediated in part by both TNFα and inducible nitric oxide synthase (iNOS). Thus these monocytes enhance IL-12 production to Lm infection, but concurrently abrogate DC-mediated T cell priming.  相似文献   

11.
GM-CSF is an important cytokine involved in myeloid differentiation and inflammatory processes. Signaling through the GM-CSFR also plays a critical role in the generation of monocyte-derived dendritic cells (DC). In this article, we report that the Src-like adaptor protein (SLAP) functions as a negative regulator of the GM-CSFR. In bone marrow-derived DC (BM-DC) lacking SLAP and the closely related SLAP2, downregulation of GM-CSFRβ is impaired, leading to enhanced phosphorylation of Jak2 and prolonged activation of Akt and Erk1/2 in response to GM-CSF stimulation. Compared with wild-type bone marrow, SLAP/SLAP2(-/-) bone marrow gave rise to similar numbers of CD11c(+) and CD11b(+) DC, but SLAP/SLAP2(-/-) BM-DC failed to acquire high levels of MHC class II, CD80, and CD86, indicating an impairment in maturation. Furthermore, MHC class II expression in SLAP/SLAP2(-/-) BM-DC was rescued by decreasing GM-CSF concentration, suggesting that enhanced GM-CSF signaling mediates the block in maturation. In addition, SLAP/SLAP2(-/-) BM-DC produced less IL-12 and TNF-α in response to LPS compared with controls and failed to stimulate T cells in an MLR. Ag-specific T cell activation assays showed that SLAP/SLAP2(-/-) BM-DC were less robust at inducing IFN-γ secretion by DO11.10 T cells. These results indicated that SLAP-mediated GM-CSFR regulation is important for the generation of functionally mature monocytic DC.  相似文献   

12.
Saccharomyces boulardii (Sb), a probiotic yeast, protects against intestinal injury and inflammation caused by a wide variety of enteric pathogens, including Clostridium difficile. Given the broad range of protective effects of Sb in multiple gastrointestinal disorders, we hypothesize that Sb modulates host signaling pathways involved in intestinal inflammatory responses. In this study, we found that Sb culture supernatant (SbS) inhibits interleukin-8 production induced by C. difficile toxin A or IL-1beta in human colonocyte NCM460 cells in a dose-dependent fashion. Furthermore, SbS inhibited IL-1beta and toxin A induced Erk1/2 and JNK/SAPK but not p38 activation in NCM460 cells. To test whether this inhibition also occurs in vivo, we used a previously established mouse ileal loop model. On its own, SbS had no significant effect on basal fluid secretion or intestinal histology. However, Erk1/2 activation was significantly inhibited by SbS in toxin A exposed mouse ileal mucosa. In control loops, toxin A increased fluid secretion (2.2-fold), histological score (3.3-fold), and levels of the chemokine KC (4.5-fold). SbS pretreatment completely normalized toxin A mediated fluid secretion (p < 0.01), and histopathologic changes (p < 0.01) and substantially inhibited toxin A-associated KC increases (p < 0.001). In summary, the probiotic yeast S. boulardii inhibits C. difficile toxin A-associated enteritis by blocking the activation of Erk1/2 MAP kinases. This study indicates a new mechanism whereby Sb protects against intestinal inflammation and supports the hypothesis that Sb modulates host inflammatory signaling pathways to exert its beneficial effects.  相似文献   

13.
Dendritic cells (DC) are potent inducers of natural killer (NK) cells. There are two distinct populations in blood, myeloid (mDC) and plasmacytoid (pDC) but they can also be generated In vitro from monocytes (mdDC). Although it is established that blood DC are lost in HIV-1 infection, the full impact of HIV-1 infection on DC-NK cell interactions remains elusive. We thus investigated the ability of pDC, mDC, and mdDC from viremic and anti-retroviral therapy-treated aviremic HIV-1+ patients to stimulate various NK cell functions. Stimulated pDC and mdDC from HIV-1+ patients showed reduced secretion of IFN-α and IL-12p70 respectively and their capacity to stimulate expression of CD25 and CD69, and IFN-γ secretion in NK cells was also reduced. pDC activation of NK cell degranulation in response to a tumour cell line was severely reduced in HIV-1+ patients but the ability of mDC to activate NK cells was not affected by HIV-1 infection, with the exception of HLA-DR induction. No differences were observed between viremic and aviremic patients indicating that anti-retroviral therapy had minimal effect on restoration on pDC and mdDC-mediated activation of NK cells. Results from this study provide further insight into HIV-1 mediated suppression of innate immune functions.  相似文献   

14.
Dendritic cells (DC) not only stimulate T cells effectively but are also producers of cytokines that have important immune regulatory functions. In this study we have extended information on the functional differences between DC subpopulations to include differences in the production of the major immune-directing cytokines IL-12, IFN-alpha, and IFN-gamma. Splenic CD4(-)8(+) DC were identified as the major IL-12 producers in response to microbiological or T cell stimuli when compared with splenic CD4(-)8(-) or CD4(+)8(-) DC; however, all three subsets of DC showed similar IL-12 regulation and responded with increased IL-12 p70 production if IL-4 was present during stimulation. High level CD8 expression also correlated with extent of IL-12 production for DC isolated from thymus and lymph nodes. By using gene knockout mice we ruled out any role for CD8alpha itself, or of priming by T cells, on the superior IL-12-producing capacity of the CD8(+) DC. Additionally, CD8(+) DC were identified as the major producers of IFN-alpha compared with the two CD8(-) DC subsets, a finding that suggests similarity to the human plasmacytoid DC lineage. In contrast, the CD4(-)8(-) DC produced much more IFN-gamma than the CD4(-)8(+) or the CD4(+)8(-) DC under all conditions tested.  相似文献   

15.
16.
Several in vitro and animal studies have been performed to modulate the interaction of APCs and T cells by Fas (CD95/Apo-1) signaling to delete activated T cells in an Ag-specific manner. However, due to the difficulties in vector generation and low transduction frequencies, similar studies with primary human APC are still lacking. To evaluate whether Fas ligand (FasL/CD95L) expressing killer APC could be generated from primary human APC, monocyte-derived dendritic cells (DC) were transduced using the inducible Cre/Loxp adenovirus vector system. Combined transduction of DC by AdLoxpFasL and AxCANCre, but not single transduction with these vectors, resulted in dose- and time-dependent expression of FasL in >70% of mature DC (mDC), whereas <20% of immature DC (iDC) expressed FasL. In addition, transduction by AdLoxpFasL and AxCANCre induced apoptosis in >80% of iDC, whereas FasL-expressing mDC were protected from FasL/Fas (CD95/Apo-1)-mediated apoptosis despite coexpression of Fas. FasL-expressing mDC eliminated Fas(+) Jurkat T cells as well as activated primary T cells by apoptosis, whereas nonactivated primary T cells were not deleted. Induction of apoptosis in Fas(+) target cells required expression of FasL in DC and cell-to-cell contact between effector and target cell, and was not dependent on soluble FasL. Induction of apoptosis in Fas(+) target cells required expression of FasL in DC, cell-to-cell contact between effector and target cell, and was not dependent on soluble FasL. The present results demonstrate that FasL-expressing killer APC can be generated from human monocyte-derived mDC using adenoviral gene transfer. Our results support the strategy to use killer APCs as immunomodulatory cells for the treatment of autoimmune disease and allograft rejection.  相似文献   

17.
CD8(+) T cells can be important effector cells in autoimmune inflammation, generally because they can damage target cells by cytotoxicity. This study shows that activated CD8(+) T cells induce thyroid epithelial cell hyperplasia and proliferation and fibrosis in IFN-γ(-/-) NOD.H-2h4 SCID mice in the absence of CD4(+) T cells. Because CD8(+) T cells induce proliferation rather than cytotoxicity of target cells, these results describe a novel function for CD8(+) T cells in autoimmune disease. In contrast to the ability of purified CD8(+) T cells to induce thyrocyte proliferation, CD4(+) T cells or CD8 T cell-depleted splenocytes induced only mild thyroid lesions in SCID recipients. T cells in both spleens and thyroids highly produce TNF-α. TNF-α promotes proliferation of thyrocytes in vitro, and anti-TNF-α inhibits development of thyroid epithelial cell hyperplasia and proliferation in SCID recipients of IFN-γ(-/-) splenocytes. This suggests that targeting CD8(+) T cells and/or TNF-α may be effective for treating epithelial cell hyperplasia and fibrosis.  相似文献   

18.
Rapamycin (RAP), tacrolimus (FK506), cyclosporin A, and glucocorticoids represent modern and classic immunosuppressive agents being used clinically. Although these agents have distinct molecular mechanisms of action and exhibit different immunoregulatory profiles, their direct influences on Ag presentation processes remain relatively unknown. Here we report quantitative and qualitative differences among the above four immunosuppressants in their impact on Ag-specific, bidirectional interaction between dendritic cells (DC) and CD4(+) T cells. In the presence of relevant Ag, bone marrow-derived DC delivered activation signals to CD4(+) T cells isolated from the DO11.10 TCR transgenic mice, leading to clonal expansion; secretion of IFN-gamma, IL-2, and IL-4; and surface expression of CD69. Conversely, DO11.10 T cells delivered maturation signals to DC, leading to IL-6 and IL-12 production and CD40 up-regulation. FK506 (10(-10)-10(-8) M) and cyclosporin A (10(-9)-10(-7) M) each blocked efficiently and uniformly all the changes resulting from intercellular signaling in both DC-->T cell and T cell-->DC directions. Dexamethasone (10(-9)-10(-6) M) suppressed all changes, except for CD69 up-regulation, rather incompletely. Remarkably, RAP (10(-10)-10(-8) M) efficiently inhibited DC-induced T cell proliferation and T cell-mediated CD40 up-regulation by DC without abrogating other changes. Interestingly, T cell-independent DC maturation triggered by LPS stimulation was inhibited by dexamethasone, but not by other agents. Our results demonstrate contrasting pharmacological effects of RAP vs calcineurin inhibitors on Ag presentation, thus forming a conceptual framework for rationale-based selection (and combination) of immunosuppressive agents for clinical application.  相似文献   

19.
The activation of dendritic cells (DC) leads to increased costimulatory activity (termed DC maturation) and, in some instances, production of immunomodulatory cytokines such as IL-12. Both innate and T cell-derived signals can promote DC activation but it is unclear to what extent the two classes of stimuli are interchangeable or regulate distinct aspects of DC function. In this study, we show that signals from newly activated CD4(+) T cells cannot initiate IL-12 synthesis although they can amplify secretion of bioactive IL-12 p70 by DC exposed to an appropriate innate stimulus. This occurs exclusively in cis and does not influence IL-12 synthesis by bystander DC that do not present Ag. In marked contrast, signals from newly activated CD4(+) T cells can induce an increase in DC costimulatory activity in the absence of any innate priming. This occurs both in cis and in trans, affecting all DC in the microenvironment, including those that do not bear specific Ag. Consistent with the latter, we show that newly activated CD4(+) T cells in vivo can deliver "help" in trans, effectively lowering the number of MHC/peptide complexes required for proliferation of third-party naive CD4(+) T cells recognizing Ag on bystander DC. These results demonstrate that DC maturation and cytokine production are regulated distinctly by innate stimuli vs signals from CD4(+) T cells and reveal a process of trans activation of DC without secretion of polarizing cytokines that takes place during T cell priming and may be involved in amplifying immune responses.  相似文献   

20.
We recently reported that splenic dendritic cells (DC) in rats can be separated into CD4(+) and CD4(-) subsets and that the CD4(-) subset exhibited a natural cytotoxic activity in vitro against tumor cells. Moreover, a recent report suggests that CD4(-) DC could have tolerogenic properties in vivo. In this study, we have analyzed the phenotype and in vitro T cell stimulatory activity of freshly isolated splenic DC subsets. Unlike the CD4(-) subset, CD4(+) splenic DC expressed CD5, CD90, and signal regulatory protein alpha molecules. Both fresh CD4(-) and CD4(+) DC displayed an immature phenotype, although CD4(+) cells constitutively expressed moderate levels of CD80. The half-life of the CD4(-), but not CD4(+) DC in vitro was extremely short but cells could be rescued from death by CD40 ligand, IL-3, or GM-CSF. The CD4(-) DC produced large amounts of the proinflammatory cytokines IL-12 and TNF-alpha and induced Th1 responses in allogeneic CD4(+) T cells, whereas the CD4(+) DC produced low amounts of IL-12 and no TNF-alpha, but induced Th1 and Th2 responses. As compared with the CD4(+) DC that strongly stimulated the proliferation of purified CD8(+) T cells, the CD4(-) DC exhibited a poor CD8(+) T cell stimulatory capacity that was substantially increased by CD40 stimulation. Therefore, as previously shown in mice and humans, we have identified the existence of a high IL-12-producing DC subset in the rat that induces Th1 responses. The fact that both the CD4(+) and CD4(-) DC subsets produced low amounts of IFN-alpha upon viral infection suggests that they are not related to plasmacytoid DC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号