首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine the occurrence of variants of African cassava mosaic virus, 316 cassava leaf samples were collected from mosaic‐affected cassava plants in 254 farmers. fields in 1997 and 1998, covering the humid forest, coastal/derived, southern Guinea and northern Guinea savannas and arid and semi‐arid agroecologies of Nigeria. The samples were tested in triple antibody sandwich enzyme‐linked immunosorbent assay using a panel of 10 monoclonal antibodies (MAbs) against the virus in which 29 reaction patterns were observed. In cluster analysis, nine serotypes were obtained at 0.80 Jaccard similarity coefficient index in which at least 50% of isolates of each serotype reacted alike. The serotypes ranged between two extremes: serotype 1 with 90% isolates reacting with the 10 MAbs and serotype 8 in which 90% of its isolates failed to react with the antibodies. Isolates of serotypes 1, 2, 4 and 8 were widely distributed while those of the other serotypes were estricted to certain agroecologies. Four representative isolates 227 (serotype 1), 231 (serotype 2), 235 and 283 (serotype 8) elicited different responses in Nicotiana, benthamiana, with isolate 283 not able to infect this and other test plants used. The serological variations did not necessarily reflect the biological variations. In polymerase chain reaction tests, one out of the five pairs of ACMV primers tested distinguished only isolate 283. The humid forest, derived/coastal and southern Guinea savannas where most of the crop is grown in Nigeria had a high number of variants, which makes the agroecologies suitable for the selection of resistant cassava clones against ACMV.  相似文献   

2.
Raw starch and raw cassava tuber powder were directly and efficiently fermented at elevated temperatures to produce ethanol using the thermotolerant yeast Kluyveromyces marxianus that expresses α‐amylase from Aspergillus oryzae as well as α‐amylase and glucoamylase from Debaryomyces occidentalis. Among the constructed K. marxianus strains, YRL 009 had the highest efficiency in direct starch fermentation. Raw starch from corn, potato, cassava, or wheat can be fermented at temperatures higher than 40°C. At the optimal fermentation temperature 42°C, YRL 009 produced 66.52 g/L ethanol from 200 g/L cassava starch, which was the highest production among the selected raw starches. This production increased to 79.75 g/L ethanol with a 78.3% theoretical yield (with all cassava starch were consumed) from raw cassava starch at higher initial cell densities. Fermentation was also carried out at 45 and 48°C. By using 200 g/L raw cassava starch, 137.11 and 87.71 g/L sugar were consumed with 55.36 and 32.16 g/L ethanol produced, respectively. Furthermore, this strain could directly ferment 200 g/L nonsterile raw cassava tuber powder (containing 178.52 g/L cassava starch) without additional nutritional supplements to produce 69.73 g/L ethanol by consuming 166.07 g/L sugar at 42°C. YRL 009, which has consolidated bioprocessing ability, is the best strain for fermenting starches at elevated temperatures that has been reported to date. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:338–347, 2014  相似文献   

3.
There is an increasing worldwide interest in bioethanol production from agricultural, industrial, and urban residues for both ecological and economic reasons. The acid hydrolysis of cassava pulp to reducing sugars and their fermentation to ethanol were evaluated in a fibrousbed bioreactor with immobilized Δldh, a genetically engineered Thermoanaerobacterium aotearoense. A maximum yield of total reducing sugars of 53.5% was obtained after 8 h of hydrolysis at 85oC in 0.4 mol/L hydrochloric acid with a solid-to-liquid ratio of 1:20, which was optimized by using an orthogonal design based on preliminary experiments. In the FBB, the fed-batch fermentation, using glucose as the sole carbon source, gave a maximum ethanol production of 38.3 g/L with a yield of 0.364 g/g in 100 h; whereas the fed-batch fermentation, using xylose as the sole carbon source, gave 34.1 g/L ethanol with a yield of 0.342 g/g in 135 h. When cassava pulp hydrolysate was used as a carbon source, 39.1 g/L ethanol with a yield of 0.123 g/g cassava pulp in185 h was observed, using the fed-batch fermentation model. In addition, for repeated batch fermentation of cassava pulp hydrolysate carried out in the fibrous-bed bioreactor, long-term operation with high ethanol yield and volumetric productivity were achieved. The above results show that the acid hydrolysate of cassava pulp can be used for ethanol production in a fibrous-bed bioreactor, although some inhibition phenomena were observed during the process of fermentation.  相似文献   

4.
Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) is the vector of cassava mosaic geminiviruses that cause cassava mosaic disease (CMD), which in turn causes devastating yield losses. Surveys were conducted from October 2000 to November 2001 in four agro-ecologies in Uganda to enhance the understanding of parasitoid fauna and parasitism of B. tabaci in cassava fields. Such an understanding is an essential prerequisite for the development of biological control methods of B. tabaci to complement current CMD control practices. Parasitoid abundance and parasitism efficiency varied between locations and sampling dates within the locations; highest parasitoid densities were observed at Namulonge in the Lake Victoria crescent while the lowest was at Kalangala. In all locations, parasitism was mainly due to Encarsia sophia Dodd and Girault and Eretmocerus mundus Mercet (all Hymenoptera: Aphelinidae). Two occasionally observed species included Encarsia mineoi Viggiani (Hymenoptera: Aphelinidae), only observed at Namulonge, and blackhead Encarsia (Hymenoptera: Aphelinidae) observed at Bulisa, Namulonge and Lyantonde. Parasitism efficiency was highest at Bulisa (57.9%), but ranged from 40.2 to 46.9% at the other three sites. This paper discusses the possible causes of variations in parasitoid abundance and parasitism efficiency, and proposes further studies that might be carried out to assess the potential for augmentation of parasitoids to control B. tabacipopulations and CMD.  相似文献   

5.
Summary Cassava is uniquely suited for food security and economic development in unfavored areas of the tropics. Development research for cassava is an urgent need. In 1998, the Cassava Biotechnology Network (CBN) convened a workshop of cassava stakeholder groups in Latin America. After hearing an opening statement from representatives of small-scale cassava producers and processors, stakeholders formulated a consensus set of research and development (R&D) priorities. An adequate supply of good-quality planting material of desired varieties was clearly the most urgent, followed by R&D on market-value traits; yield losses due to pests, diseases, and drought; and cropping system flexibility. Two new projects are using in vitro techniques to address priorities of small-scale cassava farmers in Latin America. One project in Colombia combines a nongovernmental organization, a local farmers’ association, and the international research center, CIAT, to explore affordable micropropagation. Findings to date show that most culture medium components can be replaced with local products, and a rustic growth room permits good culture growth without electricity or air conditioning. Low-costs system(s) developed will be assessed as a local microenterprise. A second project, in Ecuador, couples local cassava germplasm (with oral histories and an in vitro back-up collection) and elite clones (introduced in vitro) with new concepts in agribusiness development, to restart local farmers’ cooperatives after the disastrous 1998–99 el Ni?o floods. The project was developed through group planning by the cooperatives, the local technical university, the national agricultural research program, and CIAT. Research to improve in vitro tools focuses on safe and stable conservation and exchange of cassava genetic resources, long-term, less expensive conservation, rapid clonal propagation, and ultimately, genetic transformation technologies to add desired traits to useful cassava varieties.  相似文献   

6.
In the present study, solid-state fermentation for the production of raw starch degrading enzyme was investigated by thermotolerant Rhizopus microsporus TISTR 3531 using a combination of agro-industrial wastes as substrates. The obtained crude enzyme was applied for hydrolysis of raw cassava starch and chips at low temperature and subjected to nonsterile ethanol production using raw cassava chips. The agro-industrial waste ratio was optimized using a simplex axial mixture design. The results showed that the substrate mixture consisting of rice bran:corncob:cassava bagasse at 8?g:10?g:2?g yielded the highest enzyme production of 201.6?U/g dry solid. The optimized condition for solid-state fermentation was found as 65% initial moisture content, 35°C, initial pH of 6.0, and 5?×?106 spores/mL inoculum, which gave the highest enzyme activity of 389.5?U/g dry solid. The enzyme showed high efficiency on saccharification of raw cassava starch and chips with synergistic activities of commercial α-amylase at 50°C, which promotes low-temperature bioethanol production. A high ethanol concentration of 102.2?g/L with 78% fermentation efficiency was achieved from modified simultaneous saccharification and fermentation using cofermentation of the enzymatic hydrolysate of 300?g raw cassava chips/L with cane molasses.  相似文献   

7.

Background

Cassava, Manihot esculenta Crantz, is one of the most important crops world-wide representing the staple security for more than one billion of people. The development of dense genetic and physical maps, as the basis for implementing genetic and molecular approaches to accelerate the rate of genetic gains in breeding program represents a significant challenge. A reference genome sequence for cassava has been made recently available and community efforts are underway for improving its quality. Cassava is threatened by several pathogens, but the mechanisms of defense are far from being understood. Besides, there has been a lack of information about the number of genes related to immunity as well as their distribution and genomic organization in the cassava genome.

Results

A high dense genetic map of cassava containing 2,141 SNPs has been constructed. Eighteen linkage groups were resolved with an overall size of 2,571 cM and an average distance of 1.26 cM between markers. More than half of mapped SNPs (57.4%) are located in coding sequences. Physical mapping of scaffolds of cassava whole genome sequence draft using the mapped markers as anchors resulted in the orientation of 687 scaffolds covering 45.6% of the genome. One hundred eighty nine new scaffolds are anchored to the genetic cassava map leading to an extension of the present cassava physical map with 30.7 Mb. Comparative analysis using anchor markers showed strong co-linearity to previously reported cassava genetic and physical maps. In silico based searching for conserved domains allowed the annotation of a repertory of 1,061 cassava genes coding for immunity-related proteins (IRPs). Based on physical map of the corresponding sequencing scaffolds, unambiguous genetic localization was possible for 569 IRPs.

Conclusions

This is the first study reported so far of an integrated high density genetic map using SNPs with integrated genetic and physical localization of newly annotated immunity related genes in cassava. These data build a solid basis for future studies to map and associate markers with single loci or quantitative trait loci for agronomical important traits. The enrichment of the physical map with novel scaffolds is in line with the efforts of the cassava genome sequencing consortium.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1397-4) contains supplementary material, which is available to authorized users.  相似文献   

8.
The availability of genomic resources can facilitate progress in plant breeding through the application of advanced molecular technologies for crop improvement. This is particularly important in the case of less researched crops such as cassava, a staple and food security crop for more than 800 million people. Here, expressed sequence tags (ESTs) were generated from five drought stressed and well-watered cassava varieties. Two cDNA libraries were developed: one from root tissue (CASR), the other from leaf, stem and stem meristem tissue (CASL). Sequencing generated 706 contigs and 3,430 singletons. These sequences were combined with those from two other EST sequencing initiatives and filtered based on the sequence quality. Quality sequences were aligned using CAP3 and embedded in a Windows browser called HarvEST:Cassava which is made available. HarvEST:Cassava consists of a Unigene set of 22,903 quality sequences. A total of 2,954 putative SNPs were identified. Of these 1,536 SNPs from 1,170 contigs and 53 cassava genotypes were selected for SNP validation using Illumina’s GoldenGate assay. As a result 1,190 SNPs were validated technically and biologically. The location of validated SNPs on scaffolds of the cassava genome sequence (v.4.1) is provided. A diversity assessment of 53 cassava varieties reveals some sub-structure based on the geographical origin, greater diversity in the Americas as opposed to Africa, and similar levels of diversity in West Africa and southern, eastern and central Africa. The resources presented allow for improved genetic dissection of economically important traits and the application of modern genomics-based approaches to cassava breeding and conservation.  相似文献   

9.
A newly isolated strain Penicillium sp. GXU20 produced a raw starch-degrading enzyme which showed optimum activity towards raw cassava starch at pH 4.5 and 50 °C. Maximum raw cassava starch-degrading enzyme (RCSDE) activity of 20 U/ml was achieved when GXU20 was cultivated under optimized conditions using wheat bran (3.0% w/v) and soybean meal (2.5% w/v) as carbon and nitrogen sources at pH 5.0 and 28 °C. This represented about a sixfold increment as compared with the activity obtained under basal conditions. Starch hydrolysis degree of 95% of raw cassava flour (150 g/l) was achieved after 72 h of digestion by crude RCSDE (30 U/g flour). Ethanol yield reached 53.3 g/l with fermentation efficiency of 92% after 48 h of simultaneous saccharification and fermentation of raw cassava flour at 150 g/l using the RCSDE (30 U/g flour), carried out at pH 4.0 and 40 °C. This strain and its RCSDE have potential applications in processing of raw cassava starch to ethanol.  相似文献   

10.
The quality of cassava starch, an important trait in cassava breeding programs, determines its applications in various industries. For example, development of waxy (having a low level of amylose) cassava is in demand. Amylose is synthesized by granule-bound starch synthase I (GBSSI) in plants, and therefore, down-regulation of GBSSI expression in cassava might lead to reduced amylose content. We produced 63 transgenic cassava plant lines that express hair-pin dsRNAs homologous to the cassava GBSSI conserved region under the control of the vascular-specific promoter p54/1.0 from cassava (p54/1.0::GBSSI-RNAi) or cauliflower mosaic virus (CaMV) 35S (35S::GBSSI-RNAi). After the screening storage roots and starch granules from field-grown plants with iodine staining, the waxy phenotype was discovered: p54/1.0::GBSSI-RNAi line A8 and 35S::GBSSI-RNAi lines B9, B10, and B23. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that there was no detectable GBSSI protein in the starch granules of plants with the waxy phenotype. Further, the amylose content of transgenic starches was significantly reduced (<5%) compared with the level in starch granules from the wild-type (about 25%). The inner structure of the waxy starch granules differed from that of the untransformed ones, as revealed by transmission electron microscopy analysis as well as morphological changes in the iodine-starch complex. Endothermic enthalpy was reduced in waxy cassava starches, according to differential scanning calorimeter analysis. Except B9, all waxy starches displayed the A-type X-ray diffraction pattern. Amylogram patterns of the waxy cassava starches were analyzed using a rapid viscosity analyzer and found to have increased values for clarity, peak viscosity, gel breakdown, and swelling index. Setback, consistency, and solubility were notably reduced. Therefore, waxy cassava with novel starch in its storage roots was produced using the biotechnological approach, promoting its industrial utilization.  相似文献   

11.
Formulating rations with high energy and protein feeds such as cassava and locally sourced protein meals is an important strategy to increase live weight gain (LWG) of crossbred bulls in Indonesia. Current systems of production for Indonesian smallholders fatten bulls using cut and carry. Formulating a diet for an optimal combination of available feeds will increase production and potential profitability for smallholders. An experiment was conducted to evaluate the effect of using cassava meal in the diet at levels of 70C, 60C, 50C, 40C and 30C% (with most of the remainder being the protein meals) on the LWG of Limousin × Ongole bulls so as to determine the optimum combination of cassava meal and protein meals for LWG. Thirty bulls were allocated in a completely randomized block design with 6 blocks based on initial live weight (LW) and 5 treatments based on level of cassava meal. The combination of cassava meal (with 2% urea) and protein meals significantly affected LWG with the highest (1.35 kg/day) recorded at 40C (40% cassava meal, 40% protein meals and 20% maize stover). The LWG and nutrient intake increased curvilinearly with decreasing cassava meal and increasing protein meals (P < 0.05). Measured cassava meal inclusion in the final ration as a consequence of the changes in intake was 60, 56, 47, 37 and 28% for the designated 70C, 60C, 50C, 40C and 30C treatments, respectively. Dry matter intake reached 96 g/kg0.75 per day or equal to 2.24% LW at this 40% level of inclusion. At the 70C treatment with 60% cassava meal and 9% protein meals, DM digestibility (69.1%) was lowest and that value increased as the proportion of cassava meal decreased and was highest at the 40C treatment (75.8%). Feed treatments significantly affected rumen pH, ammonia N (NH3N) and volatile fatty acid concentrations (P < 0.05). There was no significant effect on protozoal population (P > 0.05). Rumen pH ranged from 6.3 to 6.9. It was concluded that a combination of 40% dried cassava meal and 40% protein meals with roughage (20%) maximized intake and LWG and beyond that level of cassava meal inclusion, LWG and intake decreased markedly.  相似文献   

12.
Cassava polyploid breeding has drastically improved our knowledge on increasing root yield and its significant tolerance to stresses. In polyploid cassava plants, increases in DNA content highly affect cell volumes and anatomical structures. However, the mechanism of this effect is poorly understood. The purpose of the present study was to compare and validate the changes between cassava cultivar NZ199 diploid and autotetraploid at proteomic levels. The results showed that leaf proteome of cassava cultivar NZ199 diploid was clearly differentiated from its autotetraploid genotype using 2-DE combined MS technique. Sixty-five differential protein spots were seen in 2-DE image of autotetraploid genotype in comparison with that of diploid. Fifty-two proteins were identified by MALDI-TOF-MS/MS, of which 47 were up-regulated and 5 were down-regulated in autotetraploid genotype compared with diploid genotype. The classified functions of 32 up-regulated proteins were associated with photosynthesis, defense system, hydrocyanic acid (HCN) metabolism, protein biosynthesis, chaperones, amino acid metabolism and signal transduction. The remarkable variation in photosynthetic activity, HCN content and resistance to salt stress between diploid and autotetraploid genotypes is closely linked with expression levels of proteomic profiles. The analysis of protein interaction networks indicated there are direct interactions between the 15 up-regulation proteins involved in the pathways described above. This work provides an insight into understanding the protein regulation mechanism of cassava polyploid genotype, and gives a clue to improve cassava polyploidy breeding in increasing photosynthesis and resistance efficiencies.  相似文献   

13.
PIG-mediated cassava transformation using positive and negative selection   总被引:4,自引:0,他引:4  
 In order to develop new selection systems for production of transgenic cassava (Manihot esculenta Crantz), two different selection regimes were assessed for their efficiency on regeneration of transgenic cassava plants: positive selection using mannose and negative selection using hygromycin. Explants from somatic cotyledons and embryogenic suspensions were used as target tissues in the transformation experiments and bombarded using the particle inflow gun. Different culture and selection strategies were assessed to optimise the selection protocols. For the first time transgenic plants could be obtained using positive, and in the case of embryogenic suspensions, hygromycin-based negative selection. The stably transformed nature of the regenerated cassava plant lines and the expression of the transgenes were verified with PCR, RT-PCR, Southern and northern analyses. A rooting test for transgenic plants on a medium supplemented with mannose was developed to further improve the efficacy of the positive selection system. Our results demonstrate that it is possible to obtain transgenic cassava plants using non-antibiotic positive selection. Received: 21 February 2000 / Revision received: 2 May 2000 / Accepted: 5 May 2000  相似文献   

14.
Regeneration of cassava plants via shoot organogenesis   总被引:8,自引:0,他引:8  
A novel regeneration system based on direct shoot organogenesis is described for cassava. Plants could be regenerated at high frequency by inducing shoot primordia on explants derived from cotyledons of cassava somatic embryos. After a passage on elongation medium, the regenerated shoots were easily rooted in hormone-free medium and could be successfully transplanted to soil. Using the shoot-organogenesis-based regeneration method, up to eight transplantable plantlets per explant could be regenerated. The system was optimised first for one cassava cultivar, and then its transferability to three other cultivars was demonstrated. This method widens the scope of in vitro regeneration modes of cassava, and is also compatible with Agrobacterium-mediated transformation. To develop an efficient system for production of somatic embryos for regeneration experiments, conditions for inducing primary and cycling somatic embryos were also studied, and highly efficient plant regeneration via germination of somatic embryos was achieved using maltose instead of sucrose in the culture medium, and combining paclobutrazol with 2,4-dichlorophenoxyacetic acid in the embryo induction medium. Received: 25 January 1997 / Revision received: 10 February 1997 / Accepted: 20 February 1997  相似文献   

15.
Summary The conventional saccharification of cassava root by enzymatic hydrolysis is improved by using a little amount of cellulase and cellobiase in addition to conventional enzyme, glucoamylase. With new saccharification[glucoamylase 0.45SGU/g cassava, cellulase 4.5NCU/g cassava, cellobiase 0.09U/g cassava, pH 4.3, temperature 60°C, total volume 465ml : 100g of cassava/400ml of water], the reaction time was reduced by about 5 hours, the concentration of reducing sugar was increased by 40%, glucose production was enhanced by 10% , and the viscosity was reduced by 30%.  相似文献   

16.
In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying α-amylase (α-AM), glucoamylase, endoglucanase, cellobiohydrase, and β-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley β-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes.  相似文献   

17.
木薯发酵产丁醇的研究   总被引:1,自引:0,他引:1  
对丙酮丁醇梭菌发酵木薯产溶剂进行研究,分别考察了N源、木薯含量、酶处理条件和培养基pH对发酵产丁醇的影响。结果表明:最佳的产丁醇发酵培养基为木薯粉120g/L,乙酸铵6g/L;木薯粉先用高温淀粉酶按酶量20U/g、90℃水解60min,再糊化30min;发酵初始pH为6.0,发酵96h。在此条件下,5L发酵罐中丁醇产量达到13.5g/L,总溶剂达到22.8g/L。  相似文献   

18.
Cassava mosaic disease is a major constraint for cassava production in Africa, resulting in significant economic losses. We have engineered transgenic cassava with resistance to African cassava mosaic virus (ACMV), by expressing ACMV AC1-homologous hairpin double-strand RNAs. Transgenic cassava lines with high levels of AC1-homologous small RNAs have ACMV immunity with increasing viral load and different inoculation methods. We report a correlation between the expression of the AC1-homologous small RNAs and the ACMV resistance of the transgenic cassava lines. Characterization of the small RNAs revealed that only some of the hairpin-derived small RNAs fall into currently known small interfering RNA classes in plants. The method is scalable to stacking by targeting multiple virus isolates with additional hairpins. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
The development of PCR-based, easily automated molecular genetic markers, such as SSR markers, are required for realistic cost-effective marker-assisted selection schemes. This paper describes the development and characterization of 172 new SSR markers for the cassava genome. The placement of 36 of these markers on the existing RFLP framework map of cassava is also reported. Two similar enrichment methods were employed. The first method yielded 35 SSR loci, for which primers could be designed, out of 148 putative DNA clones. A total of 137 primer pairs could be designed from 544 putative clones sequenced for the second enrichment. Most of the SSRs (95%) were di-nucleotide repeats, and 21% were compound repeats. A major drawback of these methods of SSR discovery is the redundancy – 20% duplication; in addition, primers could not be designed for many SSR loci that were too close to the cloning site – 45% of the total. All 172 SSRs amplified the corresponding loci in the parents of the mapping progeny, with 66% of them revealing a unique allele in at least one of the parents, and 26% having unique alleles in both of the parents. Of the 36 SSRs that have been mapped, at least 1 was placed on 16 out of the 18 linkage groups of the framework map, indicating a broad coverage of the cassava genome. This preliminary mapping of the 36 markers has led to the joining of a few small groups and the creation of one new group. The abundance of allelic bridges as shown by these markers will lead to the development of a consensus map of the male- and female-derived linkage groups. In addition, the relatively higher number of these allelic bridges, 30% as against 10% for RFLPs in cassava, underscores SSR as the marker of choice for cassava. The 100% primer amplification obtained for this set of primers also confirms the appropriateness of SSR markers for use in cassava genome analysis and the transferability of the technology as a low-cost approach to increasing the efficiency of cassava breeding. Current efforts are geared towards the generation of more SSR markers to attain a goal of 200 SSR markers, or 1 SSR marker every 10 cM. Received: 15 November 1999 / Accepted: 14 April 2000  相似文献   

20.
Cultivated cassava (Manihot esculenta) has a higher rate of photosynthesis than is usual for C3 plants and photosynthesis is not light saturated. For these reasons it has been suggested that cultivated cassava could be derived from wild species possessing C4 photosynthesis. The natural abundance of 13C and activities of phosphoenolpyruvate carboxylase and phosphoglycolate phosphatase were measured in leaves of 20 wild cassava species to test this hypothesis. All the species studied, including M. flabellifolia the potential wild progenitor of cultivated cassava, clearly exhibited C3 not C4 characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号