首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
During the course of cell-wall regeneration in protoplasts isolatedfrom tobacco BY-2 cells, the nucleus changed its position fromthe central region to the cell periphery. This nuclear migrationwas inhibited by 2,6-dichlorobenzonitrile (DBN), suggestingthe involvement of cell walls in nuclear migration in tobaccoBY-2 cells. In spherical cells formed by culturing protoplasts in the presenceof DBN or propyzamide, the nucleus was located in the centralregion of the cells and was tethered by transvacuolar cytoplasmicstrands. Nuclei in the spherical cells were displaced by disruptingthe actin filaments in the cytoplasmic strands by treating thecells with cytochalasin B (CB), suggesting that the positionof the nucleus in the spherical cells is maintained by actinfilaments. As the nuclei were located in the central regionof the cells even in the presence of propyzamide, microtubulesseem not to be involved in nuclear positioning in the sphericalcells. Actin filaments, but not microtubules, also seem to play animportant role in nuclear positioning in elongated cells. Inthese cells, CB greatly enhanced the displacement of the nucleusby centrifugation, while propyzamide showed little effect. (Received July 22, 1987; Accepted January 15, 1988)  相似文献   

3.
The possible in vivo interaction of the Nicotiana tabacum agglutinin (Nictaba) with endogenous glycoproteins was corroborated using a combination of confocal/electron microscopy of an EGFP-Nictaba fusion protein expressed in tobacco Bright Yellow-2 (BY-2) cells and biochemical analyses. In vitro binding studies demonstrated that the expressed EGFP-Nictaba possesses carbohydrate-binding activity. Microscopic analyses confirmed the previously reported cytoplasmic/nuclear location of Nictaba in jasmonate-treated tobacco leaves and provided evidence for the involvement of a nuclear localization signal-dependent transport mechanism. In addition, it became evident that the lectin is not uniformly distributed over the nucleus and the cytoplasm of BY-2 cells. Far Western blot analysis of extracts from whole BY-2 cells and purified nuclei revealed that Nictaba interacts in a glycan inhibitable way with numerous proteins including many nuclear proteins. Enzymatic deglycosylation with PNGase F indicated that the observed interaction depends on the presence of N-glycans. Glycan array screening, which showed that Nictaba exhibits a strong affinity for high-mannose and complex N-glycans, provided a reasonable explanation for this observation. The cytoplasmic/nuclear localization of a plant lectin that has a high affinity for high-mannose and complex N-glycans and specifically interacts with conspecific glycoproteins suggests that N-glycosylated proteins might be more important in the cytoplasm and nucleus than is currently believed.  相似文献   

4.
Plant cell suspension cultures respond to osmotic changes by alterations in levels of free cellular calcium. Using the aequorin recombinant method, we have measured the spatial and temporal characteristics of calcium signatures in the nucleus and the cytosol of BY-2 tobacco suspension cells challenged with hypo- or hyper-osmotic shock. We show here that the nuclear compartment contributes together with the cytosol to produce calcium signal patterns that discriminate hypo- from hyper-osmotic treatments, i.e. turgor from tension. We also demonstrate that calcium responses in the nucleus and the cytosol are differentially modulated by the strength and the nature of hyper-osmotic treatments. We conclude that qualitative and quantitative changes in the parameters of an external stimulus such as osmotic changes are converted into calcium signatures, distinctive in their temporal and subcellular characteristics, involving both the nucleus and the cytosol. Our results illustrate the versatility of calcium signaling in plant cells. In addition to the physiological 'address' of the cell, the compartmentation of the calcium signal is probably an important parameter in encoding response specificity.  相似文献   

5.
Summary. Concurrently with cold-induced disintegration of microtubular structures in the cytoplasm, gradual tubulin accumulation was observed in a progressively growing proportion of interphase nuclei in tobacco BY-2 cells. This intranuclear tubulin disappeared upon rewarming. Simultaneously, new microtubules rapidly emerged from the nuclear periphery and reconstituted new cortical arrays, as was shown by immunofluorescence. A rapid exclusion of tubulin from the nucleus during rewarming was also observed in vivo in cells expressing GFP-tubulin. Nuclei were purified from cells that expressed GFP fused to an endoplasmic-reticulum retention signal (BY-2-mGFP5-ER), and green-fluorescent protein was used as a diagnostic marker to confirm that the nuclear fraction was not contaminated by nuclear-envelope proteins. These purified, GFP-free nuclei contained tubulin when isolated from cold-treated cells, whereas control nuclei were void of tubulin. Furthermore, highly conserved putative nuclear-export sequences were identified in tubulin sequences. These results led us to interpret the accumulation of tubulin in interphasic nuclei, as well as its rapid nuclear export, in the context of ancient intranuclear tubulin function during the cell cycle progression. Correspondence and reprints: Department of Plant Physiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic.  相似文献   

6.
7.
In common with several other respiratory and photosynthetic enzymes, a sub-population of cytosolic phosphoglycerate kinase (PGK) occurs in the nucleus in pea leaves and shoots. The full-length cDNA encoding pea cytosolic PGK has been cloned and sequenced, revealing not only the PGK 'signature' but also a nuclear localization signal (NLS). A translational fusion of PGK and GFP was used to transform tobacco BY-2 cells resulting in GFP locating to the cell nuclei.  相似文献   

8.
To investigate PtdIns3P localization and function in plants, a fluorescent PtdIns3P-specific biosensor (YFP-2xFYVE) was created. On lipid dot blots it bound specifically and with high affinity to PtdIns3P. Transient expression in cowpea protoplasts labelled vacuolar membranes and highly motile structures undergoing fusion and fission. Stable expression in tobacco BY-2 cells labelled similar motile structures, but labelled vacuolar membranes hardly at all. YFP-2xFYVE fluorescence strongly co-localized with the pre-vacuolar marker AtRABF2b, partially co-localized with the endosomal tracer FM4-64, but showed no overlap with the Golgi marker STtmd-CFP. Treatment of cells with wortmannin, a PI3 kinase inhibitor, caused the YFP-2xFYVE fluorescence to redistribute into the cytosol and nucleus within 15 min. BY-2 cells expressing YFP-2xFYVE contained twice as much PtdIns3P as YFP-transformed cells, but this had no effect on cell-growth or stress-induced phospholipid signalling responses. Upon treatment with wortmannin, PtdIns3P levels were reduced by approximately 40% within 15 min in both cell lines. Stable expression of YFP-2xFYVE in Arabidopsis plants labelled different subcellular structures in root compared with shoot tissues. In addition labelling the motile structures common to all cells, YFP-2xFYVE strongly labelled the vacuolar membrane in leaf epidermal and guard cells, suggesting that cell differentiation alters the distribution of PtdIns3P. In dividing BY-2 cells, YFP-2xFYVE-labelled vesicles surrounded the newly formed cell plate, suggesting a role for PtdIns3P in cytokinesis. Together, these data show that YFP-2xFYVE may be used as a biosensor to specifically visualize PtdIns3P in living plant cells.  相似文献   

9.
Serine palmitoyltransferase (SPT; EC 2.3.1.50) catalyzes the condensation of serine with palmitoyl-CoA to form 3-ketosphinganine in the first step of de novo sphingolipid biosynthesis. In this study, we describe the cloning and functional characterization of a cDNA from Arabidopsis thaliana encoding the LCB2 subunit of SPT. The Arabidopsis LCB2 (AtLCB2) cDNA contains an open reading frame of 1,467 nucleotides, encoding 489 amino acids. The predicted polypeptide contains three transmembrane helices and a highly conserved motif involved in pyridoxal phosphate binding. Expression of this open reading frame in the Saccharomyces cerevisiae mutant strains defective in SPT activity resulted in the expression of a significant level of sphinganine, suggesting that AtLCB2 cDNA encodes SPT. Southern blot analysis and inspection of the complete Arabidopsis genome sequence database suggest that there is a second LCB2-like gene in Arabidopsis. Expression of a green fluorescent protein (GFP) fusion product in suspension-cultured tobacco BY-2 cells showed that AtLCB2 is localized to the endoplasmic reticulum. AtLCB2 cDNA may be used to study how sphingolipid synthesis is regulated in higher plants.  相似文献   

10.
11.
In acentriolar higher plant cells, the surface of the nucleus acts as a microtubule-organizing center, substituting for the centrosome. However, the protein factors responsible for this microtubule organization are unknown. The nuclear surfaces of cultured tobacco BY-2 cells possess particles that generate microtubules. We attempted to isolate the proteins in these particles to determine their role in microtubule organization. When incubated with plant or mammalian tubulin, some, but not all, of the isolated nuclei generated abundant microtubules radially from their surfaces. The substance to induce the formation of radial microtubules was confirmed by SDS-PAGE to be a protein with apparent molecular mass of 38 kDa. Partial analysis of the amino acid sequences of the peptide fragments suggested it was a histone H1-related protein. Cloning and cDNA sequence analysis confirmed this and revealed that when the recombinant protein was incubated with tubulin, it could organize microtubules as well as the 38-kDa protein. Histone H1 and tubulin formed complexes immediately, even on ice, and then clusters of these structures were formed. These clusters generated radial microtubules. This microtubule-organizing property was confined to histone H1; all other core histones failed to act as organizers. On immunoblot analysis, rabbit antibodies raised against the 38-kDa protein cross-reacted with histone H1 proteins from tobacco BY-2 cells. These antibodies virtually abolished the ability of the nucleus to organize radial microtubules. Indirect immunofluorescence showed that the antigen was distributed at the nuclear plasm and particularly at nuclear periphery independently from DNA.  相似文献   

12.
The plasma membrane is most likely the major target for sensing of aluminium (Al), leading to inhibition of plant root-growth. As a result of high external Al, alterations in plasma membrane composition may be expected in order to maintain its properties. As sphingolipids are characteristic components of this membrane, their involvement in membrane adjustment to increased Al concentrations was investigated. Heterologous expression of a stereounselective long-chain base (LCB) (8E/Z)-desaturase from Arabidopsis thaliana, Brassica napus and Helianthus annuus in Saccharomyces cerevisiae improved the Al resistance of the transgenic yeast cells. This encouraged us to investigate whether Al affects the LCB composition, and whether genetic engineering of the LCB profile modifies the Al resistance of the Al-sensitive plant species maize (Zea mays, L.). Constitutive expression of the LCB (8E/Z)-desaturase from Arabidopsis thaliana in maize roots led to an 8- to 10-fold increase in (8E)-4-hydroxysphing-8-enine in total roots. Less marked but similar changes were observed in 3 mm root apices. Al treatment of the Al-sensitive maize cv Lixis resulted in a significant increase in the proportion of (8Z)-LCB and in the content of total LCBs in root tips, which was not observed in the Al-resistant cv ATP-Y. When root tips of transgenic plants were exposed to Al, only minor changes of both (8Z)- and (8E)-unsaturated LCBs as well as of the total LCB were observed. Al treatment of the wild type parental line H99 decreased the (8Z)-unsaturated LCBs and the total LCB content. Based on Al-induced callose production, a marker for Al sensitivity, the parental line H99 was as Al-resistant as cv ATP-Y, whereas the transgenic line became as sensitive as cv Lixis. Taken together, these data suggest that, in particular, the loss of the ability to down-regulate the proportion of (8Z)-unsaturated LCBs may be related to increased Al sensitivity.  相似文献   

13.
Changes in cell viability, proliferation, cell and nuclear morphology including nuclear and DNA fragmentation induced by 0.05 and 1 mM CdSO4 (Cd2+) in tobacco BY-2 cell line (Nicotiana tabacum L.) were studied in the course of 7 days. Simultaneously changes in endogenous contents of both free and conjugated forms of polyamines (PAs) were investigated for 3 days. The application of 0.05 mM Cd2+ evoked decline of cell viability to approximately 60% during the first 24 h of treatment. Later on degradation of cytoplasmic strands, formation of the stress granules and vesicles, modifications in size and shape of the nuclei, including their fragmentation, were observed in the surviving cells. Their proliferation was blocked and cells elongated. Beginning the first day of treatment TUNEL-positive nuclei were detected in cells cultivated in medium containing 0.05 mM Cd2+. Treatment with highly toxic 1 mM Cd2+ induced fast decrease of cell viability (no viable cells remained after 6-h treatment) and cell death occurred before DNA cleavage might be initiated. The exposure of tobacco BY-2 cells to 0.05 mM Cd2+ resulted in a marked accumulation of total PAs (represented by the sum of free PAs and their perchloric acid (PCA)-soluble and PCA-insoluble conjugates) during 3-day treatment. The increase in total PA contents was primarily caused by the increase in putrescine (Put) concentration. The accumulation of free spermidine (Spd) and spermine (Spm) at 12 and 24 h in 0.05 mM Cd2+ treated BY-2 cells and high contents of Spd and especially Spm determined in dead cells after I mM Cd2+ application was observed. The participation of PA conjugation with hydroxycinnamic acids and PA oxidative deamination in maintaining of free PA levels in BY-2 cells under Cd2+-induced oxidative stress is discussed.  相似文献   

14.
Sphinganine or dihydrosphingosine (d18:0, DHS), one of the most abundant free sphingoid Long Chain Base (LCB) in plants, is known to induce a calcium-dependent programmed cell death (PCD) in tobacco BY-2 cells. We have recently shown that DHS triggers a production of H2O2, via the activation of NADPH oxidase(s). However, this production of H2O2 is not correlated with the DHS-induced cell death but would rather be associated with basal cell defense mechanisms. In the present study, we extend our current knowledge of the DHS signaling pathway, by demonstrating that DHS also promotes a production of nitric oxide (NO) in tobacco BY-2 cells. As for H2O2, this NO production is not necessary for cell death induction.Key words: tobacco BY-2 cells, sphingolipids, LCBs, dihydrosphingosine, sphinganine, apoptosis, programmed cell death (PCD), nitric oxide (NO)These last few years, it has been demonstrated in plants that long chain bases (LCBs), the sphingolipid precursors, are important regulators of different cellular processes including programmed cell death (PCD).13 Indeed, plant treatment with fumonisin B1 or AAL toxin, two mycotoxins that disrupt sphingolipid metabolism, leads to an accumulation of the dihydrosphingosine (d18:0, DHS), one of the most abundant free LCB in plants and correlatively to the induction of cell death symptoms.4,5 A more recent study shows a rapid and sustained increase of phytosphingosine (t18:0), due to a de novo synthesis from DHS, when Arabidopsis thaliana leaves are inoculated with the avirulent strain Pseudomonas syringae pv. tomato (avrRpm1), known to induce a localized PCD called hypersensitive response (HR).6 More direct evidences were obtained from experiments on Arabidopsis cells where external application of 100 µM C2-ceramide, a non-natural acylated LCB, induced PCD in a calcium (Ca2+)-dependent manner.7 Recently, we have shown that DHS elicited rapid Ca2+ increases both in the cytosol and the nucleus of tobacco BY-2 cells and correlatively induced apoptotic-like response. Interestingly, blocking nuclear Ca2+ changes without affecting the cytosolic Ca2+ increases prevented DHS-induced PCD.8Besides calcium ions, reactive oxygen species (ROS) have also been suggested to play an important role in the control of PCD induced by sphingolipids in plants.9 Thus, the C2-ceramide-induced PCD in Arabidopsis is preceded by an increase in H2O2.7 However, inhibition of ROS production by catalase, a ROS-scavenging enzyme, did not prevent C2-ceramide-induced cell death, suggesting that this PCD is independent of ROS generation. Moreover, we recently showed in tobacco BY-2 cells that DHS triggers a dose-dependent production of H2O2 via activation of a NADPH oxidase.10 The DHS-induced cytosolic Ca2+ transient is required for this H2O2 production while the nuclear calcium variation is not necessary. In agreement with the results of Townley et al. blocking the ROS production using diphenyleniodonium (DPI), a known inhibitor of NADPH oxidases, does not prevent DHS-induced cell death. Gene expression analysis of defense-related genes, using real-time quantitative PCR (RT-qPCR) experiments, rather indicates that H2O2 generation is likely associated with basal defense mechanisms.10In the present study, we further investigated the DHS signaling cascade leading to cell death in tobacco BY-2 cells, by evaluating the involvement of another key signaling molecule i.e., nitric oxide (NO). In plants, NO is known to play important roles in numerous physiological processes including germination, root growth, stomatal closing and adapative response to biotic and abiotic stresses (reviewed in ref. 1114). NO has also been shown to be implicated in the induction of PCD in animal cells,15 in yeast,16 as well as in plant cells, in which it is required for tracheid differentiation17 or HR activation.18,19 Interestingly in the latter case, the balance between NO and H2O2 production appears to be crucial to induce cell death.20 Here we show in tobacco BY-2 cells that although DHS elicits a production of NO, this production is not necessary for the induction of PCD.  相似文献   

15.
Long chain bases (LCBs) are sphingolipid intermediates acting as second messengers in programmed cell death (PCD) in plants. Most of the molecular and cellular features of this signaling function remain unknown. We induced PCD conditions in Arabidopsis thaliana seedlings and analyzed LCB accumulation kinetics, cell ultrastructure and phenotypes in serine palmitoyltransferase (spt), mitogen-activated protein kinase (mpk), mitogen-activated protein phosphatase (mkp1) and lcb-hydroxylase (sbh) mutants. The lcb2a-1 mutant was unable to mount an effective PCD in response to fumonisin B1 (FB1), revealing that the LCB2a gene is essential for the induction of PCD. The accumulation kinetics of LCBs in wild-type (WT) and lcb2a-1 plants and reconstitution experiments with sphinganine indicated that this LCB was primarily responsible for PCD elicitation. The resistance of the null mpk6 mutant to manifest PCD on FB1 and sphinganine addition and the failure to show resistance on pathogen infection and MPK6 activation by FB1 and LCBs indicated that MPK6 mediates PCD downstream of LCBs. This work describes MPK6 as a novel transducer in the pathway leading to LCB-induced PCD in Arabidopsis, and reveals that sphinganine and the LCB2a gene are required in a PCD process that operates as one of the more effective strategies used as defense against pathogens in plants.  相似文献   

16.
TONSOKU(TSK)/MGOUN3/BRUSHY1 of Arabidopsis thaliana encodes a nuclear leucine-glycine-aspargine (LGN) domain protein implicated to be involved in genome maintenance, and mutants with defects in TSK show a fasciated stem with disorganized meristem structures. We identified a homolog of TSK from tobacco BY-2 cells (NtTSK), which showed high sequence conservation both in the LGN domain and in leucine-rich repeats with AtTSK. The NtTSK gene was expressed during S phase of the cell cycle in tobacco BY-2 cells highly synchronized for cell division. The tsk mutants of Arabidopsis contained an increased proportion of cells with 4C nuclei and cells expressing cyclin B1 compared with the wild type. These results suggest that TSK is required during the cell cycle and defects of TSK cause the arrest of cell cycle progression at G2/M phase.  相似文献   

17.
Dixit R  Cyr RJ 《Protoplasma》2002,219(1-2):116-121
Cell division involves the coordinated progression of karyokinesis and cytokinesis, which is accomplished by communication between the nucleus and the cytoplasm. We have utilized green-fluorescent-protein technology to generate a line of tobacco 'Bright Yellow 2' (BY-2) cells labeled for both microtubules and the nuclear envelope. This cell line allowed us to use living cells to investigate the relationship between nuclear-envelope breakdown and preprophase band disappearance with high spatial and temporal resolution. Our observations demonstrate that nuclear-envelope breakdown always precedes preprophase band disappearance in BY-2 cells. In addition, the rate of preprophase band disappearance, and the attenuation of perinuclear microtubule fluorescence, correlates with the proximity of the nucleus to the preprophase band site. These results indicate the presence of communication between the nucleus and the preprophase band and suggest a causal relationship between nuclear-envelope breakdown and preprophase band disappearance.  相似文献   

18.
Sphingolipids are structural components of endomembranes and function through their metabolites as bioactive regulators of cellular processes such as programmed cell death. A characteristic feature of plant sphingolipids is their high content of trihydroxy long-chain bases (LCBs) that are produced by the LCB C-4 hydroxylase. To determine the functional significance of trihydroxy LCBs in plants, T-DNA double mutants and RNA interference suppression lines were generated for the two Arabidopsis thaliana LCB C-4 hydroxylase genes Sphingoid Base Hydroxylase1 (SBH1) and SBH2. These plants displayed reductions in growth that were dependent on the content of trihydroxy LCBs in sphingolipids. Double sbh1 sbh2 mutants, which completely lacked trihydroxy LCBs, were severely dwarfed, did not progress from vegetative to reproductive growth, and had enhanced expression of programmed cell death associated-genes. Furthermore, the total content of sphingolipids on a dry weight basis increased as the relative amounts of trihydroxy LCBs decreased. In trihydroxy LCB-null mutants, sphingolipid content was approximately 2.5-fold higher than that in wild-type plants. Increases in sphingolipid content resulted from the accumulation of molecular species with C16 fatty acids rather than with very-long-chain fatty acids, which are more commonly enriched in plant sphingolipids, and were accompanied by decreases in amounts of C16-containing species of chloroplast lipids. Overall, these results indicate that trihydroxy LCB synthesis plays a central role in maintaining growth and mediating the total content and fatty acid composition of sphingolipids in plants.  相似文献   

19.
The tobacco mitogen-activated protein kinase kinase kinase NPK1 localizes to the equatorial region of phragmoplasts by interacting with kinesin-like protein NACK1. This leads to activation of NPK1 kinase at late M phase, which is necessary for cell plate formation. Until now, its localization during interphase has not been reported. We investigated the subcellular localization of NPK1 in tobacco-cultured BY-2 cells at interphase using indirect immunofluorescence microscopy and fusion to green fluorescent protein (GFP). Fluorescence of anti-NPK1 antibodies and GFP-fused NPK1 were detected only in the nuclei of BY-2 cells at interphase. Examination of the amino acid sequence of NPK1 showed that at the carboxyl-terminal region in the regulatory domain, which contains the binding site of NACK1, NPK1 contained a cluster of basic amino acids that resemble a bipartite nuclear localization signal (NLS). Amino acid substitution mutations in the critical residues in putative NLS caused a marked reduction in nuclear localization of NPK1 in BY-2 cells, indicating that this sequence is functional in tobacco BY-2 cells. We also found that the 64-amino acid sequence at the carboxyl terminus that contains NLS sequence is essential for interaction with NACK1, and that mutations in the NLS sequence prevented NPK1 from interacting with NACK1. Thus, the amino acid sequence at the carboxyl-terminal region of NPK1 has dual functions for nuclear localization during interphase and binding NACK1 in M phase.  相似文献   

20.
The plant nucleus changes its intracellular position not only upon cell division and cell growth but also in response to environmental stimuli such as light. We found that the nucleus takes different intracellular positions depending on blue light in Arabidopsis thaliana leaf cells. Under dark conditions, nuclei in mesophyll cells were positioned at the center of the bottom of cells (dark position). Under blue light at 100 mumol m(-2) s(-1), in contrast, nuclei were located along the anticlinal walls (light position). The nuclear positioning from the dark position to the light position was fully induced within a few hours of blue light illumination, and it was a reversible response. The response was also observed in epidermal cells, which have no chloroplasts, suggesting that the nucleus has the potential actively to change its position without chloroplasts. Light-dependent nuclear positioning was induced specifically by blue light at >50 mumol m(-2) s(-1). Furthermore, the response to blue light was induced in phot1 but not in phot2 and phot1phot2 mutants. Unexpectedly, we also found that nuclei as well as chloroplasts in phot2 and phot1phot2 mutants took unusual intracellular positions under both dark and light conditions. The lack of the response and the unusual positioning of nuclei and chloroplasts in the phot2 mutant were recovered by externally introducing the PHOT2 gene into the mutant. These results indicate that phot2 mediates the blue light-dependent nuclear positioning and the proper positioning of nuclei and chloroplasts. This is the first characterization of light-dependent nuclear positioning in spermatophytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号