首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compartment Analysis of Nitrogen Flows through Mature Leaves   总被引:2,自引:0,他引:2  
Nitrogen flows in mature leaves of rice, sunflower and cornwere analyzed by multicompartment analyses of data from 15Ntracer experiments. The fourcompartment model fit the measureddata better than the two- or three-compartment models. Rateconstants of the nitrogen flows, transfers with or without proteinturnover and flow through a storage pool of soluble-N, werederived from a least-squares fit between the mathematical expressionsand the corresponding measured data. Results of computations indicated the following: The flow ofnitrogen through the protein pool was larger than the directflow in recently matured leaves, whereas the reverse was truein senescent leaves. The presence of a temporary storage poolof soluble N was suggested, and the half-life of the N exchangein that pool was estimated to be roughly the amount of the insolubleN present in three of the four cases examined. The half-livesof insoluble N (protein) pools were 35 to 150 h. The pool forthe N efflux from the leaves was small with the shortest half-lives(most less than 2 h) of N turnover. Some recycling of N duringprotein turnover was suggested in sunflower leaves, but theextent in the leaves of rice seedlings was estimated to be little. (Received April 28, 1983; Accepted October 6, 1983)  相似文献   

2.
The turnover of classical Folch-Lees proteolipid proteins was studied after administration of [2,3-3H]tryptophan to both developing and adult rat brain. The animals were killed from 2h to 250 days after subcutaneous injections of [3H]tryptophan. The measured specific radioactivity in developing brain attained maximum value 24h after the administration of label, whereas the total radioactivity per brain reached a maximum 21 days after injection. The half-life of proteolipid protein from the measured specific radioactivity was 7-20 days, depending on the time-points used for the calculation, whereas calculation from total radioactivity between 28-77 and 91-257 days gave half-lives of 35-40 and 188 days respectively. In contrast, in animals injected at 40 days of age, the half-life from the whole-brain-radioactivity data was 188 days. The problem of the recycling of radioactivity for the synthesis of myelin proteins from either a general or a discrete amino acid pool is discussed.  相似文献   

3.
Rates of myo-inositol (Ins) incorporation and turnover in phosphatidylinositol (PtdIns) were determined in cultured mouse cortical neurons. Cells were incubated with deuterium-labeled myo-inositol (Ins) in culture medium free of unlabeled Ins. The time-dependent changes in the specific activity of cytosolic Ins and membrane PtdIns were measured by mass spectrometry. PtdIns turnover was modeled incorporating values for Ins flux, cytosolic dilution, PtdIns concentration, and rate of incorporation into PtdIns. Recycled Ins diluted the labeled precursor pool, and a time course was obtained for this cytosolic process. The specific activity of the precursor pool at the plateau of the time-course curve was 0.43 +/- 0.04 (mean +/- SD). The incorporation of the tracer into PtdIns was linear between 4 and 10 h incubation of the neurons. After factoring in the extent of dilution of the tracer in the precursor pool, the rate of Ins incorporation into PtdIns was found to be 315 +/- 51 nmol (g of protein)(-1) x h(-1). The half-life of Ins in PtdIns was calculated for each point on the linear incorporation curve and then corrected for the tracer reincorporation. The half-life of Ins in PtdIns was 6.7 +/- 0.2 h, which translates into a basal turnover rate of 10.3%/h in this in vitro system. The mathematical model and the stable isotope method described here should allow assessment of the dynamics of PtdIns signaling altered in certain diseases or by agents.  相似文献   

4.

Background

Bacterial pneumonia in newborns often leads to surfactant deficiency or dysfunction, as surfactant is inactivated or its production/turnover impaired. No data are available in vivo in humans on the mechanism of surfactant depletion in neonatal pneumonia. We studied the kinetics of surfactant''s major component, disaturated-phosphatidylcholine (DSPC), in neonatal pneumonia, and we compared our findings with those obtained from control newborn lungs.

Methods

We studied thirty-one term or near-term newborns (gestational age 39.7±1.7 weeks, birth weight 3185±529 g) requiring mechanical ventilation. Fifteen newborns had pneumonia, while 16 newborns were on mechanical ventilation but had no lung disease. Infants received an intratracheal dose of 13C labeled dipalmitoyl-phosphatidylcholine at the study start. We measured the amount and the isotopic enrichment of DSPC-palmitate from serial tracheal aspirates by gas chromatography and gas chromatography-mass spectrometry, respectively, and we calculated the DSPC half-life (HL) and pool size (PS) from the isotopic enrichment curves of surfactant DSPC-palmitate.

Results

The mean DSPC amount obtained from all tracheal aspirates did not differ between the two groups. DSPC HL was 12.7 (6.5–20.2) h and 25.6 (17.9–60.6) h in infants with pneumonia compared with control infants (p = 0.003). DSPC PS was 14.1 (6.6–30.9) mg/kg in infants with pneumonia and 34.1 (25.6–65.0) mg/kg in controls, p = 0.042. Myeloperoxidase (MPO) activity, as a marker of lung inflammation, was 1322 (531–2821) mU/ml of Epithelial Lining Fluid (ELF) and 371(174–1080) mU/ml ELF in infants with pneumonia and in controls, p = 0.047. In infants with pneumonia, DSPC PS and HL significantly and inversely correlated with mean Oxygenation Index (OI) during the study (DSPC PS vs. OI R = −0.710, p = 0.004 and HL vs. OI R = −0.525, p = 0.044, respectively).

Conclusions

We demonstrated for the first time in vivo in humans that DSPC HL and PS were markedly impaired in neonatal pneumonia and that they inversely correlated with the degree of respiratory failure.  相似文献   

5.
The turnover of cyclic AMP in cultured fibroblasts   总被引:1,自引:0,他引:1  
The determination of the turnover of cAMP in WI-38 and VA13 cultured fibroblasts stimulated by prostaglandin E1 is reported. The method made use of data obtained from a process of continuously labeling the cellular adenine nucleotide pools by incubation with [3H]-adenine. The turnover of the cAMP was estimated from the delay in appearance of tritium label in the cAMP pool was compared to the cellular ATP. For WI-38 cells the half-life of cAMP when accumulation had reached a steady-state was 1.46 minutes; in the presence of 0.5 mM 1-methyl-3-isobutylxanthine (IBMX) the half-life was increased to 9.24 minutes. For VA13 transformed fibroblasts the half-life of cAMP determined by this method was 6.30 minutes. cAMP in these latter cells in the absence of hormone had a half-life of 3.01 minutes. This decrease supports the contention that the hormone has profound effects on phosphodiesterase as well as adenylate cyclase activities in these cells.  相似文献   

6.
The quantitative contribution of glucose to the biosynthesis of lactosyl-ceramide and other glycosphingolipids was studied in the adult rat brain in vivo using a semicompartmental model. Half-lives of glucose carbon in both the total carbon pool and the carbohydrate residue of the lipid were calculated. In all glycolipids the half-life of carbohydrate units was six to eight times shorter than the half-life of carbon in the total carbon pool of the same lipid. This carbohydrate half-life appears to be closely related to the turnover rate of the glycolipid. The shortest carbohydrate half-life (2.2 days) was obtained for lactosyl-ceramide followed by gangliosides. galactosyl-ceramides, and sulphatides. The results indicate that lactosyl-ceramide may serve as a branch point for the biosynthesis of cerebral gangliosides in vivo rather than occur as a breakdown product of more complex molecules.  相似文献   

7.
Noradrenaline turnover rate in the mediobasal and anterior hypothalamus of the rabbit. Acta Physiol. Pol., 1977, 28 (1): 39-43. The rate of noradrenaline (NA) turnover in mediobasal hypothalamus (MBH) and anterior hypothalamus (AH) of the rabbit was estimated by steady-state isotopic method with a tritiated noradrenaline (3H-NA) as a tracer. The disappearance rate of 3H-NA both in MBH and in AH was found to be biphasic; the first rapid phase of the NA half-life of about 30 min, followed by the second phase of slower decay of the half-life of 2.4 h and 10 h for MBH and AH respectively. The results suggest an existence of more than one metabolic pool of endogenous noradrenaline in MBH and AH and indicate regional difference in the metabolism of NA stores in the hypothalamus.  相似文献   

8.
We previously found a shorter surfactant disaturated phosphatidylcholine palmitate (DSPC-PA) half-life in infants with bronchopulmonary dysplasia (BPD) by using a single stable isotope tracer and simple formulas based on a one-exponential fit of the final portion of the enrichment decay curve. The aim of this study was to apply noncompartmental and compartmental analysis on the entire enrichment decay curve of DSPC-PA and to compare the kinetic data with our previous results. We analyzed 10 preterm newborns with BPD (gestational age 26 +/- 0.6 wk, weight 777 +/- 199 g) and 6 controls (gestational age 26 +/- 1.4 wk, weight 787 +/- 259 g). All took part in our previous study. Endotracheal 13C-labeled dipalmitoyl phosphatidylcholine was administered, and the 13C-enrichment of surfactant DSPC-PA was measured from serial tracheal aspirates by gas chromatography-mass spectrometry. Noncompartmental and compartmental models were numerically identified from the tracer-to-tracee ratio and kinetic parameters related to the accessible (pool accessible to sampling, likely to be the lung alveolar pool) and to the nonaccessible pools (pools not accessible to samplings, likely to be the intracellular storage pool) were estimated in the two study groups. Comparison was performed by Mann-Whitney test. A two-compartment model provided the most reliable assessment of DSPC-PA kinetics. In BPD vs. controls, mean +/- SE residence time of DSPC-PA in the accessible was 17.5 +/- 2.6 vs. 32.2 +/- 6.4 h (P < 0.05), whereas it was 49.7 +/- 3.5 vs. 54.4 +/- 3.9 h (NS, not significant) in the nonaccessible pool; DSPC-PA recycling was 0.26 +/- 0.05 vs. 0.43 +/- 0.04% (NS), respectively. A two-compartment model of surfactant DSPC-PA kinetics allowed a thorough assessment of DSPC-PA kinetics, including masses, synthesis, and fluxes between pools. The most important findings of this study are that in BPD infants DSPC-PA loss from the alveolar pool was higher and recycling through the intracellular pool lower than in controls.  相似文献   

9.
"Fibroblast-like" cells from the intimal layer of bovine aorta were grown in culture. The formation, composition, molecular weight and turnover rate of different pools of glycosaminoglycans were investigated in cultures incubated in the presence [35S]sulfate or [14C]glucosamine. The newly synthesized glycosaminoglycans are distributed into an extracellular pool (37 - 58%), a cell-membrane associated or pericellular pool (23 - 33%), and an intracellular pool (19 - 30%), each pool exhibiting a characteristic distribution pattern of chondroitin sulfate, dermatan sulfate, heparan sulfate and hyaluronate. The distribution pattern of the extracellular glycosaminoglycans resembles closely that found in bovine aorta. A small subfraction of the pericellular pool - tentatively named "undercellular" pool--has been characterized by its high heparan sulfate content. The intracellular and pericellular [35S]glycosaminoglycan pools reach a constant radioactivity after 8-12 h and 24 h, respectively, whereas the extracellular [35S]glycosaminoglycans are secreted into the medium at a linear rate over a period of at least 6 days. The intracellular glycosaminoglycans are mainly in the process of degradation, as indicated by their low molecular weight and by their half-life of 7 h, but intracellular dermatan sulfate is degraded more rapidly (half-life 4-5 h) than intracellular chondroitin sulfate and heparan sulfate (half-life 7-8 h). Glycosaminoglycans leave the pericellular pool with a half-life of 12-14 h by 2 different routes: about 60% disappear as macromolecules into the culture medium, and the remainder is pinocytosed and degraded to a large extent. Extracellular and at least a part of the pericellular glycosaminoglycans are proteoglycans. Even under dissociative conditions (4M guanidinium chloride) their hydrodynamic volume is sufficient for partial exclusion from Sepharose 4B gel. The existence of topographically distinct glycosaminoglycan pools with varying metabolic characteristics and differing accessibility for degradation requiresa reconsideration and a more reserved interpretation of results concerning the turnover rates of glycosaminoglycans as determined in arterial tissue.  相似文献   

10.
BackgroundIt is unknown whether Whole-Body Hypothermia (WBH) affects pulmonary function. In vitro studies, at relatively low temperatures, suggest that hypothermia may induce significant changes to the surfactant composition. The effect of WBH on surfactant kinetics in newborn infants is unknown. We studied in vivo kinetics of disaturated-phosphatidylcholine (DSPC) in asphyxiated newborns during WBH and in normothermic controls (NTC) with no or mild asphyxia. Both groups presented no clinically apparent lung disease.MethodsTwenty-seven term or near term newborns requiring mechanical ventilation were studied (GA 38.6±2.2 wks). Fifteen during WBH and twelve NTC. All infants received an intra-tracheal dose of 13C labelled DSPC and tracheal aspirate were performed. DSPC amount, DSPC half-life (HL) and pool size (PS) were calculated.ResultsDSPC amount in tracheal aspirates was 0.42 [0.22–0.54] and 0.36 [0.10–0.58] mg/ml in WBH and NTC respectively (p = 0.578). DSPC HL was 24.9 [15.7–52.5] and 25.3 [15.8–59.3] h (p = 0.733) and DSPC PS was 53.2 [29.4–91.6] and 40.2 [29.8–64.6] mg/kg (p = 0.598) in WBH and NTC respectively.ConclusionsWBH does not alter DSPC HL and PS in newborn infants with no clinical apparent lung disease.  相似文献   

11.
1. The rates of detoxification of cycloheximide (33 mug/g fresh wt.), puromycin (167 mug/g fresh wt.) and actinomycin D (1 mug/g fresh wt.) were assessed in vivo on the basis of acid-insoluble [14C]leucine incorporation in the sheep blowfly, Lucilla cuprina; these were compared with quantitative estimates which took account not only of incorporation data but also of leucine pool size and turnover. Quantitatively, cycloheximide and puromycin were still at least 50% effective in inhibiting protein synthesis after 6.5 and 24.5h of exposure respectively, whereas values based only on incorporation data suggested that cycloheximide was 83% effective and puromycin completely ineffective after the respective periods. Quantitative estimates also showed that actinomycin D effectiveness increased with increasing exposure over 24.5h, in contrast with values based only on incorporation data, which suggested that it was completely ineffective after 24h.2. All inhibitors affected the dynamic state of the amino acid pool; there was a marked decrease in the rate of leucine-pool turnover as well as an increase in the half-life of leucine in the pool. 3. Inhibition of protein synthesis resulted in changes in leucine-pool size; the most pronounced increase occurred with cycloheximide and puromycin and the most pronounced decreases with actinomycin D. 4. Evidence is presented which suggests that proteolysis is functionally linked to protein synthesis, which determines its rate indirectly.  相似文献   

12.
The specific radioactivity of mouse globin mRNA in blood reticulocytes was measured after injection of [(3)H]uridine into anaemic mice up to 60h before collection of reticulocytes. From these data, the decay of the acid-soluble nucleotide pool in the marrow and the relative marrow-cell composition it is possible to build models that allow the cell life-times and half-life of mRNA in the erythroid cells of the marrow to be calculated. Best fit of models to these data favour a model with either one or two cell divisions from the onset of mRNA synthesis. The single-cell-division model has cell times of 20, 13 and 7h respectively for the basophilic erythroblast, polychromatophilic erythroblast and reticulocyte. The two-cell-division model has cell times of 12, 12, 12 and 7h for the basophilic erythroblast 1 and 2, polychromatophilic erythroblast and reticulocyte respectively. Both models have an mRNA half-life of 17h and a constant rate of mRNA synthesis until enucleation at the reticulocyte stage, when synthesis stops. A declining rate of mRNA synthesis can be accommodated in a two-cell-division model, when synthesis halves at each cell division and cell times are essentially the same as above, but mRNA half-life is either 9h in the basophilic and polychromatophilic erythroblasts and 17h in the later cells, or 10h in the basophilic erythroblasts and polychromatophilic erythroblasts and 14.5h in later cells. In all cases it is clear that mRNA synthesis occurs over a time-period of only 30-36h and that mRNA cannot be pre-synthesized in precursor erythroid cells.  相似文献   

13.
The effects of intratracheally instilled silica (10 mg/rat) on the biosynthesis of surfactant phospholipids was investigated in the lungs of rats. The sizes of the intracellular and extracellular pools of surfactant phospholipids were measured 7, 14 and 28 days after silica exposure. The ability of lung slices to incorporate [14C]choline and [3H]palmitate into surfactant phosphatidylcholine (PC) and disaturated phosphatidylcholine (DSPC) was also investigated. Both intra- and extra-cellular pools of surfactant phospholipids were increased by silica treatment. The intracellular pool increased linearly over the 28-day time period, ultimately reaching a size 62-fold greater than controls. The extracellular pool also increased, but showed a pattern different from that of the intracellular pool. The extracellular pool increased non-linearly up to 14 days, and then declined. At its maximum, the extracellular pool was increased 16-fold over the control. The ability of lung slices to incorporate phospholipid precursors into surfactant-associated PC and DSPC was elevated at all time periods. The rate of incorporation of [14C]choline into surfactant PC and DSPC was maximal at 14 days and was nearly 3-fold greater than the rate in controls. The rate of incorporation of [3H]palmitate was also maximal at 14 days, approx. 5-fold above controls for PC and 3-fold for DSPC. At this same time point, the microsomal activity of cholinephosphate cytidylyltransferase was increased 4.5-fold above controls, but cytosolic activity was not significantly affected by silica treatment. These data indicate that biosynthesis of surfactant PC is elevated after treatment of lungs with silica and that this increased biosynthesis probably underlies the expansion of the intra- and extra-cellular pools of surfactant phospholipids.  相似文献   

14.
Lystbeige (beige) mice crossed with LDL receptor-deficient (LDLr-/-) mice had a distinct atherosclerotic lesion morphology that was not observed in LDLr-/- mice. This morphology is often associated with a stable plaque phenotype. We hypothesized that macrophage expression of the beige mutation accounted for this distinct morphology. Cultured bone marrow-derived macrophages from LDLr-/- and beige,LDLr-/- mice were compared for their ability to accumulate cholesterol, efflux cholesterol, migrate in response to chemotactic stimuli through Matrigel-coated membranes, and express matrix metalloproteinase 9 (MMP9). No differences in cholesterol metabolism were identified. Beige,LDLr-/- macrophage invasion in vitro appeared to be less than LDLr-/- macrophage invasion but did not achieve significance. Nevertheless, tumor necrosis factor-alpha-induced MMP9 expression, secretion, and enzymatic activity of beige,LDLr-/- macrophages were all significantly decreased compared with those of LDLr-/- macrophages (P < 0.05). For in vivo analyses of macrophage function, bone marrow transplantation (BMT) studies were performed. LDLr-/- mice and beige,LDLr-/- mice were irradiated and reconstituted with wild-type or beige bone marrow from mice expressing green fluorescent protein (GFP). Identification of GFP cells provided for direct identification of donor-derived cells within lesions. Only expression of the beige mutation in the BMT recipients altered the macrophage location and collagen content of the lesions. These results suggested that impaired macrophage function by itself did not account for the stable lesion morphology of beige,LDLr-/- double-mutant mice.  相似文献   

15.
The synthesis and turnover of cerebrosides and phospholipids was followed in microsomal and myelin fractions of developing and adult rat brains after an intracerebral injection of [U-14C]serine. The kinetics of incorporation of radioactivity into microsomal and myelin cerebrosides indicate the possibility of a precursor-product relationship between cerebrosides of these membranes. The specific radioactivity of myelin cerebrosides was corrected for the deposition of newly formed cerebrosides in myelin. Multiphasic curves were obtained for the decline in specific radioactivity of myelin and microsomal cerebrosides, suggesting different cerebroside pools in these membranes. The half-life of the fast turning-over pool of cerebrosides of myelin was 7 and 22 days for the developing and adult rat brain respectively. The half-life of the slowly turning-over pool of myelin cerebrosides was about 145 days for both groups of animals. The half-life of the rapidly turning-over microsomal cerebrosides was calculated to be 20 and 40 h for the developing and adult animals respectively. The half-life of the intermediate and slowly turning-over microsomal cerebrosides was 11 and 60 days respectively, for both groups of animals. The amount of incorporation of radioactivity into microsomal cerebrosides from L-serine was greatly decreased in the adult animals, and greater amounts of the precursor were directed towards the synthesis of phosphatidylserine. In the developing animals, considerable amounts of cerebrosides were synthesized from L-serine, besides phosphatidylserine. The time-course of incorporation indicated that a precursor-product relationship exists between microsomal and myelin phosphatidylserine. The half-life of microsomal phosphatidylserine was calculated to be about 8 h for the fast turning-over pool in both groups of animals.  相似文献   

16.
The beige mouse is an animal model for the human Chediak-Higashi syndrome, a disease characterized by giant lysosomes in most cell types. In mice, treatment with androgenic hormones causes a 20-50-fold elevation in at least one kidney lysosomal enzyme, beta-glucuronidase. Beige mice treated with androgen had significantly higher kidney beta-glucuronidase, beta-galactosidase, and N-acetyl-beta-D-glucosaminidase (hexosaminidase) levels than normal mice. Other androgen-inducible enzymes and enzyme markers for the cytosol, mitochondria, and peroxisomes were not increased in kidney of beige mice. No significant lysosomal enzyme elevation was observed in five other organs of beige mice with or without androgen treatment, nor in kidneys of beige females not treated with androgen. Histochemical staining for glucuronidase together with subcellular fractionation showed that the higher glucuronidase content of beige mouse kidney is caused by a striking accumulation of giant glucuronidase-containing lysosomes in tubule cells near the corticomedullary boundary. In normal mice lysosomal enzymes are coordinately released into the lumen of the kidney tubules and appreciable amounts of lysosomal enzymes are present in the urine. Levels of urinary lysosomal enzymes are much lower in beige mice than in normal mice. It appears that lysosomes may accumulate in beige mice because of defective exocytosis resulting either from decreased intracellular motility of lysosomes or from their improper fusion with the plasma membrane. A similar defect could account for characteristics of the Chediak-Higashi syndrome.  相似文献   

17.
Characterization of beige rats as having a platelet storage pool deficiency (SPD) was undertaken. Platelets from beige rats, an animal model of Chédiak-Higashi syndrome (CHS), completely lacked the ability to aggregate when stimulated with high dosages of collagen (50 micrograms/ml), and lacked secondary aggregation induced by adenosine diphosphate (ADP). Concentrations of ADP, ATP, and serotonin in the platelets of beige rats were significantly lower than those of control rats. However, platelet count remained within normal values. Electron microscopy revealed that platelets had fewer dense granules, whereas other organelles had normal structure. This morphologic and functional evidence confirms that platelets of beige rats have the typical characteristics of SPD.  相似文献   

18.
The incorporation and turnover of phospholipid precursors in cultured normal and tumoral glial cells was investigated during the plateau phase of growth. Glycerol was incorporated similarly by all cell types, and was renewed with a half-life of 19-37 hr. Acetate had a much longer half-life in primary cultures (50-75 hr) than in proliferative tumor cells (20-40 hr). Phosphate had a more rapid turnover rate in primary cultures (25 hr) than in proliferative tumor cells (50 hr). For all precursors, inositol- and choline phosphoglycerides had a faster turnover rate than other phospholipids.  相似文献   

19.
We investigated whether the higher rate of amino acid incorporation into immature than into mature brain protein is due to (a) rapid growth, (b) a small rapidly metabolized protein pool, or (c) a higher turnover rate of most of the protein. We measured net growth and the incorporation of [14C]tyrosine or [14C]valine into brain proteins in young rats and mice. The specific activity of the free amino acid pool was kept constant in the tyrosine experiments. Incorporation of tyrosine into protein was continued for up to 30 h by which time the specific activity of protein-bound amino acid reached 1/3 of that of the free (precursor) amino acid. The growth (accretion) of brain proteins was approx. 0.635% per h in mice and rats in the 1-4 day period after birth. In previous studies we found that the turnover rate of the bulk (about 96%) of adult brain proteins is below 0.3% per h. Because of the presence of a small (about 4%) active pool the average turnover rate is 0.6% per h. The present experiments show a degradation rate of 0.7-1.1% per h in the brain proteins of the young. This high metabolic rate is not due to a small rapidly degraded fraction of protein. The very rapid protein fraction previously seen in adult rats is either very small (below 1%) or absent in the young. Thus most of the proteins in the immature brain during the rapid growth phase are formed and broken down at a rate that is approximately three times higher than that of the bulk of proteins in the adult brain. The small active protein pool in the adult on the other hand has a metabolic rate higher than that of the immature brain proteins.  相似文献   

20.
Aging usually involves the progressive development of certain illnesses, including diabetes and obesity. Due to incapacity to form new white adipocytes, adipose expansion in aged mice primarily depends on adipocyte hypertrophy, which induces metabolic dysfunction. On the other hand, brown adipose tissue burns fatty acids, preventing ectopic lipid accumulation and metabolic diseases. However, the capacity of brown/beige adipogenesis declines inevitably during the aging process. Previously, we reported that DNA demethylation in the Prdm16 promoter is required for beige adipogenesis. DNA methylation is mediated by ten–eleven family proteins (TET) using alpha‐ketoglutarate (AKG) as a cofactor. Here, we demonstrated that the circulatory AKG concentration was reduced in middle‐aged mice (10‐month‐old) compared with young mice (2‐month‐old). Through AKG administration replenishing the AKG pool, aged mice were associated with the lower body weight gain and fat mass, and improved glucose tolerance after challenged with high‐fat diet (HFD). These metabolic changes are accompanied by increased expression of brown adipose genes and proteins in inguinal adipose tissue. Cold‐induced brown/beige adipogenesis was impeded in HFD mice, whereas AKG rescued the impairment of beige adipocyte functionality in middle‐aged mice. Besides, AKG administration up‐regulated Prdm16 expression, which was correlated with an increase of DNA demethylation in the Prdm16 promoter. In summary, AKG supplementation promotes beige adipogenesis and alleviates HFD‐induced obesity in middle‐aged mice, which is associated with enhanced DNA demethylation of the Prdm16 gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号