首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
It is documented that some plant-growth-promoting rhizobacteria (PGPR) enhance plant salt tolerance. However, as to how PGPR may influence two crucial components of plant salt tolerance such as, root hydraulic characteristics and aquaporin regulation has been almost unexplored. Here, maize (Zea mays L.) plants were inoculated with a Bacillus megaterium strain previously isolated from a degraded soil and characterized as PGPR. Inoculated plants were found to exhibit higher root hydraulic conductance (L) values under both unstressed and salt-stressed conditions. These higher L values in inoculated plants correlated with higher plasma membrane type two (PIP2) aquaporin amount in their roots under salt-stressed conditions. Also, ZmPIP1;1 protein amount under salt-stressed conditions was higher in inoculated leaves than in non-inoculated ones. Hence, the different regulation of PIP aquaporin expression and abundance by the inoculation with the B. megaterium strain could be one of the causes of the different salt response in terms of root growth, necrotic leaf area, leaf relative water content and L by the inoculation treatment.  相似文献   

2.

Background  

Recombinant antibodies are essential reagents for research, diagnostics and therapy. The well established production host Escherichia coli relies on the secretion into the periplasmic space for antibody synthesis. Due to the outer membrane of Gram-negative bacteria, only a fraction of this material reaches the medium. Recently, the Gram-positive bacterium Bacillus megaterium was shown to efficiently secrete recombinant proteins into the growth medium. Here we evaluated B. megaterium for the recombinant production of antibody fragments.  相似文献   

3.
Effects of phospholipids on the bacterial protoplasts or membranes were investigated. Phosphatidylinositol (PI) has, most of all, active bursting action on the protoplasts of Bacillus megaterium which was found to contain a very small amount of inositol, about 0.006% of dry cell weight. This action of PI was less active on the spheroplasts or protoplasts of Escherichia coli or Bacillus subtilis than Bac. megaterium. The bursting action of PI was dependent on temperature, but not on pH or osmotic pressure(concentration of sucrose). This action of PI on the protoplasts of Bac. megaterium was more marked when the incubation was carried out in phosphate buffer than in Tris buffer. High concentration of Mg ion inhibited this PI action in the phosphate buffer, but accerelated that in the Tris buffer.

Phospholipids, especially PI, elevated the activity of succinate dehydrogenase of membrane fraction of Bac. megaterium, but sodium laurylsulfate (SLS) inhibited this enzyme.

These actions of PI were compared with those of other phospholipids and detergenic Substances.  相似文献   

4.
Functional half-life of the exocellular protease mRNA was determined in exponentially growing and stationary cells of the asporogenic strain ofBacillus megaterium, KM and in the sporogenic strain ofB. megaterium 27 during sporulation. No reserve of the protease mRNA could be detected in the cells and the half-lives were determined to be 6–7 min in the exponential and stationary cells ofB. megaterium KM and 7.5 – 8.5 min inB. megaterium 27. The mean half-life of mRNA for cell proteins was determined to be 3.5–4.5 min. Thus, as compared with the mean half-life of mRNA for cell proteins that of mRNA for the exocellular protease is slightly longer.  相似文献   

5.
In the present study, we demonstrate that the Escherichia coli–Bacillus megaterium shuttle vector pHIS1522 can be used as a versatile expression vector. Recombinant genes under the control of the xylA promoter are constitutively expressed at a high level in E. coli strains, whereas their expression is strongly induced by the addition of xylose in B. megaterium. The utilization of D ‐xylose is known to be dependent on the xylAB genes in a number of bacteria. For B. megaterium a XylA‐based expression system was established that allows tightly regulated and highly efficient heterologous gene expression. The open reading frame (ORF) of the fluorescent protein turboRFP was cloned under the control of the xylA promoter of B. megaterium in the shuttle vector pHIS1522. Unexpectedly, tRFP expression was not only observed in B. megaterium, but also in E. coli. Based on fluorescence measurements and Western blot analysis, expression was comparable or slightly higher compared with the commonly used pET vectors. Therefore, pHIS1522 can be used as a versatile expression vector in both, B. megaterium and E. coli.  相似文献   

6.
The aim of this study was to investigate environmental conditions affecting chicken feather degradation and keratinolytic enzyme production by Bacillus megaterium F7-1, a feather-degrading mesophilic bacterium. B. megaterium F7-1 degraded whole chicken feather completely within 7 days. The bacterium grew with an optimum at pH 7.0–11.0 and 25–40 °C, where maximum keratinolytic activity was also observed. The production of keratinolytic enzyme by B. megaterium F7-1 was inducible with feather. Keratinolytic enzyme production by B. megaterium F7-1 at 0.6% (w/v) skim milk was 468 U/ml, which was about 9.4-fold higher than that without skim milk. The amount of keratinolytic enzyme production depended on feather concentrations. The degradation rate of autoclaved chicken feathers by cell-free culture supernatant was 26% after 24 h of incubation, but the degradation of untreated chicken feathers was unsuccessful. B. megaterium F7-1 effectively degraded feather meal, duck feather and human nail, whereas human hair and sheep wool showed relatively low degradation rates. B. megaterium F7-1 presented high keratinolytic activity and was very effective in feather degradation, providing potential use for biotechnological processes of keratin hydrolysis.  相似文献   

7.
A novel Pb-resistant bacterium was isolated from aged lead-contaminated alkaline soils, and was identified as Bacillus megaterium via the MIDI protocol. The biosorption isotherms and kinetics of Pb(II) associated with B. megaterium in vivo in the alkaline environment were investigated at the first time. All the batch experiments of biosorption demonstrate that the B. megaterium uptake of lead is pH-dependent, exothermic (ΔH° = ?5224.86 KJ mol?1), spontaneous, and fits well with the Langmuir isotherm, resulting in different kinetics under different examination temperatures. The maximum biosorption capacity is 503.86 mg g?1 at optimum conditions, which is much better in comparison to the biosorbent reported at the acidic condition in the literature. The Fourier-transform Infrared spectroscopic analysis of lead-loaded biomass confirms that the biosorption between B. megaterium and lead is the chemical adsorption in vivo. A site test indicates that B. megaterium really increases mobility and bioavailability of lead in Pb-contaminated alkaline soil in terms of chemical fractionation in vivo, which will potentially increase its uptake by hyperaccumulated plants in alkaline soils in arid or semi-arid areas of NW, China. Therefore, the novel isolate of B. megaterium with the highest adsorption capacity is a new promising biosorbent for the lead removal in alkaline water and soil.  相似文献   

8.
Only one type (membrane-bound form) of NADH dehydrogenase could be detected in the log-phase cells ofBacillus megaterium. By sonification this enzyme could be effectively solubilized, while NADH oxidase remained bound to the membrane. A molecular weight of about 40 Kd was estimated for the dehydrogenase by gel electrophoresis in the presence of sodium dodecyl sulfate (SDS) with an activity stain. Mercuric chloride and 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO) were inhibitors for both the NADH dehydrogenase and oxidase inB. megaterium. The inhibition studies of NADH oxidation suggested that NADH dehydrogenase provided the primary electron source for NADH oxidase in this organismin vitro. NADH dehydrogenase was highly specific for NADH, and Km was estimated to be 28.2 M. The enzyme was subjected to end-product inhibition of a competitive type.  相似文献   

9.
The conjugative enterococcal transposons Tn916 and Tn919 were introduced into Bacillus megaterium by a filtermating technique. The transfer frequencies obtained ranged from 1.3×10-6 to 6.6×10-7. The transposons integrated stably into the B. megaterium chromosome. Tn916 could generate auxotrophs and was transferred from B. megaterium Tn916 transconjugants to other species.  相似文献   

10.
The molecular analysis of a genomic region of B. megaterium revealed the presence of a gene coding for the enzyme phosphotransbutyrylase (Ptb). The enzyme activity was measured throughout the different phases of growth in B. megaterium, and its activity was found to be maximal in the late exponential growth phase. The branched amino acids isoleucine and valine activated Ptb expression. PtbBm was capable of using butyryl-CoA and 2-methyl-propionyl CoA as substrates. ActBm, a sigma54 regulator from B. megaterium whose gene is situated upstream from the ptb gene, activated its expression. Received: 14 September 2000 / Accepted: 13 October 2000  相似文献   

11.
An efficient method for gene replacement in Bacillus megaterium was developed and used to inactivate the chromosomal neutral protease gene (nprM) from strain DSM319. A temperature-dependent suicide vector was constructed to allow replacement of the normal chromosomal copy with an altered version of the nprM gene. One mutant B. megaterium MS941 was selected for further characterization. Measurement of extracellular protease activity from strain MS941 indicated the existence of an additional minor extracellular protease in B. megaterium. Inhibitor studies revealed that this minor protease, comprising only 1.4% of the wild-type total extracellular protease activities, is a serine-type enzyme.Data presented in this contribution are part of a doctoral thesis of the Naturwissenschaftliche Fakultät Münster, Germany (KDW)  相似文献   

12.
Aims: To determine the effects of Mn levels in Bacillus megaterium sporulation and spores on spore resistance. Methods and Results: Bacillus megaterium was sporulated with no added MnCl2 and up to 1 mmol l?1 MnCl2. The resultant spores were purified and loosely bound Mn removed, and spore Mn levels were found to vary c. 100‐fold. The Mn level had no effect on spore γ‐radiation resistance, but B. megaterium spores with elevated Mn levels had higher resistance to UVC radiation (as did Bacillus subtilis spores), wet and dry heat and H2O2. However, levels of dipicolinic acid and the DNA‐protective α/β‐type small, acid‐soluble spore proteins were the same in spores with high and low Mn levels. Conclusions: Mn levels either in sporulation or in spores are important factors in determining levels of B. megaterium spore resistance to many agents, with the exception of γ‐radiation. Significance and Impact of the Study: The Mn level in sporulation is an important factor to consider when resistance properties of B. megaterium spores are examined, and will influence the UV resistance of B. subtilis spores, some of which are used as biological dosimeters.  相似文献   

13.
Molecular analysis of a genomic region of Bacillus megaterium, a polyhydroxybutyrate (PHB)-producing microorganism, revealed the presence of a gene coding for the enzyme phosphotransbutyrylase (Ptb). Enzyme activity was measured throughout the different growth phases of B. megaterium and was found to correlate with PHB accumulation during the late-exponential growth phase. Ptb expression was repressed by glucose and activated by the branched amino acids isoleucine and valine. Overexpression of ActBm, a 54 regulator from B. megaterium whose gene is located upstream from ptb, caused an increase in Ptb activity and PHB accumulation in B. megaterium.  相似文献   

14.
A bacterial strain with a high level of antimicrobial activity was isolated from soil and identified as Bacillus megaterium. Production of antibiotics by nine strains of this species from the collection of the State Research Institute for Genetics and Selection of Industrial Microorganisms was investigated. In submerged cultures, nine out of ten B. megaterium strains were found to produce antibacterial antibiotics differing in their spectra of action. Physicochemical characteristics of five compounds were described. Three of them belonged to peptide antibiotics. All five compounds were active against the methicillin-resistant strain Staphylococcus aureus INA 00761. Three of them were shown to be the previously undescribed compounds. Antibiotics produced by various B. megaterium strains were also active against the Leuconostoc mesenteroides VKPM B-4177 strain resistant to glycopeptide antibiotics and against gram-negative bacteria Pseudomonas aeruginosa ATCC 27853 and Escherichia coli ATCC 25922.  相似文献   

15.
We functionally analysed the two-component regulatory system DegSU (historically SacU) in Bacillus megaterium DSM319 by generating a genetic knock out as well as a sacU32 mutation. The latter—known to cause a hypersecretion phenotype in Bacillus subtilis—had no influence on extracellular protease and amylase activity in B. megaterium. Since the B. megaterium DegU complemented a Bacillus licheniformisdegSU mutant, functionality of the protein was proven. Expression of the sacB encoded levansucrase was found to be dependent on DegSU in B. megaterium. Consistently, the fusion of the sacB promoter to gfp revealed a strong increase in GFP-expression in the sacU32 strain. On 2 D-gels of the secretome, a large number of intracellular proteins was seen. The culture medium contained only 42 secreted proteins which can be assigned to polypeptides involved in the metabolism of the cell wall, polypeptides with proteolytic activities and those with unknown functions. Though overall protease activity matches with the wild type, two proteolytic enzymes (Vpr and YwaD) are missing in the secretome of the ∆degSU strain, while other degradative enzymes are not affected. In line with such findings, no increase of proteolytic or other degradative enzymes was seen in the sacU32 mutant. Thus, compared to B. subtilis and B. licheniformis, the number of extracellular proteins influenced by DegSU is surprisingly low in B. megaterium, a feature, probably advantageous as to the use of the sacU32 mutant for production of secreted proteins.  相似文献   

16.
The structure of the skeleton of spores of Bacillus megaterium was examined after ashing in a plasma asher and the elemental composition of the ashed whole spores was determined with an analytical electron microscope. All spores were ashed in situ although they shrank by about 15%. Even P and S, in addition to metals, were recovered well from ashed samples. Ash was rich in the core and the coat, and poor in the cortex. Ca, P, S, and Mg were detected in the core and coat of the spore of B. megaterium QM B1551. Ca in the core was markedly decreased by germination or autoclaving. In the spore of B. megaterium ATCC 19213, almost all of the ash was detected in the core and its elemental composition was similar to that of the core of the strain QM B1551 spore. These results suggest strongly that the core is the site of Ca associated with dipicolinic acid.  相似文献   

17.
Interactions of cationic antimicrobial peptides with living bacterial and mammalian cells are little understood, although model membranes have been used extensively to elucidate how peptides permeabilize membranes. In this study, the interaction of F5W-magainin 2 (GIGKWLHSAKKFGKAFVGEIMNS), an equipotent analogue of magainin 2 isolated from the African clawed frog Xenopus laevis, with unfixed Bacillus megaterium and Chinese hamster ovary (CHO)-K1 cells was investigated, using confocal laser scanning microscopy. A small amount of tetramethylrhodamine-labeled F5W-magainin 2 was incorporated into the unlabeled peptide for imaging. The influx of fluorescent markers of various sizes into the cytosol revealed that magainin 2 permeabilized bacterial and mammalian membranes in significantly different ways. The peptide formed pores with a diameter of ∼2.8 nm (< 6.6 nm) in B. megaterium, and translocated into the cytosol. In contrast, the peptide significantly perturbed the membrane of CHO-K1 cells, permitting the entry of a large molecule (diameter, >23 nm) into the cytosol, accompanied by membrane budding and lipid flip-flop, mainly accumulating in mitochondria and nuclei. Adenosine triphosphate and negatively charged glycosaminoglycans were little involved in the magainin-induced permeabilization of membranes in CHO-K1 cells. Furthermore, the susceptibility of CHO-K1 cells to magainin was found to be similar to that of erythrocytes. Thus, the distinct membrane-permeabilizing processes of magainin 2 in bacterial and mammalian cells were, to the best of our knowledge, visualized and characterized in detail for the first time.  相似文献   

18.
Summary Ability to produce megacin A, a bacteriocin of b. megaterium, was transferred from the strain B. megaterium 216 into auxotrophic derivatives of the strain B. megaterium KM via protoplast fusion and polyethylene-glycol-induced protoplast transformation by plasmid DNA, respectively. A 30.9 megadalton plasmid was detected in cells with MegA phenotype, and the loss of this phenotype was accompanied in each case with the elimination of that plasmid. The megacinogenic plasmid pBM309 has a single site for both BamIII and XhoI. It is cleaved by the endonucleases SalI, BglII, PstI, PvuII, and EcoRI into 3, 3, 4, 4, and 9 fragments, respectively. The physical map of this plasmid is presented.  相似文献   

19.
In this study we tested whether rhizosphere microorganisms can increase drought tolerance to plants growing under water-limitation conditions. Three indigenous bacterial strains isolated from droughted soil and identified as Pseudomonas putida, Pseudomonas sp., and Bacillus megaterium were able to stimulate plant growth under dry conditions. When the bacteria were grown in axenic culture at increasing osmotic stress caused by polyethylene glycol (PEG) levels (from 0 to 60%) they showed osmotic tolerance and only Pseudomonas sp. decreased indol acetic acid (IAA) production concomitantly with an increase of osmotic stress (PEG) in the medium. P. putida and B. megaterium exhibited the highest osmotic tolerance and both strains also showed increased proline content, involved in osmotic cellular adaptation, as much as increased osmotic stress caused by NaCl supply. These bacteria seem to have developed mechanisms to cope with drought stress. The increase in IAA production by P. putida and B. megaterium at a PEG concentration of 60% is an indication of bacterial resistance to drought. Their inoculation increased shoot and root biomass and water content under drought conditions. Bacterial IAA production under stressed conditions may explain their effectiveness in promoting plant growth and shoot water content increasing plant drought tolerance. B. megaterium was the most efficient bacteria under drought (in successive harvests) either applied alone or associated with the autochthonous arbuscular mycorrhizal fungi Glomus coronatum, Glomus constrictum or Glomus claroideum. B. megaterium colonized the rhizosphere and endorhizosphere zone. We can say, therefore, that microbial activities of adapted strains represent a positive effect on plant development under drought conditions.  相似文献   

20.
In previous studies, a new microbial strain ALA2 was isolated which produced many new products from linoleic acid [Gardner H.W., Hou C.T., Weisleder D. and Brown W. 2000. Lipids 35: 1055–1060; Hou C.T. 1998. 12,13,17-Trihydroxy-9(Z)-Octodecenoic acid and derivatives and microbial isolate for production of the acid. US Patent No. 5, 852, 196]. Strain ALA2 was preliminary identified as Clavibacter sp. based on its physiological and fatty acid profiles. To determine if strain ALA2 is the optimal strain for industrial applications, other related strains were screened for their abilities to convert linoleic acids. Two strains from Clavibacter and 20 type strains from the phylogenetically related genus Microbacterium were studied. Surprisingly, all of these strains tested showed very little or no activity in converting linoleic acid. On reexamination of the identification of strain ALA2, the sequence of the 16S ribosomal RNA gene of ALA2 was found to be 99% identical to that of Bacillus megaterium and the strain was also found to have 76.3% DNA homology to the B. megaterium type strain. Therefore, strain ALA2 is now reclassified as B. megaterium. Screening of 56 strains of B megaterium strains showed that many of them were able to produce reasonable amounts of hydroxyl fatty acids from linoleic acid, although strain ALA2 possessed the greatest activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号