首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kuzuhara A 《Biopolymers》2007,85(3):274-283
To investigate the mechanism leading to the reduction in tensile strength of permanent waved human hair, the structure of cross-sections at various depths of permanent waved white human hair was directly analyzed without isolating the cuticle and cortex, using Raman spectroscopy. The beta-sheet and/or random coil content (beta/R) and the Amide III(unordered) band intensity existing throughout the cortex region of virgin white human hair remarkably increased, while the alpha-helix (alpha) content slightly decreased by performing the permanent waving treatment. This suggests a secondary structural change from the alpha-helix form to the random coil form in the proteins existing in the microfibril of the cortex region. On the other hand, the S-S band intensity existing in the matrix of the cortex region almost did not change, despite the reduction in the tensile strength of the white human hair following the permanent waving treatment. Moreover, the transmission electron microscope observation shows that the macrofibril (the microfibril and matrix) existing in the cortex region of the virgin white human hair was remarkably disturbed, while the cuticle region was almost unchanged by performing the permanent waving treatment. From these experiments, the authors concluded that some of proteins existing in the cortex region (the microfibril and matrix) of the virgin white human hair were changed, thereby leading to the remarkable reduction in the tensile strength of the white human hair after the permanent waving treatment.  相似文献   

2.
The structural proteins of hair were solubilized by reduction of disulfide bonds in 6 M urea at alkaline pH. Following conversion of the proteins to the S-carboxy-methyl derivatives, disc electrophoresis was done in 6 M urea at pH 8.3. In about 5% of the individuals studied, a variation in the normal electrophoretic pattern was observed, and this was true of hair from different body sites. An autosomal dominant mode of inheritance was found in the four families investigated. The variant pattern was not associated with any detectable change in the color, shape, stree-strain characteristics, X-ray diffraction pattern, or amino acid composition of the hair. A similar variant pattern was also observed in nail. The most likely hypothesis is that there is a polymorphism of one of the alpha polypeptides, although a mutation of a rate-determining gene cannot be excluded.  相似文献   

3.
Kuzuhara A 《Biopolymers》2005,79(4):173-184
For the purpose of investigating in detail the influence of chemical modification using 2-iminothiolane hydrochloride (2-IT) on keratin fibers, the structure of cross-sections at various depths of white human hair, treated with 2-IT and then oxidized, was directly analyzed without isolating the cuticle and cortex, using Raman spectroscopy. In particular, the beta-sheet and/or random coil content (beta/R) and the alpha-helix (alpha) content in human hair fibers were estimated by amide I band analysis. The S-S band intensity, amide III (unordered) band intensity, and beta/R content existing from the cuticle region to the center of cortex region of virgin white human hair remarkably increased by performing the chemical modification using 2-IT. On the other hand, not only the S-S band intensity, but also S-O band intensity existing throughout the cortex region of the bleached (damaged) white human hair increased by performing chemical modification using 2-IT. In particular, beta/R content existing throughout the cortex region of the bleached white human hair decreased, while the skeletal C-C stretch (alpha) band intensity at 935 cm(-1) and the alpha content remarkably increased. This indicates a secondary structural change from the random coil form to the alpha-helix form in the proteins existing throughout the cortex region. From these experiments, we concluded that the formation of new disulfide (-SS-) groups resulting from chemical modification using 2-IT induced the secondary structural changes of proteins existing throughout the cortex region.  相似文献   

4.
beta 1 integrins are ubiquitously expressed receptors that mediate cell-cell and cell-extracellular matrix interactions. To analyze the function of beta1 integrin in skin we generated mice with a keratinocyte-restricted deletion of the beta 1 integrin gene using the cre-loxP system. Mutant mice developed severe hair loss due to a reduced proliferation of hair matrix cells and severe hair follicle abnormalities. Eventually, the malformed hair follicles were removed by infiltrating macrophages. The epidermis of the back skin became hyperthickened, the basal keratinocytes showed reduced expression of alpha 6 beta 4 integrin, and the number of hemidesmosomes decreased. Basement membrane components were atypically deposited and, at least in the case of laminin-5, improperly processed, leading to disruption of the basement membrane and blister formation at the dermal-epidermal junction. In contrast, the integrity of the basement membrane surrounding the beta 1-deficient hair follicle was not affected. Finally, the dermis became fibrotic. These results demonstrate an important role of beta 1 integrins in hair follicle morphogenesis, in the processing of basement membrane components, in the maintenance of some, but not all basement membranes, in keratinocyte differentiation and proliferation, and in the formation and/or maintenance of hemidesmosomes.  相似文献   

5.
Hair from mice bearing the dominantly inherited Naked trait (NN) and from normal (NN) mice of the same inbred strain was separated into its major protein components by standard techniques. The relative amounts of proteins in these components were then determined by a regression method from the amino acid composition of the hair samples and of the fractions into which they had been separated. The results indicated that the amount of soluble fibril in Naked-mouse hair is decreased. Polyacrylamide-gel electrophoresis of this fraction prepared from the hair of both normal and Naked mice revealed that all protein bands present in the normal are also present in the Naked mice. However, a densitometric scan of the gels at 280 nm showed that the soluble fibril fraction from Naked-mouse hair is deficient in several proteins which, on amino acid analysis, were found to contain 31% glycine and 10% tyrosine. Gel filtration of S-carboxymethylkerateine prepared from normal and mutant hair showed that the mutant hair is deficient in a heterogeneous, low-molecular-weight fraction also rich in glycine and tyrosine. Our present data do not reveal the mechanism whereby a single gene locus modulates the production of several different proteins.  相似文献   

6.
The alveolar epithelial basement membrane is believed to play important roles in lung development, in maintaining normal alveolar architecture, and in guiding repair following lung injury. However, little is known about the formation of this structure, or of the mechanisms which mediate interactions between the epithelium and specific matrix macromolecules. Since type IV collagen is a major structural component of basement membranes, we investigated the production of type IV collagen-binding proteins by primary cultures of rat lung type II pneumocytes. Cultures were labeled for up to 24 h with 3H-labeled amino acids or [3H]mannose. Soluble collagen-binding proteins which accumulated in the culture medium were isolated by chromatography on collagen-Sepharose and examined by SDS-polyacrylamide gel electrophoresis. The major type IV collagen-binding protein (CBP1) was identified as fibronectin. We also identified a novel disulfide-bonded collagen-binding glycoprotein (CBP2; Mr = 45,000, reduced). This protein was not recognized by polyclonal antibodies to fibronectin, and showed no detectable binding to denatured type I collagen. The protein was resolved from fibronectin and partially purified by sequential chromatography on gelatin and type IV collagen-Sepharose. We suggest that type II pneumocyte-derived collagen-binding proteins contribute to the formation of the epithelial basement membrane and/or mediate the attachment of these cells to collagenous components of the extracellular matrix.  相似文献   

7.
The mammalian cellular microenvironment is shaped by soluble factors and structural components, the extracellular matrix, providing physical support, regulating adhesion and signalling. A global, quantitative mass spectrometry strategy, combined with bioinformatics data processing, was developed to assess proteome differences in the microenvironment of primary human fibroblasts. We studied secreted proteins of fibroblasts from normal and pathologically altered skin and their post‐translational modifications. The influence of collagen VII, an important structural component, which is lost in genetic skin fragility, was used as model. Loss of collagen VII had a global impact on the cellular microenvironment and was associated with proteome alterations highly relevant for disease pathogenesis including decrease in basement membrane components, increase in dermal matrix proteins, TGF‐β and metalloproteases, but not higher protease activity. The definition of the proteome of fibroblast microenvironment and its plasticity in health and disease identified novel disease mechanisms and potential targets of intervention.  相似文献   

8.
Fibroblasts from dermatosparactic sheep fail to contract collagen gels and show a reduced attachment to collagenous substrates. By comparing collagen-binding membrane proteins of normal (+/+), homozygote (-/-), and heterozygote (+/-) fibroblasts, we present evidence that the interaction of normal fibroblasts with native type I collagen involves a protein of apparent Mr = 34,000 which is absent from dermatosparactic fibroblasts and seems to be related to anchorin CII. This conclusion was reached from the following experiments: (a) On a blot of membrane proteins from normal fibroblasts radioactively labeled type I collagen bound predominantly to a protein band of 34 kD; dermatosparactic membranes revealed only a small amount of binding to a component with a molecular mass of 47 kD. (b) After separation of normal fibroblast membrane proteins on type I collagen-Sepharose, a collagen-binding component of 34 kD was found which was absent from the corresponding fraction of dermatosparactic membranes. (c) Antibodies to anchorin CII stained the surface of normal (+/+), but not of dermatosparactic (-/-) fibroblasts and labeled a 34-kD component after immunoblotting of normal fibroblast membrane proteins. (d) After metabolic labeling of fibroblasts with [35S]methionine and immunoprecipitation with anti-anchorin CII, 40- and 34-kD components were precipitated from extracts of normal fibroblasts, while the latter component was absent from affected cells. Similar differences were found after immunoblotting of membranes from whole normal or affected skin. These data indicate that dermatosparaxis of sheep involves a molecular defect of a collagen-binding protein. Therefore this disease represents a model to study the complex interaction of cells with the extracellular matrix on a molecular level.  相似文献   

9.
Advances in the area of synthesis and genetic regulation of keratin by the wool-creating structures of the skin, i.e., the hair follicles, is generalized. It is stated that differentiation of the cells of the hair bulb matrix, like normal growth of hair, requires the coordinated action of numerous genes, in particular, the expression of genes associated with synthesis of structural proteins. It is shown that all the keratin genes of the follicle are clustered in families and occupy approximately 5–10 kb in the genome. At the present time certain clusters of two families of IF genes (intermediate hair proteins) along with five families of KAR genes (keratin-associated proteins) have been mapped. The close relations that exist between these clusters give us a basis for claiming that “global” regulator domains are capable of regulating their expression.  相似文献   

10.
Proteins are generally classified into four structural classes: all-alpha proteins, all-beta proteins, alpha + beta proteins, and alpha/beta proteins. In this article, a protein is expressed as a vector of 20-dimensional space, in which its 20 components are defined by the composition of its 20 amino acids. Based on this, a new method, the so-called maximum component coefficient method, is proposed for predicting the structural class of a protein according to its amino acid composition. In comparison with the existing methods, the new method yields a higher general accuracy of prediction. Especially for the all-alpha proteins, the rate of correct prediction obtained by the new method is much higher than that by any of the existing methods. For instance, for the 19 all-alpha proteins investigated previously by P.Y. Chou, the rate of correct prediction by means of his method was 84.2%, but the correct rate when predicted with the new method would be 100%! Furthermore, the new method is characterized by an explicable physical picture. This is reflected by the process in which the vector representing a protein to be predicted is decomposed into four component vectors, each of which corresponds to one of the norms of the four protein structural classes.  相似文献   

11.
《The Journal of cell biology》1993,121(5):1109-1120
In cultured cells, mutants of the Adenovirus E1a oncoprotein which bind to a reduced set of cellular proteins, including p105-Rb, p107, and p60- cyclin A, are transformation defective but can still interfere with exogenous growth inhibitory and differentiating signals, such as those triggered by TGF-beta. We have tested the ability of one such mutant, NTdl646, to interfere with keratinocyte growth and differentiation in vivo, in the skin of transgenic mice. Keratinocyte-specific expression of the transgene was achieved by using a keratin 5 promoter. Two independent lines of transgenic mice were obtained which expressed E1a specifically in their skin and exhibited an aberrant hair coat phenotype with striking regional variations. Affected hair shafts were short and crooked and hair follicles exhibited a dystrophic or absent inner root sheath. Interfollicular epidermis was normal, but its hyperplastic response to acute treatment with TPA (12-O- tetradecanoylphorbol-13-acetate) was significantly reduced. Primary keratinocytes derived from these animals were partially resistant to the effects of TPA and TGF-beta. The rate of spontaneous or chemically induced skin tumors in the transgenic mice was not increased. Thus, expression of a transgene which interferes with known negative growth regulatory proteins causes profound disturbances of keratinocyte maturation into a highly organized structure such as the hair follicle but does not lead to increased and/or neoplastic proliferation.  相似文献   

12.
13.
In this review article the data about synthesis and gene regulation of keratin by hair follicles have been summarized. It has been shown that both differentiation of hair follicle matrix cells and normal growth of hair require the coordinated activities of the genes encoding structural proteins. The keratin genes are clustered in families and are usually 5-10 kb in the genome. The separate clusters of two keratin IF gene families and five KAP gene families have been discovered and some of them have been mapped. The close relation between these clusters suggests that the "global" regulatory domains might govern their expression.  相似文献   

14.
Collagen XIX is an extremely rare extracellular matrix component that localizes to basement membrane zones and is transiently expressed by differentiating muscle cells. Characterization of mice harboring null and structural mutations of the collagen XIX (Col19a1) gene has revealed the critical contribution of this matrix protein to muscle physiology and differentiation. The phenotype includes smooth muscle motor dysfunction and hypertensive sphincter resulting from impaired swallowing-induced, nitric oxide-dependent relaxation of the sphincteric muscle. Muscle dysfunction was correlated with a disorganized matrix and a normal complement of enteric neurons and interstitial cells of Cajal. Mice without collagen XIX exhibit an additional defect, namely impaired smooth-to-skeletal muscle cell conversion in the abdominal segment of the esophagus. This developmental abnormality was accounted for by failed activation of myogenic regulatory factors that normally drive esophageal muscle transdifferentiation. Therefore, these findings identify collagen XIX as the first structural determinant of sphincteric muscle function, and as the first extrinsic factor of skeletal myogenesis in the murine esophagus.  相似文献   

15.
16.
The gut of most insects is lined with a peritrophic matrix that facilitates the digestive process and protects insects from invasion by micro-organisms and parasites. It is widely accepted that the matrix is composed of chitin, proteins and proteoglycans. Here we critically re-examine the chitin content of the typical type 2 peritrophic matrix from the larvae of the fly Lucilia cuprina using a range of techniques. Many of the histochemical and biochemical techniques indicate the presence of chitin, although they are often adversely influenced by the presence of highly glycosylated proteins, a principal component of the matrix. The alkali-stable fraction, which is used as an indicator of the maximum chitin content in a biological sample, is only 7.2% of the weight of the matrix. Larvae fed on the potent chitin synthase inhibitor polyoxin D or the chitin-binding agent Calcofluor White, showed strong concentration-dependent inhibition of larval weight and survival but no discernible effects on the matrix structure. A bacterial endochitinase fed to larvae had no effect on larval growth and no observable effect in vitro on the structure of isolated peritrophic matrix. RT–PCR did not detect a chitin synthase mRNA in cardia, the tissue from which PM originates. It is concluded that chitin is a minor structural component of the type 2 peritrophic matrix of this insect.  相似文献   

17.
The tightly regulated expression patterns of structural cell wall proteins in several plant species indicate that they play a crucial role in determining the extracellular matrix structure for specific cell types. We demonstrate that AtPRP3, a proline-rich cell wall protein in Arabidopsis, is expressed in root-hair-bearing epidermal cells at the root/shoot junction and within the root differentiation zone of light-grown seedlings. Several lines of evidence support a direct relationship between AtPRP3 expression and root hair development. AtPRP3/beta-glucuronidase (GUS) expression increased in roots of transgenic seedlings treated with either 1-aminocyclopropane-1-carboxylic acid (ACC) or alpha-naphthaleneacetic acid (alpha-NAA), compounds known to promote root hair formation. In the presence of 1-alpha-(2-aminoethoxyvinyl)glycine (AVG), an inhibitor of ethylene biosynthesis, AtPRP3/GUS expression was strongly reduced, but could be rescued by co-addition of ACC or alpha-NAA to the growth medium. In addition, AtPRP3/GUS activity was enhanced in ttg and gl2 mutant backgrounds that exhibit ectopic root hairs, but was reduced in rhd6 and 35S-R root-hair-less mutant seedlings. These results indicate that AtPRP3 is regulated by developmental pathways involved in root hair formation, and are consistent with AtPRP3's contributing to cell wall structure in Arabidopsis root hairs.  相似文献   

18.
Adult male rats were maintained on normal (20% casein), protein-free (0% casein), high protein (50% casein), decicient protein (20% zein), and a supplemented, deficient protein (20% zein plus L-lysine and L-tryptophan) diets. Rats on a protein-free diet excreted approximately 1 mg alpha2u/24 h compared with a normal of 10-15 mg/24 h. Depleted rats placed on a 20% casein diet showed a rapid restoration of the normal alpha2u excretion as well as total urinary proteins. Accumulation of alpha2u in the blood serum was measured in nep-rectomized rats. Rats on a 0% casein diet accumulated only 30% of the alpha2u compared to normals. On a 50% casein diet, rats excreted 30-50 mg alpha2u/24 h. However, the accumulation was normal in the serum of nephrectomized rats. A high protein diet did not stimulate alpha2u synthesis but probably increased the renal loss of all urinary proteins. The excretion of alpha2u on a zein diet was reduced to the same degree as with the protein-free diet. Supplementation with lysine and tryptophan restored the capacity to eliminate alpha21 to near normal levels. Accumulation of alpha2u in the serum of nephrectomized rats kept on the zein diets showed that the effect to suppress the synthesis of the ahpha2u. Supplementation restored the biosynthesis of alpha2u. We conclude that the effect of dietary protein on the excretion of urinary proteins in the adult male rat is caused in large part by an influence on the hepatic biosynthesis of alphay2u. The biosynthesis of this protein, which represents approximately 30% of the total urinary proteins, is dependent on an adequate supply of dietary protein.  相似文献   

19.
Laminins are heterotrimeric extracellular matrix proteins that regulate cell viability and function. Laminin-2, composed of alpha2, beta1, and gamma1 chains, is a major matrix component of the peripheral nervous system (PNS). To investigate the role of laminin in the PNS, we used the Cre-loxP system to disrupt the laminin gamma1 gene in Schwann cells. These mice have dramatically reduced expression of laminin gamma1 in Schwann cells, which results in a similar reduction in laminin alpha2 and beta1 chains. These mice exhibit motor defects which lead to hind leg paralysis and tremor. During development, Schwann cells that lack laminin gamma1 were present in peripheral nerves, and proliferated and underwent apoptosis similar to control mice. However, they were unable to differentiate and synthesize myelin proteins, and therefore unable to sort and myelinate axons. In mutant mice, after sciatic nerve crush, the axons showed impaired regeneration. These experiments demonstrate that laminin is an essential component for axon myelination and regeneration in the PNS.  相似文献   

20.
alpha 2u-Globulin, the principal urinary protein of the male rat, has extensive sequence homology with many lipid binding proteins. The highest concentration of alpha 2u-globulin is found in the preputial gland, a holocrine secretory organ with pheromonal function. Meibomian and perianal glands are two other modified sebaceous glands with holocrine secretory cycles and pleiomorphic peroxisomes capable of synthesizing pheromonal lipids. Immunocytochemical examination shows the presence of alpha 2u-globulin in the acinar cells of all three of these modified sebaceous glands. Whereas in the preputial gland all of the acinar cells exhibit immunoreactivity, in the meibomian and perianal glands only selective cells contain alpha 2u-globulin. In the case of the preputial gland, in addition to the acinar cells some stratified epithelial cells also were immunoreactive. In the perianal and meibomian glands, keratinocytes lining nearby hair shafts and select cells of accessory oil glands stained for alpha 2u-globulin. In situ hybridization with a cloned cRNA probe confirmed the immunocytochemical data. Presence of the alpha 2u-globulin mRNA in these glands was also established by Northern blot analysis. Immunoelectron microscopic examination of preputial alpha 2u-globulin showed the presence of this protein in secretory granules of various maturational stages. Immunolabeled alpha 2u was also found in attached vesicles containing protein and lipid inclusions. The lytic cells were not only loaded with alpha 2u-globulin but also contained sharp-edged, irregularly shaped electron-dense granules which stained heavily for this protein. Specific localization of alpha 2u-globulin and its mRNA in three pheromone-producing sebaceous glands and its structural homology with known lipid binding proteins indicate a pheromone carrier role of alpha 2u-globulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号