首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of cyclosporin A (CsA) on the production of gamma interferon (IFN gamma) versus IFN alpha/beta was studied using mouse and human lymphocytes and fibroblasts. Spleen cells from C57Bl/6 mice produced low but significant levels (40-60 U/ml) of IFN gamma after 2 to 3 days of culture with irradiated DBA spleen cells. The addition of CsA at concentrations as low as 0.1 microgram/ml completely inhibited (less than 10 U/ml) IFN gamma production in these cultures. High levels of IFN gamma (170-1200 U/ml) were produced when either C57Bl/6 spleen cells or Ficoll-Hypaque-purified human peripheral blood lymphocytes (PBL) were cultured with the T-cell mitogen staphylococcal enterotoxin A (SEA). The addition of CsA (0.1 microgram/ml) to these cultures also completely inhibited (less than 10 U/ml) IFN gamma production. This inhibition was shown not to be due to a change in the kinetics of IFN gamma production or to a change in the amount of SEA required for stimulation. IFN gamma production in SEA-stimulated mouse spleen cells was inhibited at 3 days of culture even when CsA was added at 24 or 48 hr postculture initiation. Thus, CsA inhibits IFN gamma production even when early events associated with lymphocyte activation have been allowed to take place. In contrast to IFN gamma production, IFN alpha/beta production by Newcastle disease virus (NDV)-infected mouse and human lymphocytes or fibroblasts was not inhibited by the addition of CsA (1 microgram/ml). CsA also did not block the action of IFN gamma or IFN alpha/beta since addition of CsA (1 microgram/ml) to reference IFN standards had no effect on their antiviral activity. Thus, CsA inhibits the production of IFN gamma by T cells but appears to have no effect on the production of IFN alpha/beta by virus-infected cells or on the antiviral action of already produced IFN gamma and IFN alpha/beta.  相似文献   

2.
Previous reports have described synergism of various interferon preparations in anticellular and antiviral activity. We report that recombinant interferon (rIFN gamma) and IFN alpha/beta mediate distinct, antagonistic effects on expression of a lectin-like receptor for mannose and fucose (MFR) on mouse peritoneal macrophages (M phi). IFN gamma down-regulates MFR activity, a highly reproducible change in mouse M phi activated to secrete enhanced levels of o-2/H2o2. IFN alpha/beta enhances MFR activity and prevents the action of IFN gamma when added in combination. Antagonism is selective for this M phi activation marker and requires a minimum 4 h exposure period to rIFN gamma, during which IFN alpha/beta can prevent its action.  相似文献   

3.
Antiserum to human gamma interferon (IFN gamma) was produced in rabbits immunized with partially purified (10(4.8) to 10(6.2) antiviral U/mg protein) staphylococcal enterotoxin A-induced IFN gamma. Staphylococcal enterotoxins, phytohemagglutinin M, concanavalin A, and pokeweed mitogen-induced antiviral activity in human leukocyte cultures was neutralized to undetectable levels by the antiserum. However, human leukocyte interferon (IFN alpha), human fibroblast interferon (IFN beta), and mouse interferons were not neutralized by the antiserum. After determining the antiserum was specific for IFN gamma and did not neutralize other known types of interferon, it was used with antibody to human IFN alpha to demonstrate the type(s) of interferon stimulated by some new inducers and antigens. Galactose oxidase- and calcium ionophore-induced interferons were neutralized to undetectable levels by the antiserum to IFN gamma. Interferon produced in leukocyte cultures from tuberculin-negative individuals stimulated with tuberculin-purified protein derivative or old tuberculin was IFN alpha, whereas interferon from tuberculin-positive individuals was a combination of alpha and gamma IFN. In addition, the antiserum neutralized the anticellular and natural killer cell enhancement activities of IFN gamma preparations. The specificity of this antiserum for IFN gamma indicates that it is an additional, powerful tool for identifying and classifying known and new interferons produced in vitro or in vivo and for investigating the role(s) of IFN gamma during the course of infectious, neoplastic, and autoimmune diseases.  相似文献   

4.
Treatment with murine gamma-interferon (IFN) preparations of variant sublines of Friend leukemia cells resistant to the alpha, beta IFN-induced antiviral state (Affabris, E., Jemma, C., and Rossi, G.B. (1982) Virology 120, 441-452; Affabris, E., Romeo, G., Belardelli, F., Jemma, C., Mechti, N., Gresser, I., and Rossi, G. B. (1983) Virology 125, 508-512) results in the establishment of a bona fide antiviral state. In fact, gamma IFN preparations are able to induce a dose-dependent reduction of endogenous virus release and of vesicular stomatitis or encephalomyocarditis viruses yields (up to 1.5 log). Under these experimental conditions, no inducible 2-5A synthetase activity is detectable in cell extracts. The 67-kDa protein kinase, uninducible by treatment with alpha, beta IFN (up to 13,000 units/ml), is instead induced upon treatment with gamma IFN at a similar rate of activity as in wild-type Friend leukemia cells, both when assayed in solution and after immobilization on poly(rI) X poly(rC)-agarose.  相似文献   

5.
Enriched human B lymphocytes cocultivated with mouse L cells produced human leukocyte interferon (IFN-alpha) and shortly thereafter transferred antiviral activity to the recipient cells (99% inhibition of expected virus yield). In contrast, cocultivation of enriched T-cell populations with mouse L cells resulted in no IFN production or transfer of antiviral activity. In addition, both T and B lymphocytes pretreated with exogenous IFN or stimulated in vitro by mitogens could transfer antiviral activity to human WISH cells. The transfer of antiviral activity was not blocked by antibodies to IFN. The data indicate that both T and B cells can be recruited by IFN to transfer antiviral activity. Thus, once cells are recruited by IFN they can transfer antiviral activity in the absence of IFN and protect cells locally or distally from the site of infection.  相似文献   

6.
Ogiso S  Shirai J  Tuchiya Y  Honda E 《Uirusu》2005,55(2):317-326
Antiviral assay is used routinely for measuring the biological activity of interferon (IFN). However, the challenge viruses used in these assays are considered dangerous to the animal industry and pose a risk of human infection. For example, the vesicular stomatitis virus (VSV) is an important exotic disease agent in domestic animals, and the sindbis virus provokes rash, arthralgia, and fever in humans. Therefore, biosafety needs to be considered when antiviral assays are performed. We chose Getah virus as a candidate challenge virus because it is less hazardous to animals and humans. Crystal violet staining 50% CPE inhibition antiviral assay of human IFN using Getah virus was studied. Antiviral assay using Getah virus and FL cells gave a higher titer of human IFN than did assay using VSV. The titer of human IFN alpha was almost the same as that given by standardized control samples. The titer of human IFN by antiviral assay using Getah virus on the sheet method (IFN reacted the sheeted FL cells) was higher than those of the simultaneous reaction method (IFN reacted the suspending FL cells before sheeted). We therefore consider the sheet method useful for detection of small amounts of IFN. Antiviral assay using Getah virus on MDBK cells gave a lower titer of human IFN alpha than did assay using VSV. However, the adjusting the number of MDBK cells and the titer of Getah virus to get the best condition for CPE appearance, gave similar results in the assays using Getah virus and VSV. We consider that Getah virus is a potentially useful challenge virus for antiviral assay of human IFN.  相似文献   

7.
Vasoactive intestinal peptide (VIP), composed of 28 amino acids, is a multifunctional neurotransmitter. We have demonstrated here that its action on human transformed colonic epithelial (HT-29) cells is mediated through the induction of interferon (IFN) synthesis. We have found that these cells have a functional receptor for IFN alpha 2; binding was specific to either IFN alpha 2 or IFN beta but not to IFN gamma. VIP induced the 2'5'oligoadenylate synthetase (2'5'A synthetase) and the antiviral state with the same efficiency as poly (I).poly (C). The induction of 2'5'A synthetase activity required cellular RNA and protein synthesis, and the maximum induction occurred with 10(-7) M VIP at 24 h. VIP, like some IFN inducers, induced the synthesis of the 70 hsp which, however, preceded the expression of 2'5'A synthetase. VIP treatment caused the induction and secretion of IFN, having a titer value of 32 international units/ml. This IFN has been identified as type beta/alpha, because both 2'5'A synthetase and the antiviral activities were abolished by anti-human IFN beta/alpha antibodies, but not by anti-IFN gamma antibodies. Thus the pathway of VIP action on HT-29 cells may be outlined as 1) binding of VIP, 2) synthesis of 70 hsp, 3) induction of IFN synthesis and its secretion, 4) binding of the secreted IFN to cell surface receptors and 5) turning on the induction of 2'5'A synthetase and antiviral activities.  相似文献   

8.
The induction of phosphorylation of both protein P1 and protein synthesis initiation factor eIF-2 alpha and the inhibition of virus replication were examined in mouse L929 fibroblasts treated with either natural mouse or individual cloned human interferons (IFN). Natural mouse IFN synthesized in Newcastle disease virus-induced L929 cells and two cloned human leukocyte IFN subspecies synthesized in Escherichia coli, IFN-alpha D and IFN-alpha A/D, possessed antiviral activity in L929 cells as measured by single cycle virus yield reduction with both vesicular stomatitis virus and reovirus. Natural L929 IFN and cloned IFNs, alpha D and alpha A/D, also induced the protein kinase that catalyzed the phosphorylation of endogenous ribosome-associated protein P1 and the alpha subunit of purified initiation factor eIF-2. Two other cloned human IFNs, alpha A and alpha D/A, were poor inducers of both the antiviral state and the phosphorylation of P1 and eIF-2 alpha in mouse L929 cells. The ability of individual human IFN-alpha subspecies to induce P1 and eIF-2 alpha phosphorylation in mouse L929 cells correlated with their ability to induce an antiviral state. Furthermore, the detailed kinetics of induction, in mouse L929 cells, of P1 and eIF-2 alpha phosphorylation and of the antiviral state by the heterologous cloned human IFN-alpha A/D were equivalent to the kinetics of induction by the homologous natural mouse L929 IFN. These results suggest that different subspecies of biologically active IFN induce equivalent antiviral activities and biochemical changes in mouse L929 cells, and that protein phosphorylation may play a major role in the antiviral mechanism of IFN action in mouse L929 fibroblasts.  相似文献   

9.
In the accompanying paper, we showed that natural killer (NK) cells were a major population in the naive spleens of normal mice that responded directly to a T cell growth factor, interleukin 2 (IL 2), and clonally replicated without other stimulating agents. The cloned cells growing in IL 2 showed a potent NK activity against several NK targets without addition of an NK-activating agent, interferon (IFN). In the present study, therefore, we examined whether these cloned NK cells on their own produced IFN. It was found that all NK clones growing in IL 2 produced IFN in the culture fluids. The titers of IFN produced in the IL 2-containing media correlated well with the number of growing cells. With the culture in the absence of IL 2, neither cell growth nor IFN production could be detected. Addition of Con A into the culture in the IL 2-free media showed no IFN production. The antiserum neutralizing IFN alpha and IFN beta failed to significantly neutralize IFN produced by NK clones. Treatment with either a pH of 2.0 or antiserum neutralizing mouse IFN gamma resulted in a marked reduction of IL 2-induced NK IFN, indicating that a major part of IFN produced was IFN gamma. These results indicate that IL 2 stimulates NK clones to proliferate, accompanied by IFN gamma production. The results also show that an NK clone, when stimulated with Sendai virus, produced a type 1 IFN (IFN alpha and/or IFN beta), suggesting that murine NK cells can produce both type 1 (alpha and/or beta) and type 2 (gamma) IFN, depending on inducers.  相似文献   

10.
Human T cells treated with low levels of interferon (IFN) (1-10 units/ml), and washed to remove the IFN, transferred the same level of antiviral activity to recipient WISH cells as an equivalent IFN treatment alone could induce in WISH cells. Further, when T cells pretreated with IFN (1-10 units/ml) were cocultivated with WISH cells in the presence of IFN (1-10 units/ml), a 2.5- to 5-fold greater level of protection developed than could be expected from the additive effect of each. Antibody to leukocyte, fibroblast, or immune IFN blocked the antiviral effect of the respective IFN types but had no effect on the transfer of antiviral activity initiated by leukocyte, fibroblast, or immune IFN. Also, treatment of T cells with actinomycin D blocked the transfer of antiviral activity of IFN-treated T cells. Taken together, the data suggest that the increased antiviral activity is not merely an additive effect of the IFN, but represents a synergistic amplification of protection most likely due to the combination of the separate effects of IFN and IFN-induced transfer. Such interactions would be expected to play a major role in early protection against virus infections in vivo when low levels of interferon are present and lymphocytes are migrating into the area.  相似文献   

11.
Double-stranded RNA (dsRNA) is a by-product of viral RNA polymerase activity, and its recognition is one mechanism by which the innate immune system is activated. Cellular responses to dsRNA include induction of alpha/beta interferon (IFN) synthesis and activation of the enzyme PKR, which exerts its antiviral effect by phosphorylating the eukaryotic initiation factor eIF-2 alpha, thereby inhibiting translation. We have recently identified the nonstructural protein NSs of Bunyamwera virus (BUNV), the prototype of the family Bunyaviridae, as a virulence factor that blocks the induction of IFN by dsRNA. Here, we investigated the potential of NSs to inhibit PKR. We show that wild-type (wt) BUNV that expresses NSs triggered PKR-dependent phosphorylation of eIF-2 alpha to levels similar to those of a recombinant virus that does not express NSs (BUNdelNSs virus). Furthermore, the sensitivity of viruses in cell culture to IFN was independent of PKR and was not determined by NSs. PKR knockout mice, however, succumbed to infection approximately 1 day earlier than wt mice or mice deficient in expression of RNase L, another dsRNA-activated antiviral enzyme. Our data indicate that (i) bunyaviruses activate PKR, but are only marginally sensitive to its antiviral effect, and (ii) NSs is different from other IFN antagonists, since it inhibits dsRNA-dependent IFN induction but has no effect on the dsRNA-activated PKR and RNase L systems.  相似文献   

12.
Natural polyspecific autoantibodies could impede the establishment of an antiviral state by mouse alpha and beta interferons (IFN) as determined by an IFN assay with L929 cells and with vesicular stomatitis virus as the challenge virus. This anti-IFN effect was due to interactions with cell surface constituents rather than to antibody activity against IFN. This observation supports the hypothesis that natural autoantibodies participate in specific immune regulation as well as in the regulation of nonspecific host defense.  相似文献   

13.
We have identified a mutation of human gamma-interferon (IFN gamma) causing a temperature-sensitive phenotype. We used a randomized oligonucleotide to mutagenize a synthetic human IFN gamma gene, then screened the resulting mutants produced in Escherichia coli for proteins with altered biological activity. One mutant protein selected for detailed characterization exhibited less than 0.3% of the specific biological activity of native IFN gamma in an antiviral activity assay performed at 37 degrees C. However, the protein bound the human IFN gamma receptor with native efficiency at 4 degrees C. Sequencing the plasmid DNA encoding this protein showed that the mutation changed the lysine residue at amino acid 43 to glutamic acid (IFN gamma/K43E). Site-specific mutagenesis at amino acid 43 showed that this protein's phenotype resulted from positioning a negative charge at position 43. Structural characterization of IFN gamma/K43E using CD demonstrated that the protein had native conformation at 25 degrees C, but assumed an altered conformation at 37 degrees C. IFN gamma/K43E in this altered conformation bound poorly to the IFN gamma receptor at 37 degrees C, providing a rationale for the mutant's decreased antiviral activity.  相似文献   

14.
We identified a single amino acid mutation that abolished the bioactivity of human IFN gamma. The mutation was identified by screening a mutagenized IFN gamma expression library for molecules with altered biological activity. The mutant protein was expressed at high levels in Escherichia coli, and remained soluble upon purification. However, the protein was completely inactive in all IFN gamma assays investigated, exhibiting less than 0.0006% of the specific activity of native IFN gamma antiviral activity. Sequencing the plasmid DNA encoding this mutant protein showed that the histidine at position 111 of native human IFN gamma is changed to aspartic acid (IFN gamma/H111D). Other mutations at this site showed that only hydrophobic amino acids at position 111 maintain significant, though low, biological activity. Structural characterization of the IFN gamma/H111D protein by NMR as well as CD spectroscopy demonstrated that the protein has limited conformational differences from native IFN gamma. Models of the X-ray crystal structure of human IFN gamma [Ealick, P.E., W.J. Cook, S. Vijay-Kumar, M. Carson, T.L. Nagabhushan, P.P. Trotta and C.E. Bugg (1991) Science, 252, 698-702] suggest that this histidine residue is located at a severe 55 degrees bend in the C-terminal F helix. We conclude that H111 lies within or affects the receptor binding domain of human IFN gamma.  相似文献   

15.
Vasoactive Intestinal Peptide (VIP) is able at the concentration 10 to 100 nM to induce in HT-29 cells 2'5' oligoadenylate (2'5' A) synthetase activity. The kinetics of this induction show that the maximal effect is attained after 24 hrs. VIP induces 2'5' A synthetase parallel to inhibition of vesicular stomatitis virus growth. The levels of these two induced activities after VIP treatment are comparable to those induced by the poly (I).poly (C), an inducer of IFN beta/alpha in mammalian cells. Moreover the anti-IFN beta/alpha antibodies abolish the VIP-induced 2'5' A synthetase whereas anti-IFN gamma antibodies are ineffective. The fact that VIP establishes an antiviral state in HT-29 cells potentiates new pharmaceutical applications for this neuropeptide.  相似文献   

16.
17.
Previous work showed that interferon (IFN) can protect target cells from NK mediated lysis in vitro. In the present study we investigate the effect of IFN alpha/beta or IFN gamma treatment of three different murine leukemia cell lines. For this purpose FLC-745 (susceptible to the antiproliferative activity of IFN alpha/beta and gamma), FLC-3C18 (IFN alpha/beta -resistant and IFN gamma - susceptible) of DBA/2 origin and EL-4 (IFN alpha/beta - susceptible and IFN gamma - resistant) leukemia of C57B1/6 origin were treated with IFN alpha/beta or gamma in vitro and assayed for their susceptibility to natural resistance measured in vivo as organ rapid clearance 4 hr after iv injection into syngeneic mice. Using young or Poly I:C stimulated hosts, but not mice with low levels of natural resistance (i.e. older animals or mice treated with cyclophosphamide), slower elimination of treated cells was observed with: (a) FLC-745 cells treated with IFN alpha/beta and IFN gamma and (b) FLC 3C18 treated with IFN gamma. Such a delayed clearance was not observed with: (a) FLC-3C18 cells treated with IFN alpha/beta and (b) EL-4 leukemia cells preincubated with IFN alpha/beta or IFN gamma. These results suggest that under selected conditions IFNs can protect leukemic cells from in vivo natural reactivity.  相似文献   

18.
19.
Interferon (IFN) is one of the molecules released by virus-infected cells, resulting in the establishment of an antiviral state within infected and neighboring cells. IFN-induced antiviral response may be subject to modulation by the cellular signaling environment of host cells which impact the effectiveness of viral replication. Here, we show that cells with an activated Ras/Raf/MEK signaling cascade allow propagation of viruses in the presence of IFN. Ras-transformed (RasV12) and vector control NIH 3T3 cells were infected with vesicular stomatitis virus (VSV) or an IFN-sensitive vaccinia virus (delE3L) in the presence of alpha interferon. While IFN protected vector control cells from infection by both viruses, RasV12 cells were susceptible to viral infection regardless of the presence of IFN. IFN sensitivity was restored in RasV12 cells upon RNA interference (RNAi) knockdown of Ras. We further investigated which elements downstream of Ras are responsible for counteracting IFN-induced antiviral responses. A Ras effector domain mutant that can only stimulate the Raf kinase family of effectors was able to suppress the IFN response and allow VSV replication. IFN-induced antiviral mechanisms were also restored in RasV12 cells by treatment with a MEK inhibitor (U0126 or PD98059). Moreover, by using RNAi to MEK1 and MEK2, we determined that MEK2, rather than MEK1, is responsible for suppression of the IFN response. In conclusion, our results suggest that activation of the Ras/Raf/MEK pathway downregulates IFN-induced antiviral response.  相似文献   

20.
Mouse interferons beta (IFN-beta) and gamma (IFN-gamma) inhibit the differentiation of 3T3-L1 fibroblasts into adipocytes when added to cultures at the time of induction of differentiation. Differentiation, as measured by incorporation of radiolabeled leucine into lipids, was inhibited 50% by approximately 1-3 units/ml of either IFN-beta or IFN-gamma, with maximum inhibition of differentiation achieved with 100 units/ml of either IFN. The magnitude of antiviral activity induced by IFN-beta and IFN-gamma was similar in differentiated and undifferentiated 3T3-L1 cells, although the slopes of the dose-response curves were different; IFN-gamma induced an antiviral state with greater efficiency than IFN-beta in differentiated and undifferentiated 3T3-L1 cells. By contrast, IFN-beta induced the double-stranded RNA-dependent P1 protein kinase more efficiently than did IFN-gamma in both differentiated and undifferentiated cells. However, IFN-beta and IFN-gamma both induced greater phosphorylation of protein P1 in cell-free extracts prepared from differentiated adipocytes than in extracts from undifferentiated fibroblasts. Cultures treated with either beta or gamma IFN throughout 8 days of differentiation continued to produce double-stranded RNA-dependent protein kinase in a manner dependent on IFN dose. These results suggest that the antiviral and antidifferentiative activities of IFN-beta and IFN-gamma in 3T3-L1 cells involve different molecular mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号