首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Hydroxyurea-resistant Aedes albopictus mosquito cells were selected by incremental exposure of unmutagenized cells to hydroxyurea concentrations ranging from 0.1 to 8 mM. Clonal populations that had become 40-fold more resistant to hydroxyurea than wild-type cells varied in morphology, and their growth rate decreased to a;45 h doubling time, relative to an 18 h doubling time in unselected cells. At this level of resistance, the cells remained diploid, with a modal chromosome number of 6. When labelled with (35)S[methionine/cysteine], clone HU1062, which grew in the presence of 8 mM hydroxyurea, overproduced a labeled protein with the approximate size of the 45,000 dalton M2 subunit of ribonucleotide reductase. Consistent with this observation, ribonucleotide reductase activity in HU-1062 cells was approximately 10-fold higher than in wild-type control cells. This is the first example of an hydroxyurea-resistant insect cell line. [Originally published in Volume 34, Archives of Insect Biochemistry and Physiology, 34:31-41 (1997).] Copyright 1997 Wiley-Liss, Inc.  相似文献   

2.
Hydroxyurea-resistant Aedes albopictus mosquito cells were selected by incremental exposure of unmutagenized cells to hydroxyurea concentrations ranging from 0.1 to 8 mM. Clonal populations that had become 40-fold more resistant to hydroxyurea than wild-type cells varied in morphology, and their growth rate decreased to a ∼45 h doubling time, relative to an 18 h doubling time in unselected cells. At this level of resistance, the cells remained diploid, with a modal chromosome number of 6. When labelled with 35S[methionine/cysteine], clone HU1062, which grew in the presence of 8 mM hydroxyurea, overproduced a labeled protein with the approximate size of the 45,000 dalton M2 subunit of ribonucleotide reductase. Consistent with this observation, ribonucleotide reductase activity in HU-1062 cells was approximately 10-fold higher than in wild-type control cells. This is the first example of an hydroxyurea-resistant insect cell line. © 1997 Wiley-Liss, Inc.  相似文献   

3.
A Chinese hamster ovary cell line selected for resistance to hydroxyurea was serially cultivated in the absence of a selective agent, and cells with decreased resistance to the cytotoxic effects of hydroxyurea gradually accumulated in the population. Three stable subclones with differing drug sensitivities were isolated from this mixed population and were found to contain intracellular levels of drug-sensitive ribonucleotide reductase which correlated with the degree of cellular resistance to hydroxyurea. This new class of hydroxyurea resistance was expressed in a codominant fashion in cell-cell hybridization studies. Also, the enhanced enzyme activity in the drug-resistant cells was observed only during the cell cycle S phase of synchronized cells. The properties of these drug-resistant lines indicate that they will be useful for genetic and biochemical studies.  相似文献   

4.
The kinetic properties of partially purified ribonucleotide reductase from Chinese hamster ovary cells have been investigated. Double reciprocal plots of velocity against substrate concentration were found to be linear for three the substrates tested, and yielded apparent Km values of 0.12 mM for CDP, 0.14 mM for ADP and 0.026 mM for GDP. Hydroxyurea, a potent inhibitor of ribonucleotide reduction, was tested against varying concentrations of ribonucleotide substrates and inhibited the enzyme activity in an uncompetitive fashion. Intercept replots were linear and exhibited Ki values for hydroxyurea of 0.08 mM for CDP reduction, 0.13 mM for ADP reduction and 0.07 mM for GDP reduction. Guanazole, another inhibitor of ribonucleotide reductase, interacted with the enzyme in a similar manner to hydroxyurea showing an uncompetitive pattern of inhibition with CDP reduction and yielding a Ki value of 0.57 mM. Partially purified ribonucleotide reductase from hydroxyurea-resistant cells was compared to enzyme activity from wild type cells. Significant differences were observed in the hydroxyurea Ki values with the three ribonucleotide substrates that were tested. Also, CDP reductase activity from the drug-resistant cells yielded a significantly higher Ki value for guanazole inhibition than the wild type activity. The properties of partially purified ribonucleotide reductase from a somatic cell hybrid constructed from wild type and hydroxyurea-resistant cells was also examined. The Ki value for hydroxyurea inhibition of CDP reductase was intermediate between the Ki values of the parental lines and indicated a codominant expression of hydroxyurea-resistance at the enzyme level. The most logical explanation for these results is that the mutant cells contain a structurally altered ribonucleotide reductase whose activity is less sensitive to inhibition by hydroxyurea or guanazole.  相似文献   

5.
The murine adenocarcinoma cell line TA 3 synthesized nitrite from L-arginine upon stimulation with gamma-interferon (IFN-gamma) associated with tumor necrosis factor (TNF), and/or bacterial lipopolysaccharide (LPS), but not with IFN-gamma, TNF, or LPS added separately. Induction of the NO2(-)-generating activity caused an inhibition of DNA synthesis in TA 3 cells. This inhibition was prevented by the L-arginine analog N omega-nitro-L-arginine, which inhibited under the same conditions nitrite production by TA 3 cells. The TA 3 M2 subclone, selected for enhanced ribonucleotide reductase activity, was found to be less sensitive than the wild phenotype TA 3 WT to the cytostatic activity mediated by the NO2(-)-generating system. Cytosolic preparations from TA 3 M2 cells treated for 24 or 48 h with IFN-gamma, TNF, and LPS exhibited a reduced ribonucleotide reductase activity, compared to untreated control cells. No reduction in ribonucleotide reductase activity was observed when N omega-nitro-L-arginine was added to treated cells. Addition of L-arginine, NADPH, and tetrahydrobiopterin into cytosolic extracts from 24-h treated TA 3 M2 cells triggered the synthesis of metabolic products from the NO2(-)-generating pathway. This resulted in a dramatic inhibition of the residual ribonucleotide reductase activity present in the extracts. The inhibition was reversed by NG-monomethyl-L-arginine, another specific inhibitor of the NO2(-)-generating activity. No L-arginine-dependent inhibition of ribonucleotide reductase activity was observed using extracts from untreated cells that did not express NO2(-)-generating activity. These results demonstrate that, in an acellular preparation, molecules derived from the NO2(-)-generating pathway exert an inhibitory effect on the ribonucleotide reductase enzyme. This negative action might explain the inhibition of DNA synthesis induced in adenocarcinoma cells by the NO2(-)-generating pathway.  相似文献   

6.
We have shown previously that cDNAs for the M1 and M2 subunits of ribonucleotide reductase, ornithine decarboxylase (ODC), and p5-8, a 55,000-Dalton protein, hybridize to amplified genomic sequences in a highly hydroxyurea-resistant hamster cell line. We have extended these observations to include two additional, independently isolated, hydroxyurea-resistant cell lines: SC8, a single-step hamster ovary cell line, and KH450, a multistep human myeloid leukemic cell line, have also undergone genomic amplification for sequences homologous to ODC and p5-8 cDNAs. However, neither SC8 nor KH450 contains amplified genomic sequences homologous to an M1 cDNA probe. A panel of mouse-hamster somatic cell hybrids was used to map sequences homologous to M1, M2, ODC, and 5-8 cDNAs in the hamster genome. The M2, ODC, and p5-8 cDNAs hybridized to DNA fragments that segregated with hamster chromosome 7. In contrast, M1 cDNA hybridized to DNA fragments that segregated with hamster chromosome 3. These data suggest that the genes RRM2, (M2), ODC, and p5-8, but not RRMI (M1), are linked and may have been co-amplified in the selection of the hydroxyurea-resistant hamster and human cell lines.  相似文献   

7.
An intact cell assay system, based on Tween-80 permeabilization can be used to investigate ribonucleotide reductase activity in a variety of mammalian cell lines. An important consideration in the use of intact cells is the presence of other nucleotide metabolizing activities. The influence of these activities on estimates of pyrimidine (CDP) and purine (ADP) reductase in permeabilized hamster cells has been examined. Studies on the incorporation of label from CDP and ADP into RNA indicated that a very small proportion of the reductase substrates was eventually incorporated into RNA during routine enzyme assays, and would have no detectable effect on activity estimates. The possibility that the products of the reaction (dCDP and dADP) were eventually phosphorylated and incorporated into DNA was also examined, and it was found that proper permeabilization of the cells eliminated or greatly reduced loss of deoxyribonucleotides to DNA. An analysis by HPLC of nucleotides present during CDP and ADP reductase reactions showed that various kinases and phosphatases were active in permeabilized cells, as all levels of phosphorylation of nucleotide substrates and allosteric effectors were detected. The base composition of the nucleotides added to the assay systems were not altered. Although movement of phosphates occurred during the assay, the concentrations of substrates quickly reached equilibrium (within 1 min) with their respective nucleosides and nucleotides, resulting in a relatively constant although reduced concentration of CDP or ADP substrates during the 20-min assay. Similarly the levels of allosteric effectors, ATP for pyrimidine and dGTP for purine reductase activities, declined within the first minute of the assays and quickly reached an equilibrium with their respective adenine or guanine containing nucleotides during most of the reaction time. Although useful approximations of intracellular reductase activity can be obtained without correcting for modified nucleotide concentrations, precise determinations can be calculated when these alterations are taken into consideration. For example, estimates of intracellular Km values for CDP closely resembled those reported with highly purified mammalian enzyme preparations in other studies. Clearly, the intact cell assay system provides worthwhile information about mammalian ribonucleotide reductase in its physiologically relevant environment.  相似文献   

8.
We describe the isolation and characterization of a Chinese hamster ovary cell line selected for resistance to N-carbamoyloxyurea. Using the mammalian cell permeabilization assay developed in our laboratory, a detailed analysis of the target enzyme, ribonucleotide reductase (EC 1.17.4.1), was carried out. Both drug-resistant and parental wild-type cells required the same optimum conditions for enzyme activity. The Ki values for N-carbamoyloxyurea inhibition of CDP reduction were 2.0 mM for NCR-30A cells and 2.3 mM for wild-type cells, while the Ki value for ADP reduction was 2.3 mM for both cell lines. Although the Ki values remained essentially unchanged, the Vmax values for NCR-30A cells were 1.01 nmoles dCDP formed/5 × 106 cells/hour and 1.83 nmoles dADP/5 × 106 cells/hour, while those for the wild-type cells were 0.49 nmoles dCDP produced/5 × 106 cells/hour and 1.00 nmoles dADP/5 × 106 cells/hour. This approximate twofold increase in reductase activity at least partially accounts for a 2.6-fold increase in D10 value for cellular resistance to N-carbamoyloxyurea exhibited by NCR-30A cells. The NCR-30A cell line was also cross-resistant to the antitumor agents, hydroxyurea and guanazole. No differences in Ki values for inhibition of CDP and ADP reduction by these two drugs were detected and cellular resistance could be entirely accounted for by the elevation in activity of the reductase in the NCR-30A cell line. The properties of N-carbamoyloxyurea-resistance cells indicate they should be useful for further investigations into the regulation of mammalian enzyme activity.  相似文献   

9.
M Meuth  H Green 《Cell》1974,3(4):367-374
Sublines with altered ribonucleotide reductase have been isolated from the mouse fibroblast line 3T6 by selection for resistance to arabinosyl cytosine and the deoxynucleosides of adenine, thymidine, and guanine. The alterations in enzyme activity are of two kinds: (a) 4–10 fold higher levels of enzyme activity per unit of cell protein; (b) partial desensitization of the enzyme to the allosteric negative effector dATP. The combination of these two alterations keeps the reductase activity of extracts of these deoxynucleoside-resistant clones at wild type levels even in the presence of high concentrations of the deoxynucleotides. The alterations of reductase activity are stable over long periods of cultivation in the absence of deoxynucleosides, and are presumably due to mutation. Despite these changes, the reductase activity is still regulated during growth, since it is much lower in resting than in growing cells.  相似文献   

10.
11.
Ribonucleotide reductase catalyzes the formation of deoxyribonucleotides from ribonucleoside diphosphate precursors, and is a rate-limiting step in the synthesis of DNA. The enzyme consists of two dissimilar subunits usually called M1 and M2. The antitumor agent, hydroxyurea, is a specific inhibitor of DNA synthesis and acts by destroying the tyrosyl free radical of the M2 subunit of ribonucleotide reductase. Two highly drug resistant cell lines designated HR-15 and HR-30 were isolated by exposing a population of mouse L cells to increasing concentrations of hydroxyurea. HR-15 and HR-30 cells contained elevated levels of ribonucleotide reductase activity, and were 68 and 103 times, respectively, more resistant than wild type to the cytotoxic effects of hydroxyurea. Northern and Southern blot analysis indicated that the two drug resistant lines contained elevated levels of M2 mRNA and M2 gene copy numbers. Similar studies with M1 specific cDNA demonstrated that HR-15 and HR-30 cell lines also contained increased M1 message levels, and showed M1 gene amplification. Mutant cell lines altered in expression and copy numbers for both the M1 and M2 genes are useful for obtaining information relevant to the regulation of ribonucleotide reductase, and its role in DNA synthesis and cell proliferation.  相似文献   

12.
We have constructed a cDNA library from the highly hydroxyurea-resistant hamster cell line 600H in which the activity of ribonucleotide reductase is elevated more than 80-fold. Using the technique of differential hybridization, we have isolated a number of cDNA clones from this library which are homologous to genomic DNA sequences amplified in the 600H cell line compared to the V79 parental line. One of these cDNA clones by sequence analysis was found to code for ornithine decarboxylase. This was confirmed by in vitro translation of poly(A+) RNA isolated by hybridization-selection followed by immunoprecipitation with antiserum specific for mouse ornithine decarboxylase. Genomic sequences homologous to the cDNA clone were shown to be sequentially amplified 6-20-fold in hamster cell lines selected stepwise for resistance to increasing concentrations of hydroxyurea. Genomic sequences homologous to a cDNA for the M2 subunit of ribonucleotide reductase were also amplified in these cell lines, and the degree of M2 sequence amplification corresponded to the degree of amplification of ornithine decarboxylase sequences, suggesting that the two genes had been co-amplified during the selection of the hydroxyurea-resistant phenotype.  相似文献   

13.
14.
Ribonucleotide reductase activity is markedly elevated in cell lines selected for resistance to hydroxyurea, a cytotoxic drug known specifically to inhibit ribonucleotide reductase. From a cDNA library constructed from a highly hydroxyurea-resistant hamster lung cell line, 600H in which the activity is elevated more than 80-fold, we have isolated a full length cDNA for the small subunit of the reductase. The cDNA is 3.48 kb long with an open reading frame of 1158 nucleotides and a long 3' flanking region of 2169 nucleotides from the termination codon. The derived polypeptide sequence is closely similar to the small subunit of the mouse, differing from it in 20 amino acid positions. Most of these replacements occur in the N-terminal segment of the protein. The hamster subunit does not contain 4 amino acid residues found in the mouse small subunit near the C-terminal end. RNA blots probed with the cDNA show two poly(A)+ RNA species which are elevated in hydroxyurea-resistant cells.  相似文献   

15.
Assay of ribonucleotide reduction in nucleotide-permeable hamster cells   总被引:9,自引:0,他引:9  
Ribonucleotide reduction was measured in Chinese hamster ovary cells made permeable to nucleotides by treatment with the detergent Tween-80. When compared to the respective ribonucleotide reductase activity in partially purified cell extracts, CDP and GDP reductase activities in permeabilized cells responded in a similar fashion to dithiothreitol, pH, MgCl2, FeCl3, substrate concentration and the presence of positive or negative allosteric effectors. At low protein concentrations both CDP and GDP reduction with whole cells increased linearly with cell number and was greater than the activity in corresponding cell extracts. Permeabilized cells were used to measure the level of CDP and GDP reductase in a hamster cell line resistant to the cytotoxic effects of hydroxyurea. The hydroxyurea-resistant cell line contained four to ten times more CDP and GDP reductase activity compared to parental or revertant cell lines. The permeabilized cell assay was also used to measure CDP and GDP reductase activities in Chinese hamster ovary cells synchronized by isoleucine starvation. CDP reductase activity was low in G1 arrested cells but increased 10-fold by 16 hours after the readdition of isoleucine to the growth medium. GDP reductase, which is present at much higher levels, is similarly induced after isoleucine addition, but only by 2-fold. The maximum activity of both CDP and GDP reductase occurred from 14 to 16 hours after isoleucine addition, which corresponded to the period of maximum DNA synthesis.  相似文献   

16.
JB3-B is a Chinese hamster ovary cell mutant previously shown to be temperature sensitive for DNA replication (J. J. Dermody, B. E. Wojcik, H. Du, and H. L. Ozer, Mol. Cell. Biol. 6:4594-4601, 1986). It was chosen for detailed study because of its novel property of inhibiting both polyomavirus and adenovirus DNA synthesis in a temperature-dependent manner. Pulse-labeling studies demonstrated a defect in the rate of adenovirus DNA synthesis. Measurement of deoxyribonucleoside triphosphate (dNTP) pools as a function of time after shift of uninfected cultures from 33 to 39 degrees C revealed that all four dNTP pools declined at similar rates in extracts prepared either from whole cells or from rapidly isolated nuclei. Ribonucleoside triphosphate pools were unaffected by a temperature shift, ruling out the possibility that the mutation affects nucleoside diphosphokinase. However, ribonucleotide reductase activity, as measured in extracts, declined after cell cultures underwent a temperature shift, in parallel with the decline in dNTP pool sizes. Moreover, the activity of cell extracts was thermolabile in vitro, consistent with the model that the JB3-B mutation affects the structural gene for one of the ribonucleotide reductase subunits. The kinetics of dNTP pool size changes after temperature shift are quite distinct from those reported after inhibition of ribonucleotide reductase with hydroxyurea. An indirect effect on ribonucleotide reductase activity in JB3-B has not been excluded since human sequences other than those encoding the enzyme subunits can correct the temperature-sensitive growth defect in the mutant.  相似文献   

17.
Localization of ribonucleotide reductase in mammalian cells.   总被引:10,自引:2,他引:8       下载免费PDF全文
The results of immunocytochemical studies using two different monoclonal antibodies against the M1 subunit of ribonucleotide reductase show an exclusively cytoplasmic localization of this subunit both in cultured MDBK and mouse 3T6 cells, and in cells from various rat tissues. By fluorescent light microscopy, there is a diffuse staining of the cytoplasm, while by electron microscopy the immunoreactive material appears to be associated with ribosomes. In the rat tissues, only actively dividing cells show M1-specific immunofluorescence revealing a strong correlation between the presence of protein M1 and DNA synthesis. Therefore M1 immunofluorescence could be used to study cell proliferation in normal, inflammatory or neoplastic tissue. A lesser variation in M1 staining is observed between individual cells in tissue culture, where most cells are positive, but neither here nor in the tissues examined are any cells with nuclear staining detected. We interpret our results to mean that in mammalian cells ribonucleotide reduction takes place in the cytoplasm and from there the deoxyribonucleotides are transported into the nucleus to serve in DNA synthesis.  相似文献   

18.
Regulation of ribonucleotide reductase activity in mammalian cells   总被引:1,自引:0,他引:1  
Mammalian ribonucleotide reductase catalyzes the rate-limiting for the de novo synthesis 2'-deoxyribonucleoside 5'-triphosphates. There is some suggestion that this step may also be the rate-limiting step of DNA synthesis. It is apparent that the level of the enzyme, ribonucleotide reductase, varies through the cell cycle and is highest in those tissues with the greatest proliferation rate. This increase in activity is associated with increased protein synthesis. The purified enzyme has been shown to be subject to strict allosteric regulation by the various nucleoside triphosphates and it has been proposed that allosteric regulation plays an important role in the level of ribonucleotide reductase activity which is expressed. All experimental data relating to this point, however, do not support the role of deoxyribonucleoside triphosphates as a major factor in determining cellular reductase activity during normal cell division. Several naturally occurring factors have been isolated from cells which lower ribonucleotide reductase activity in vitro. These factors have been found in tissues of low growth fraction and appear to be absent or low in tissues or high growth fraction such as tumor, regenerating liver and embryonic tissues. The expression of intracellular ribonucleotide reductase activity is therefore controlled at various levels and by various factors and the prevailing mode of regulation may vary throughout the cell cycle transverse and also in the various types of cells.  相似文献   

19.
20.
Ribonucleotide reductase (RNR) catalyzes the reduction of ribonucleotides to deoxyribonucleotides and thereby provides the precursors required for DNA synthesis and repair. In an attempt to test cell resistance to a permanent replicational stress, we constructed a mutant Saccharomyces cerevisiae strain containing exclusively nonrecyclable catalytic subunits of RNR that become inactivated following the reduction of one ribonucleoside diphosphate. In this rnr1C883A rnr3Δ mutant, the synthesis of each deoxyribonucleotide thus requires the production of one Rnr1C883A protein, which means that 26 million Rnr1C883A proteins (half the protein complement of a wild-type cell) have to be produced during each cell cycle. rnr1C883A rnr3Δ cells grow under constant replicational stress, as evidenced by the constitutive activation of the checkpoint effector Rad53, and their S phase is considerably extended compared to the wild type. rnr1C883A rnr3Δ mutants also display additional abnormalities such as a median cell volume increased by a factor of 8, and the presence of massive inclusion bodies. However, they exhibit a good plating efficiency and can be propagated indefinitely. rnr1C883A rnr3Δ cells, which can be used as a protein overexpression system, thus illustrate the robustness of S. cerevisiae to multiple physiological parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号