首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D. L. Lee 《Journal of Zoology》1970,161(2):513-518
The ultrastructure of the cuticle of the adult female nematode Mermis nigrescens has been described. There is an epicuticle and three-layered membrane covering the cuticle. The cortex is penetrated by canals which extend from the surface of the cuticle to the matrix of the layer beneath the cortex. Beneath the cortex are two layers of giant fibres which spiral around the nematode, a thick layer containing a network of fibres and a basal layer containing a vacuolated matrix material. it is thought that the epicuticle is secreted from the canals in the cortex. The possible functions of the layers in the cuticle have been discussed and similarities with the cuticle of the Acanthocephala have been noted.  相似文献   

2.
The cuticle of Gordius panigettensis (Sciacchitano, 1955) was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). The cuticle is composed of 30-50 compact layers. The number of the layers is higher in the central part of the animal's body and decreases at the extremities. Each layer is composed of parallel tightly packed fibres approximately 640 nm in diameter and of indefinite length. The fibres run strictly parallel within each layer, while in adjoining layers they run at a variable angle from 45 degrees in the central body to 90 degrees in the extremities. Each fibre shows a barely detectable filamentous inner structure and is enveloped in a thin highly regular net formed by hexagonal meshes. Our results suggested that these fibres should be proteinaceous although non-collagenous. Thinner radial fibres run among the large fibres and across all the layers and span the whole thickness of the cuticle from the epithelial layer located deep underneath the large fibres up to the epicuticle on the external surface of the animal.  相似文献   

3.
The cuticle of Squilla desmaresti does not show a well-defined Balken structure as described by Krishnakumaran (1956) in S. holoschista . Parallel fibres follow curved courses of differing orientation in the horizontal plane, and successive layers of fibres are separated by laminar membranes of different chemical composition from the remainder of the cuticle.  相似文献   

4.
Seidl BH  Ziegler A 《ZooKeys》2012,(176):73-85
The crustacean cuticle consists of a complex organic matrix and a mineral phase. The physical and chemical properties of the cuticle are corellated to the specific functions of cuticular elements, leading to a large variety in its structure and composition. Investigation of the structure-function relationship in crustacean cuticle requires sophisticated methodological tools for the analysis of different aspects of the cuticular architecture. In the present paper we report improved preparation methods that, in combination with various electron microscopic techniques, have led to new insights of cuticle structure and composition in the tergite cuticle of Porcellio scaber. We used thin sections of non-decalcified tergites and decalcified resin embedded material for transmission electron microscopy and scanning transmission electron microscopy. Etched sagittal planes of bulk tergite samples were analysed with field emission scanning electron microscopy. We have found a distinct distal region within the exocuticle that differs from the subjacent proximal exocuticle in the arrangement of fibres. Within this distal exocuticle chitin-protein fibrils assemble to fibres with diameters between 15 and 50 nm that are embedded in a mineral matrix. In the proximal exocuticle and the endocuticle fibrils do not assemble to fibres and are surrounded by mineral individually. Furthermore, we show that the pore canals are filled with mineral, and demonstrate that mild etching of polished sagittal cuticle surfaces reveals regions containing mineral of diverse solubility.  相似文献   

5.
The infective third-stage juvenile of Trichostrongylus colubriformis is surrounded by its own cuticle as well as the incompletely moulted cuticle of the second-stage juvenile, which is referred to as the sheath. The sheath comprises an outer epicuticle, an amorphous cortical zone, a fibrous basal zone and an inner electron-dense layer. The basal zone of the sheath consists of three layers of fibres; the fibres are parallel within each layer, but the fibre direction of the middle layer is at an angle to that of the inner and outer layers. The cuticle comprises a complex outer epicuticle, an amorphous cortical zone and a striated basal zone. The lateral alae of the cuticle and the sheath are aligned and overlie the lateral hypodermal cords. The lateral alae of the sheath consist of two wing-like expansions of the cortical zone with associated specializations of the inner electron-dense layer which form a groove. The cuticular lateral alae consist of two tube-like expansions of the cortical zone. The lateral alar complex of the cuticle and the sheath may maximise locomotory efficiency and prevent rotation of the juvenile within the sheath.  相似文献   

6.
The cuticle of Callinectes gladiator resembles that of Carcinus maenas (Dennell, 1973) in containing large sinuous unbranched fibres lying between the laminae of the calcified zone. The overlying pigmented and calcified zone also contains large fibres, but these are more densely packed, branched, and tubular. In addition, much finer parallel fibres have been observed in horizontal sections.  相似文献   

7.
The cuticle of mammalian hair fibres protects the core of the fibre against physical and chemical stress. The structure and some of the properties of the cuticle have been extensively studied by electron microscopy. However, there is still a need for a less invasive structural probe. For this purpose, microdiffraction experiments have been carried out on human hair samples showing a characteristic small-angle X-ray scattering pattern for the cuticle. This pattern has been assigned to the cell membrane complex (CMC) between each cuticle scale. Using a simple model of the electron density within the CMC, values have been derived for the average thickness of the beta- and delta-layers which are close to those obtained by electron microscopy. In order to illustrate the potentialities of microdiffraction in studying the properties of the cuticle, the effect of water sorption has been monitored. Using the intensity modelling described above, a 10% swelling of the delta-layer's thickness has been observed. This study shows that structural modifications of the CMC by physical or chemical stress can be followed directly on the cuticle of human hair fibres by microdiffraction analysis.  相似文献   

8.
Studies on Pogonophora. 4. Fine structure of the cuticle and epidermis   总被引:3,自引:0,他引:3  
Gupta BL  Little C 《Tissue & cell》1970,2(4):637-696
The fine structure of the integument in several species of Pogonophora has been examined by electron microscopy. The cuticle over the main body is composed of several layers of orthogonally arranged fibres embedded in an amorphous matrix. It is regularly traversed by microvilli from underlying epidermal cells. Toothed bristles of the annuli and setae of the anchor are composed of closely packed fibrous cylinders wrapped in a cortical material. In fine structure the cuticle, setae, toothed bristles (or setae) and setal sacs forming the setae closely resemble the corresponding structures in annelids. The cuticle is maximally thick over the forepart (protosome + mesosome) ; it is very thin and non-fibrous over the surface of the metameric papillae and over extensive areas of post-metameric trunk. The possibilities of a collagenous nature of the cuticle fibres and their mode of secretion by the epidermal cells are discussed. The organization of various cell-types forming the epidermis over the entire animal is examined. Possible functions of these cell-types are discussed. Notable amongst these are 'possible zymogen cells' and some absorptive cells. The intriguing question of nutrition in these gut-less tubiculous animals is re-examined in the light of present observations.  相似文献   

9.
In a previous paper, cellulose fibres were demonstrated in the larval, the metamorphosing, and the juvenile tunics. In this paper we used cytochemical methods and X-ray microanalysis to obtain additional information on tunic morphogenesis in Halocynthia papillosa. The chemical composition of the tunic evolves with its structural complexity. The larval and juvenile fibres are shown to be structurally and chemically different. While neither proteins nor glycosaminoglycans seem to be associated with the larval fibres, the juvenile fibres consist of a cellulose core wrapped in a sheath of tannophilic proteins. Patches of glycosaminoglycans line their longitudinal axes. In the course of metamorphosis, the cuticle undergoes profound modifications in regions of spine morphogenesis. Granular material that was previously called fibro-granular material (Lübbering et al., 1993) is essential to the formation of cuticular plates and spines. During metamorphosis, this material accumulates in epidermal granules and is discharged into the tunic. It crosses the fundamental layer of the tunic and reaches the cuticle. Our results strongly suggest that this material consists of proteins rich in cysteine and hydrophobic amino acids.  相似文献   

10.
Loder PM 《Tissue & cell》1992,24(2):301-314
Locust-style and pseudo-orthogonal structures were found in the cuticle of Heteropteryx dilatata, with the tibiae and femora containing both, and the ocular facets showing only helicoidal construction. The same epidermal cells appear to be competent to secrete both locust-style and pseudo-orthogonal cuticle structure. Curved fibres were found to exist and an apparent 'diagonal lattice' construction of the fibres in the thoracic and abdominal tergites and sternites at about 45 degrees to the insect's long axis. The advantages of flight have apparently been sacrificed for increased 'armour-plating' and the wings exhibit the characteristics of flightlessness. The minimum age post final moult of the insect as calculated from the growth layers was 7 weeks, the actual age being unknown. 'Trauma lines' and 'continuous lamellation' were seen and several possible explanations discussed.  相似文献   

11.
Chemical, histochemical and electron microscopic studies on the fibrous polysaccharide component of the test of Ciona intestinalis L. were made. The results showed cellulose-like fibres to be present in the cuticle layer and in the ground substance. Bundles of fibres varying in diameter from 80 to 600 nm interweave to form a conspicuous network. The bundle appears to be formed of flat fibres, 10–13 nm in width, while the fibre is composed of fibrils 3.5–5 nm; the rectangular cross section of fibres can be supposed. The probable rôle of this polysaccharide is discussed.  相似文献   

12.
The cuticle consits of collagenous fibres and of two types of mucopolysaccharides. The whole cuticle contain PAS-positive polysaccharides, but the acid ones are localized only in the surface zone, both in the epicuticle and in the supracuticular mucoid coat. On the surface-damaged region of the cuticle bacterial infection was observed, those intact mucoid coat may be essential in protection against bacterial infection. Microvilli of the supporting cells play significant role in repairing of cuticular injuries. Acid mucopolysaccharides of the cuticle and epidermis may function as traps for heavy metals, proved by their significant heavy metal content. The cytosol of the epidermal cells possess considerable DAB-reactivity. The enzyme, responsible for the DAB-reaction, may be transported by the microvilli towards the cuticular surface and can play central role in the detoxication of organic foreign compounds.  相似文献   

13.
Two basic structural components are concerned in the elaboration of the pore canal system in the mineralized cuticle of the decapod crab Carcinus maenas: tubular cytoplasmic extensions originating from epidermis and vertical fibres. These components are present from the moment the first procuticular materials of the new cuticle are laid down but their organization varies according to a precise schedule during the further moult cycle stages. Cytoplasmic extensions form a complicated branching system connecting the epidermal layer with all regions of the cullcular compartment, at least transitorily. During the moult cycle the prolongation of this cellular system appears to result from two concomitant but opposite phenomena. Before ecdysis the growth of cell extensions in the proximal cuticular layers prevails over their regression at the distal level. During the post-moult period these phenomena are reversed in importance so that the pore canal system is without cytoplasmic material as soon as intermoult starts. The depositing of vertical fibres takes place in close contact with the proximal cell extension plasma membrane, which never bears dense plaques. As moult stages progress, they are gradually organized into twisted sheaths that persist throughout the intermoult. Incidentally, some fibres invade the pore canal lumen freed from cell extensions. Some aspects regarding the fine organization, the chemical composition and the functional significance of both epidermal tubular extensions or vertical fibres are also discussed in the light of previous investigations carried out on crustaceans and in other arthropods.  相似文献   

14.
The cuticle of Carcinus has been critically examined by light microscopy and found to present features differing from the model proposed by Bouligand (1965), elaborated by Neville and his collaborators (see references), and re-stated by Bouligand (1971). The laminae have the appearance of discrete and separable sheets connected by interlaminar fibres, and between them long unorientated macrofibres pursue a sinuous course and pass from one interlaminar zone to another. Together with the interlaminar connecting fibres the macrofibres appear to account for the plumose appearance of the interlaminar zones.  相似文献   

15.
Following opercular amputation, stages in opercular regeneration in Pomatoceros lamarckii have been described by light, transmission and scanning electron microscopy. Two to three days after amputation, the rudimentary opercular filament is invested with a delicate cuticle composed of an outer filamentous layer and an inner thicker component composed of orthogonally-arranged layers of small fibril bundles. The opercular plate is uncalcified and composed of two major components, an outer, thin, electron-dense layer and an inner, thicker component which structurally resembles that of the opercular filament cuticle. Between five and eight days, opercular plate calcification is initiated as needle-like crystallites. The structural organization of the organic components of the opercular plate show changes which are related to the onset of calcification. From 13–17 days, the opercular plate becomes heavily calcified and is composed of highly-ordered, prism-like crystals. X-ray diffraction shows these crystals to be aragonite. The structure of the cuticle remains unchanged except that the orthogonally-arranged fibril bundles aggregate into thicker fibres. Amino acid analysis of the regenerated cuticle and organic components of the opercular plate show that they differ from one another and from the normal cuticle and opercular plate. During opercular regeneration, the differentiation of the cuticle and opercular plate-secreting cells are described and the mechanisms of cuticle and calcareous opercular plate secretion are discussed.  相似文献   

16.
The sclerotized cuticle of adult Tenebrio shows (1) an exocuticle composed of rotating lamellate layers and of columns of cuticular material, the fibres of which run perpendicularly through the lamellae, (2) an endocuticle composed of layers with preferred orientation. In the exocuticle, the pore canals are numerous and run along the columns; they do not rotate with the lamellate layers. They show several filaments some of which leave the canals and form a dense intracuticular network. In the last layers of exocuticle, the pericolumnar canals fuse and form large endocuticular canals which rotate in phase with the cuticular fibres. The formation of columns and canals is in relation with cellular expansions which penetrate into the cuticle during cuticle deposition. Exocuticular columns seem characteristic of highly sclerotized cuticles and the intracuticular filaments may have a role in the transport of sclerotisation precursors.  相似文献   

17.
The cuticle of the cephalobaenid pentastomid Reighardia sternae is described at various stages of the moult-intermoult cycle. The intermoult cuticle comprises four layers: an outer epicuticle; an underlying dense layer, the protein epicuticle; a fibrillar endocuticle; and a denser subcuticle. The overall similarity between the structure and composition of these layers and those of insects is discussed. However, the orientation of the chitin-protein fibres in the endocuticle does not show the rotating structure characteristic of many arthropod species, but this does appear in the sclerotized hooks. It is suggested that this comparatively loose, poorly oriented endocuticular structure produces a highly extensible cuticle which is precisely adapted to the specialized, endoparasitic habit of this species. Events at ecdysis, particularly the secretion of moulting fluid and the deposition of cuticulin, follow the insect pattern precisely. The phyletic significance of these observations is discussed.  相似文献   

18.
The cuticles of some insectan, chelicerate, and crustacean arthropods have been examined, and evidence obtained of the presence in the laminae of material of different composition from the remainder of the cuticle. This material is present both between the layers of crossed fibres of the balken type of cuticle, and in the plumose type of lamina. It has been observed in some instances to form a clearly defined membrane.  相似文献   

19.
The ultrastructure of the cuticle and mature spermatozoa of the oligochaete Propappus volki Michaelsen, 1916 is described with the aim of providing additional data for clarifying the systematic position of the taxon. P. volki is a fresh-water species living in streams, and is easily recognized by its proboscis on the pre-segmental prostomium and, in mature specimens, by a clitellum covering the segments XII–XIV. The cuticle is composed of a proximal fibre zone and a distal layered epicuticle covered with membrane-bound epicuticular projections. The fibre zone consists of collagenous fibres in a matrix, arranged in either densely packed parallel layers with the fibres oriented in the same direction, or with more loosely distributed fibres, although with the same main orientation. The epicuticular projections are pyramidal with the base leaning on the outer surface of the epicuticle. The cuticle covering the proboscis differs in morphology from that of the rest of the worm; the fibre zone is composed of thin and short fibrils running in all directions, and the epicuticular projections are longer and more narrow than the projections in other regions of the worm.

The spermatozoa are filiform cells formed, in sequence, by an acrosome, an elongated nucleus, a long midpiece, and a flagellum. The acrosomal tube is short and straight with a completely external acrosomal vesicle. Following the acrosome is a apically corkscrew-shaped and basally straight nucleus. The midpiece is twisted and formed by five mitochondria. The flagellum shows a prominent central sheath arrangement.

A comparison with ultrastructurally described cuticles and spermatozoa from other clitellate species reveals most similarities with enchytraeids.  相似文献   


20.
The crustacean cuticle is a hierarchically organised material composed of an organic matrix and mineral. It is subdivided into skeletal elements whose physical properties are adapted to their function and the eco-physiological strains of the animal. Using a variety of ultrastructural and analytical techniques we studied the organisation of the tergite cuticle of the sand burrowing beach isopod Tylos europaeus. The surface of the tergites bear epicuticular scales, sensilla and micro-tubercles. A distal layer of the exocuticle is characterised by a low density of organic fibres and the presence of magnesium-calcite. Surprisingly, the mineral forms regions containing polyhedral structures alternating with smooth areas. Between sub-domains within the distal exocuticle calcite varies in its crystallographic orientation. Proximal layers of the exocuticle and the endocuticle are devoid of calcite and the mineral occurs in the form of amorphous calcium carbonate (ACC). Using thin sections of mineralised cuticle we describe for the first time that ACC forms tubes around single protein-chitin fibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号