首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Production of amyloid beta peptides (Abeta), followed by their deposition in the brain as amyloid plaques, contributes to the hallmark pathology of Alzheimer disease. The enzymes responsible for production of Abeta, BACE1 and gamma-secretase, are therapeutic targets for treatment of Alzheimer disease. Two presenilin (PS) homologues, referred to as PS1 and PS2, comprise the catalytic core of gamma-secretase. In comparing presenilin selectivity of several classes of gamma-secretase inhibitors, we observed that sulfonamides in general tend to be more selective for inhibition of PS1-comprising gamma-secretase, as exemplified by ELN318463 and BMS299897. We employed a combination of chimeric constructs and point mutants to identify structural determinants for PS1-selective inhibition by ELN318463. Our studies identified amino acid residues Leu(172), Thr(281), and Leu(282) in PS1 as necessary for PS1-selective inhibition by ELN318463. These residues also contributed in part to the PS1-selective inhibition by BMS299897. Alanine scanning mutagenesis of areas flanking Leu(172), Thr(281), and Leu(282) identified additional amino acids that affect inhibitor potency of not only these sulfonamides but also nonsulfonamide inhibitors, without affecting Abeta production and presenilin endoproteolysis. Interestingly, many of these same residues have been identified previously to be important for gamma-secretase function. These findings implicate TM3 and a second region near the carboxyl terminus of PS1 aminoterminal fragment in mediating the activity of gamma-secretase inhibitors. Our observations demonstrate that PS-selective inhibitors of gamma-secretase are feasible, and such inhibitors may allow differential inhibition of Abeta peptide production and Notch signaling.  相似文献   

2.
Aberrant production of amyloid-beta peptides by processing of the beta-amyloid precursor protein leads to the formation of characteristic extracellular protein deposits which are thought to be the cause of Alzheimer's disease. Therefore, inhibiting the key enzymes responsible for amyloid-beta peptide generation, beta- and gamma-secretase may offer an opportunity to intervene with the progression of the disease. In human brain and cell culture systems a heterogeneous population of amyloid-beta peptides with various truncations is detected and at present, it is unclear how they are produced. We have used a combination of surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) and a specific inhibitor of gamma-secretase to investigate whether the production of all amyloid-beta peptide species requires the action of gamma-secretase. Using this approach, we demonstrate that the production of all truncated amyloid-beta peptides except those released by the action of the nonamyloidogenic alpha-secretase enzyme or potentially beta-site betaAPP cleaving enzyme 2 depends on gamma-secretase activity. This indicates that none of these peptides are generated by a separate enzyme entity and a specific inhibitor of the gamma-secretase enzyme should havethe potential to block the generation of all amyloidogenicpeptides. Furthermore in the presence of gamma-secretase inhibitors, the observation of increased cleavage of the membrane-bound betaAPP C-terminal fragment C99 by alpha-secretase suggests that during its trafficking C99 encounters compartments in which alpha-secretase activity resides.  相似文献   

3.
4.
The calpain inhibitor N-acetyl-leucyl-leucyl-norleucinal (ALLN) has been reported to have complex effects on the production of the beta-amyloid peptide (Abeta). In this study, the effects of ALLN on the processing of the amyloid precursor protein (APP) to Abeta were examined in 293 cells expressing APP or the C-terminal 100 amino acids of APP (C100). In cells expressing APP or low levels of C100, ALLN increased Abeta40 and Abeta42 secretion at low concentrations, decreased Abeta40 and Abeta42 secretion at high concentrations, and increased cellular levels of C100 in a concentration-dependent manner by inhibiting C100 degradation. Low concentrations of ALLN increased Abeta42 secretion more dramatically than Abeta40 secretion. ALLN treatment of cells expressing high levels of C100 did not alter cellular C100 levels and inhibited Abeta40 and Abeta42 secretion with similar IC50 values. These results suggest that C100 can be processed both by gamma-secretase and by a degradation pathway that is inhibited by low concentrations of ALLN. The data are consistent with inhibition of gamma-secretase by high concentrations of ALLN but do not support previous assertions that ALLN is a selective inhibitor of the gamma-secretase producing Abeta40. Rather, Abeta42 secretion may be more dependent on C100 substrate concentration than Abeta40 secretion.  相似文献   

5.
The presenilin/gamma-secretase complex, an unusual intramembrane aspartyl protease, plays an essential role in cellular signaling and membrane protein turnover. Its ability to liberate numerous intracellular signaling proteins from the membrane and also mediate the secretion of amyloid-beta protein (Abeta) has made modulation of gamma-secretase activity a therapeutic goal for cancer and Alzheimer disease. Although the proteolysis of the prototypical substrates Notch and beta-amyloid precursor protein (APP) has been intensely studied, the full spectrum of substrates and the determinants that make a transmembrane protein a substrate remain unclear. Using an unbiased approach to substrate identification, we surveyed the proteome of a human cell line for targets of gamma-secretase and found a relatively small population of new substrates, all of which are type I transmembrane proteins but have diverse biological roles. By comparing these substrates to type I proteins not regulated by gamma-secretase, we determined that besides a short ectodomain, gamma-secretase requires permissive transmembrane and cytoplasmic domains to bind and cleave its substrates. In addition, we provide evidence for at least two mechanisms that can target a substrate for gamma cleavage: one in which a substrate with a short ectodomain is directly cleaved independent of sheddase association, and a second where a substrate requires ectodomain shedding to instruct subsequent gamma-secretase processing. These findings expand our understanding of the mechanisms of substrate selection as well as the diverse cellular processes to which gamma-secretase contributes.  相似文献   

6.
Natural bone tissue receives chemical and mechanical stimuli in physiological environment. The effects of material chemistry alone and mechanical stimuli alone on osteoblasts have been widely investigated. This study reports the synergistic influences of material chemistry and flow shear stress (FSS) on biological functions of osteoblasts. Self-assembled monolayers (SAMs) on glass slides with functional groups of OH, CH3, and NH2 were employed to provide various material chemistries, while FSS (12 dynes/cm2) was produced by a parallel-plate fluid flow system. Material chemistry alone had no obvious effects on the expressions of ATP, nitric oxide (NO), and prostaglandin E2 (PGE2), whereas FSS stimuli alone increased the production of those items. When both material chemistry and FSS were loaded, cell proliferation and the expressions of ATP, NO and PGE2 were highly dependent on the material chemistry. Examination of the focal adhesion (FA) formation and F-actin organization of osteoblasts before FSS exposure indicates that the FA formation and F-actin organization followed similar chemistry-dependence. The inhibition of FAs and/or disruption of F-actins eliminated the material dependence of FSS-induced ATP, PGE2 and NO release. A possible mechanism is proposed: material chemistry controls the F-actin organization and FA formation of osteoblasts, which further modulates FSS-induced cellular responses.  相似文献   

7.
8.
Understanding the pH effect of cellulolytic enzymes is of great technological importance. In this study, we have examined the influence of pH on activity and stability for central cellulases (Cel7A, Cel7B, Cel6A from Trichoderma reesei, and Cel7A from Rasamsonia emersonii). We systematically changed pH from 2 to 7, temperature from 20°C to 70°C, and used both soluble (4-nitrophenyl β- d -lactopyranoside [pNPL]) and insoluble (Avicel) substrates at different concentrations. Collective interpretation of these data provided new insights. An unusual tolerance to acidic conditions was observed for both investigated Cel7As, but only on real insoluble cellulose. In contrast, pH profiles on pNPL were bell-shaped with a strong loss of activity both above and below the optimal pH for all four enzymes. On a practical level, these observations call for the caution of the common practice of using soluble substrates for the general characterization of pH effects on cellulase activity. Kinetic modeling of the experimental data suggested that the nucleophile of Cel7A experiences a strong downward shift in pKa upon complexation with an insoluble substrate. This shift was less pronounced for Cel7B, Cel6A, and for Cel7A acting on the soluble substrate, and we hypothesize that these differences are related to the accessibility of water to the binding region of the Michaelis complex.  相似文献   

9.
10.
An improved chemical synthesis of N-2((2S)-2-(3,5-difluorophenyl)-2-hydroxyethanoyl)-N1-((7S)-5-methyl-6-oxo-6,7-dihydro-5H-dibenzo[b,d]azepin-7-yl)-l-alaninamide (LY411,575, 9a), a known gamma-secretase inhibitor, is described. The key synthetic steps, which used no chiral chromatography in the entire sequence, involved (1) improved microwave-assisted synthesis of a seven-membered lactam (+/-)-(5,7-dihydro-6H-dibenz-[b,d]azepin-6-one 2, and (2) convenient isolation of pure LY411575 from a mixture of four diastereomers by simple flash silica gel chromatography. Starting from the resolved aminolactams 5a and 5b, all four diastereomers were produced in enantiomerically pure form.  相似文献   

11.
We have previously shown that statins reduce the production of amyloid-beta (Abeta) by both isoprenoid- and cholesterol-dependent mechanisms. These pathways contribute to the regulation of the dimerisation of BACE into its physiologically active form. Statins reduce cellular cholesterol levels by 20-40%; therefore, it is possible that the remaining cholesterol within the cell may play a significant role in the production of Abeta. Incubation of cells with the specific cholesterol biosynthesis inhibitor BM15.766 together with 50 micromol/L simvastatin and 400 micromol/L mevalonate reduced cellular cholesterol levels in a dose-dependent manner with increasing BM15.766 concentration (r = -0.9736, p = 0.0264). Furthermore, decreases in cellular cholesterol levels correlated with reductions in total Abeta production (r = 0.9683, p = 0.0317). A total of 2.5 micromol/L BM15.766 inhibited the dimerisation of BACE, whilst the expression of BACE monomer was reduced by 5 micromol/L BM15.766. BM15.766 treatment localised BACE predominantly within the Golgi, and reduced total BACE expression per cell. Similar changes were observed in the expression of the Golgi marker golgin-97, suggesting that reduced BACE expression may arise from a decrease in protein trafficking and an increase in degradation. By targeting cholesterol synthesis using specific cholesterol biosynthesis inhibitors, it is possible to reduce Abeta production without reducing protein isoprenylation.  相似文献   

12.
Beta amyloid peptide is generated from amyloid precursor protein (APP) by proteolytic cleavage of β- and γ-secretases, and plays a critical role in the pathogenesis of Alzheimer’s disease. Since γ-secretase cleaves several proteins including APP and Notch in a number of cell types, it is important to understand the conditions determining γ-secretase substrate specificity. In the present study, inhibition of Rac1 attenuated γ-secretase activity for APP, resulting in decreased production of the APP intracellular domain but accumulated C-terminal fragments (APP-CTF). In contrast, Rac1 inhibitor, NSC23766 increased production of the Notch1 intracellular domain but slightly decreased the ectodomain-shed form of Notch1 (NotchΔE). To elucidate the mechanism underlying these observations, we performed co-immunoprecipitation experiments to analyze the interaction between Rac1 and presenilin1 (PS1), a component of the γ-secretase complex. Inhibition of Rac1 enhanced its interaction with PS1. Under the same condition, PS1 interacted more strongly with NotchΔE than with APP-CTF. Our results suggested that PS1 determines the preferred substrate for γ-secretase between APP and Notch1, depending on the activation status of Rac1.  相似文献   

13.
Inhibition of the amyloid β aggregation process could possibly prevent the onset of Alzheimer’s disease. In this article, we report a structure–activity relationship study of curcumin analogues for anti amyloid β aggregation activity. Compound 7, the ideal amyloid β aggregation inhibitor in vitro among synthesized curcumin analogues, has not only potent anti amyloid β aggregation effects, but also water solubility more than 160 times that of curcumin. In addition, new approaches to improve water solubility of curcumin-type compounds are proposed.  相似文献   

14.
Recently, it was revealed that tumor cells are significantly softer than normal cells. Although this phenomenon is well known, it is connected with many questions which are still unanswered. Among these questions are the molecular mechanisms which cause the change in stiffness and the correlation between cell mechanical properties and their metastatic potential. We studied mechanical properties of cells with different levels of cancer transformation. Transformed cells in three systems with different transformation types (monooncogenic N-RAS, viral and cells of tumor origin) were characterized according to their morphology, actin cytoskeleton and focal adhesion organization. Transformation led to reduction of cell spreading and thus decreasing the cell area, disorganization of actin cytoskeleton, lack of actin stress fibers and decline in the number and size of focal adhesions. These alterations manifested in a varying degree depending on type of transformation. Force spectroscopy by atomic force microscopy with spherical probes was carried out to measure the Young's modulus of cells. In all cases the Young's moduli were fitted well by log-normal distribution. All the transformed cell lines were found to be 40–80% softer than the corresponding normal ones. For the cell system with a low level of transformation the difference in stiffness was less pronounced than for the two other systems. This suggests that cell mechanical properties change upon transformation, and acquisition of invasive capabilities is accompanied by significant softening.  相似文献   

15.
16.
Transition state analogs pepstatin methylester (PME) and L685458 have been shown to inhibit gamma-secretase non-competitively (Tian, G., Sobotka-Briner, C., Zysk, J., Liu, X., Birr, C., Sylvester, M. A., Edwards, P. D., Scott, C. W., and Greenberg, B. D. (2002) J. Biol. Chem. 277, 31499-31505). This unusual kinetics suggests physical separation of the sites for substrate binding and catalysis with binding of the transition state analogs to the catalytic site and not to the substrate binding site. Methods of inhibitor cross-competition kinetics and competition ligand binding were utilized to address whether non-transition state small molecule inhibitors, which also display non-competitive inhibition of gamma-secretase, inhibit the enzyme by binding to the catalytic site as well. Inhibitor cross-competition kinetics indicated competitive binding between the transition state analogs PME and L685458 and between small molecules arylsulfonamides and benzodiazepines, but non-competitive binding between the transition state analogs and the small molecule inhibitors. These results were indicative of two inhibitor binding sites, one for transition state analogs and the other for non-transition state small molecule inhibitors. The presence of two inhibitor binding sites for two different classes of inhibitors was corroborated by results from competition ligand binding using [3H]L685458 as the radioligand. Although L685458 and PME displaced the radioligand at the same concentrations as for enzyme inhibition, arylsulfonamides and benzodiazepines did not displace the radioligand at their Ki values, a result consistent with the presence of two inhibitor binding sites. These findings provide useful insights into the catalytic and regulatory mechanisms of gamma-secretase that may facilitate the design of novel gamma-secretase inhibitors.  相似文献   

17.
Aggregates of beta-amyloid peptide (Abeta) are the major component of the amyloid core of the senile plaques observed in Alzheimer's disease (AD). Abeta results from the amyloidogenic processing of its precursor, the amyloid precursor protein (APP), by beta- and gamma-secretase activities. If beta-secretase has recently been identified and termed BACE, the identity of gamma-secretase is still obscure. Studies with knock-out mice showed that presenilin 1 (PS1), of which mutations are known to be the first cause of inherited AD, is mandatory for the gamma-secretase activity. However, the proteolytic activity of PS1 remains a matter of debate. Here we used transfected Sf9 insect cells, a cellular model lacking endogenous beta- and/or gamma-secretase activities, to characterize the role of BACE and PS1 in the amyloidogenic processing of human APP. We show that, in Sf9 cells, BACE performs the expected beta-secretase cleavage of APP, generating C99. We also show that C99, which is a substrate of gamma-secretase, tightly binds to the human PS1. Despite this interaction, Sf9 cells still do not produce Abeta. This strongly argues against a direct proteolytic activity of PS1 in APP processing, and points toward an implication of PS1 in trafficking/presenting its substrate to the gamma-secretase.  相似文献   

18.
19.
模拟海平面上升对红树植物秋茄的影响   总被引:8,自引:2,他引:8  
叶勇  卢昌义  郑逢中  谭凤仪 《生态学报》2004,24(10):2238-2244
研究了壤质沙土 (粗质土 )和粘土 (细质土 )条件下红树植物秋茄 (K andelia candel)对水位上升和淹水时间延长的反应。模拟海平面上升 30 cm导致红树林土壤的酸化 ,且细质土的酸化比粗质土严重 ;秋茄繁殖体的萌苗速度明显加快 ;促进秋茄的早期生长 ,尤其是导致最初 2个月茎高生长的增加 ,然而 ,后 2个月秋茄的相对生长率并不因水位的升高而增加 ;地下部 /地上部生物量比减小 ,在粗质土中尤为如此 ;幼苗粗根比例明显增加 ;叶片叶绿素 a/ b比值下降。在微型盆栽试验条件下 ,无论是高水位还是低水位 ,所有的秋茄繁殖体均成功萌发且幼苗在整个试验期间均成活。在野外条件下 ,秋茄幼苗成活率在高水位和低水位条件下均高达 90 %以上。野外条件下 ,无论是经胚轴萌发还是幼苗移栽的幼苗 ,最初 4个月的茎高生长均为低潮区高于高潮区 ,与微型试验结果相同。微型盆栽试验和野外种植试验均表明 ,海平面上升 30 cm对秋茄的萌发和早期生长具有促进作用  相似文献   

20.
Gamma-secretase performs the final processing step in the generation of amyloid-beta (Abeta) peptides, which are believed to be causative for Alzheimer's disease. Presenilins (PS) are required for gamma-secretase activity and the presence of two essential intramembranous aspartates (D257 and D385) has implicated this region as the putative catalytic centre of an aspartyl protease. The presence of several key hydrogen-bonding residues around the active site of classical aspartyl proteases led us to investigate the role of both the critical aspartates and two nearby conserved hydrogen bond donors in PS1. Generation of cell lines stably overexpressing the D257E, D385E, Y256F and Y389F engineered mutations has enabled us to determine their role in enzyme catalysis and binding of a transition state analogue gamma-secretase inhibitor. Here we report that replacement of either tyrosine residue alters gamma-secretase cleavage specificity, resulting in an increase in the production of the more pathogenic Abeta42 peptide in both cells and membranous enzyme preparations, without affecting inhibitor binding. In contrast, replacement of either of the aspartate residues precludes inhibitor binding in addition to inactivation of the enzyme. Together, these data further incriminate the region around the intramembranous aspartates as the active site of the enzyme, targeted by transition state analogue inhibitors, and highlight the roles of individual residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号