首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a new method which allows a swarm of robots to sort arbitrarily arranged objects into homogeneous clusters. In the ideal case, a distributed robotic sorting method should establish a single homogeneous cluster for each object type. This can be achieved with existing methods, but the rate of convergence is considered too slow for real-world application. Previous research on distributed robotic sorting is typified by randomised movement with a pick-up/deposit behaviour that is a probabilistic function of local object density. We investigate whether the ability of each robot to localise and return to remembered places can improve distributed sorting performance. In our method, each robot maintains a cache point for each object type. Upon collecting an object, it returns to add this object to the cluster surrounding the cache point. Similar to previous biologically inspired work on distributed sorting, no explicit communication between robots is implemented. However, the robots can still come to a consensus on the best cache for each object type by observing clusters and comparing their sizes with remembered cache sizes. We refer to this method as cache consensus. Our results indicate that incorporating this localisation capability enables a significant improvement in the rate of convergence. We present experimental results using a realistic simulation of our targeted robotic platform. A subset of these experiments is also validated on physical robots.  相似文献   

2.
3.
Creating target structures through the coordinated efforts of teams of autonomous robots (possibly aided by specific features in their environments) is a very important problem in distributed robotics. Many specific instances of distributed robotic construction teams have been developed manually. An important issue is whether automated controller design algorithms can both quickly produce robot controllers and guarantee that teams using these controllers will build arbitrary requested target structures correctly; this task may also involve specifying features in the environment that can aid the construction process. In this paper, we give the first computational and parameterized complexity analyses of several problems associated with the design of robot controllers and environments for creating target structures. These problems use a simple finite-state robot controller model that moves in a non-continuous deterministic manner in a grid-based environment. Our goal is to establish whether algorithms exist that are both fast and correct for all inputs and if not, under which restrictions such algorithms are possible. We prove that none of these problems are efficiently solvable in general and remain so under a number of plausible restrictions on controllers, environments, and target structures. We also give the first restrictions relative to which these problems are efficiently solvable and discuss what theoretical solvability and unsolvability results derived relative to the problems examined here mean for real-world construction using robot teams.  相似文献   

4.
Swarm robotics is a promising approach for the coordination of large numbers of robots. While previous studies have shown that evolutionary robotics techniques can be applied to obtain robust and efficient self-organized behaviors for robot swarms, most studies have been conducted in simulation, and the few that have been conducted on real robots have been confined to laboratory environments. In this paper, we demonstrate for the first time a swarm robotics system with evolved control successfully operating in a real and uncontrolled environment. We evolve neural network-based controllers in simulation for canonical swarm robotics tasks, namely homing, dispersion, clustering, and monitoring. We then assess the performance of the controllers on a real swarm of up to ten aquatic surface robots. Our results show that the evolved controllers transfer successfully to real robots and achieve a performance similar to the performance obtained in simulation. We validate that the evolved controllers display key properties of swarm intelligence-based control, namely scalability, flexibility, and robustness on the real swarm. We conclude with a proof-of-concept experiment in which the swarm performs a complete environmental monitoring task by combining multiple evolved controllers.  相似文献   

5.
A well known problem in the design of the control system for a swarm of robots concerns the definition of suitable individual rules that result in the desired coordinated behaviour. A possible solution to this problem is given by the automatic synthesis of the individual controllers through evolutionary or learning processes. These processes offer the possibility to freely search the space of the possible solutions for a given task, under the guidance of a user-defined utility function. Nonetheless, there exist no general principles to follow in the definition of such a utility function in order to reward coordinated group behaviours. As a consequence, task dependent functions must be devised each time a new coordination problem is under study. In this paper, we propose the use of measures developed in Information Theory as task-independent, implicit utility functions. We present two experiments in which three robots are trained to produce generic coordinated behaviours. Each robot is provided with rich sensory and motor apparatus, which can be exploited to explore the environment and to communicate with other robots. We show how coordinated behaviours can be synthesised through a simple evolutionary process. The only criteria used to evaluate the performance of the robotic group is the estimate of mutual information between the motor states of the robots.  相似文献   

6.
We present two swarm intelligence control mechanisms used for distributed robot path formation. In the first, the robots form linear chains. We study three variants of robot chains, which vary in the degree of motion allowed to the chain structure. The second mechanism is called vectorfield. In this case, the robots form a pattern that globally indicates the direction towards a goal or home location. We test each controller on a task that consists in forming a path between two objects which an individual robot cannot perceive simultaneously. Our simulation experiments show promising results. All the controllers are able to form paths in complex obstacle environments and exhibit very good scalability, robustness, and fault tolerance characteristics. Additionally, we observe that chains perform better for small robot group sizes, while vectorfield performs better for large groups.  相似文献   

7.
We study cooperative navigation for robotic swarms in the context of a general event-servicing scenario. In the scenario, one or more events need to be serviced at specific locations by robots with the required skills. We focus on the question of how the swarm can inform its members about events, and guide robots to event locations. We propose a solution based on delay-tolerant wireless communications: by forwarding navigation information between them, robots cooperatively guide each other towards event locations. Such a collaborative approach leverages on the swarm’s intrinsic redundancy, distribution, and mobility. At the same time, the forwarding of navigation messages is the only form of cooperation that is required. This means that the robots are free in terms of their movement and location, and they can be involved in other tasks, unrelated to the navigation of the searching robot. This gives the system a high level of flexibility in terms of application scenarios, and a high degree of robustness with respect to robot failures or unexpected events. We study the algorithm in two different scenarios, both in simulation and on real robots. In the first scenario, a single searching robot needs to find a single target, while all other robots are involved in tasks of their own. In the second scenario, we study collective navigation: all robots of the swarm navigate back and forth between two targets, which is a typical scenario in swarm robotics. We show that in this case, the proposed algorithm gives rise to synergies in robot navigation, and it lets the swarm self-organize into a robust dynamic structure. The emergence of this structure improves navigation efficiency and lets the swarm find shortest paths.  相似文献   

8.
In swarm robotics, communication among the robots is essential. Inspired by biological swarms using pheromones, we propose the use of chemical compounds to realize group foraging behavior in robot swarms. We designed a fully autonomous robot, and then created a swarm using ethanol as the trail pheromone allowing the robots to communicate with one another indirectly via pheromone trails. Our group recruitment and cooperative transport algorithms provide the robots with the required swarm behavior. We conducted both simulations and experiments with real robot swarms, and analyzed the data statistically to investigate any changes caused by pheromone communication in the performance of the swarm in solving foraging recruitment and cooperative transport tasks. The results show that the robots can communicate using pheromone trails, and that the improvement due to pheromone communication may be non-linear, depending on the size of the robot swarm.  相似文献   

9.
Self-organized flocking in mobile robot swarms   总被引:1,自引:0,他引:1  
In this paper, we study self-organized flocking in a swarm of mobile robots. We present Kobot, a mobile robot platform developed specifically for swarm robotic studies. We describe its infrared-based short range sensing system, capable of measuring the distance from obstacles and detecting kin robots, and a novel sensing system called the virtual heading system (VHS) which uses a digital compass and a wireless communication module for sensing the relative headings of neighboring robots. We propose a behavior based on heading alignment and proximal control that is capable of generating self-organized flocking in a swarm of Kobots. By self-organized flocking we mean that a swarm of mobile robots, initially connected via proximal sensing, is able to wander in an environment by moving as a coherent group in open space and to avoid obstacles as if it were a “super-organism”. We propose a number of metrics to evaluate the quality of flocking. We use a default set of behavioral parameter values that can generate acceptable flocking in robots, and analyze the sensitivity of the flocking behavior against changes in each of the parameters using the metrics that were proposed. We show that the proposed behavior can generate flocking in a small group of physical robots in a closed arena as well as in a swarm of 1000 simulated robots in open space. We vary the three main characteristics of the VHS, namely: (1) the amount and nature of noise in the measurement of heading, (2) the number of VHS neighbors, and (3) the range of wireless communication. Our experiments show that the range of communication is the main factor that determines the maximum number of robots that can flock together and that the behavior is highly robust against the other two VHS characteristics. We conclude by discussing this result in the light of related theoretical studies in statistical physics.  相似文献   

10.
Recent technological developments like cheap sensors and the decreasing costs of computational power have brought the possibility of robotic home companions within reach. In order to be accepted it is vital for these robots to be able to participate meaningfully in social interactions with their users and to make them feel comfortable during these interactions. In this study we investigated how people respond to a situation where a companion robot is watching its user. Specifically, we tested the effect of robotic behaviours that are synchronised with the actions of a human. We evaluated the effects of these behaviours on the robot’s likeability and perceived intelligence using an online video survey. The robot used was Care-O-bot3, a non-anthropomorphic robot with a limited range of expressive motions. We found that even minimal, positively synchronised movements during an object-oriented task were interpreted by participants as engagement and created a positive disposition towards the robot. However, even negatively synchronised movements of the robot led to more positive perceptions of the robot, as compared to a robot that does not move at all. The results emphasise a) the powerful role that robot movements in general can have on participants’ perception of the robot, and b) that synchronisation of body movements can be a powerful means to enhance the positive attitude towards a non-anthropomorphic robot.  相似文献   

11.
This paper proposes a novel method to improve the efficiency of a swarm of robots searching in an unknown environment. The approach focuses on the process of feeding and individual coordination characteristics inspired by the foraging behavior in nature. A predatory strategy was used for searching; hence, this hybrid approach integrated a random search technique with a dynamic particle swarm optimization (DPSO) search algorithm. If a search robot could not find any target information, it used a random search algorithm for a global search. If the robot found any target information in a region, the DPSO search algorithm was used for a local search. This particle swarm optimization search algorithm is dynamic as all the parameters in the algorithm are refreshed synchronously through a communication mechanism until the robots find the target position, after which, the robots fall back to a random searching mode. Thus, in this searching strategy, the robots alternated between two searching algorithms until the whole area was covered. During the searching process, the robots used a local communication mechanism to share map information and DPSO parameters to reduce the communication burden and overcome hardware limitations. If the search area is very large, search efficiency may be greatly reduced if only one robot searches an entire region given the limited resources available and time constraints. In this research we divided the entire search area into several subregions, selected a target utility function to determine which subregion should be initially searched and thereby reduced the residence time of the target to improve search efficiency.  相似文献   

12.
In this work, we explore the feasibility of regulating the collective behavior of zebrafish with a free-swimming robotic fish. The visual cues elicited by the robot are inspired by salient features of attraction in zebrafish and include enhanced coloration, aspect ratio of a fertile female, and carangiform/subcarangiform locomotion. The robot is autonomously controlled with an online multi-target tracking system and swims in circular trajectories in the presence of groups of zebrafish. We investigate the collective response of zebrafish to changes in robot speed, achieved by varying its tail-beat frequency. Our results show that the speed of the robot is a determinant of group cohesion, quantified through zebrafish nearest-neighbor distance, which increases with the speed of the robot until it reaches . We also find that the presence of the robot causes a significant decrease in the group speed, which is not accompanied by an increase in the freezing response of the subjects. Findings of this study are expected to inform the design of experimental protocols that leverage the use of robots to study the zebrafish animal model.  相似文献   

13.
A fundamental challenge in robotics today is building robots that can learn new skills by observing humans and imitating human actions. We propose a new Bayesian approach to robotic learning by imitation inspired by the developmental hypothesis that children use self-experience to bootstrap the process of intention recognition and goal-based imitation. Our approach allows an autonomous agent to: (i) learn probabilistic models of actions through self-discovery and experience, (ii) utilize these learned models for inferring the goals of human actions, and (iii) perform goal-based imitation for robotic learning and human-robot collaboration. Such an approach allows a robot to leverage its increasing repertoire of learned behaviors to interpret increasingly complex human actions and use the inferred goals for imitation, even when the robot has very different actuators from humans. We demonstrate our approach using two different scenarios: (i) a simulated robot that learns human-like gaze following behavior, and (ii) a robot that learns to imitate human actions in a tabletop organization task. In both cases, the agent learns a probabilistic model of its own actions, and uses this model for goal inference and goal-based imitation. We also show that the robotic agent can use its probabilistic model to seek human assistance when it recognizes that its inferred actions are too uncertain, risky, or impossible to perform, thereby opening the door to human-robot collaboration.  相似文献   

14.
In this paper, we propose a biomimetic learning approach for motion generation of a multi-joint robotic fish. Based on a multi-joint robotic fish model, two basic Carangiform swimming patterns, namely "cruise" and "C sharp turning", are extracted as training samples from the observations of real fish swimming. A General Internal Model (GIM), which is an imitation of Central Pattern Generator (CPG) in nerve systems, is adopted to learn and to regenerate coordinated fish behaviors. By virtue of the universal function approximation ability and the temporal/spatial scalabilities of GIM, the proposed learning approach is able to generate the same or similar fish swimming patterns by tuning two parameters. The learned swimming patterns are implemented on a multi-joint robotic fish in experiments. The experiment results verify the effectiveness of the biomimetic learning approach in generating and modifying locomotion patterns for the robotic fish.  相似文献   

15.
Stigmergy is a powerful principle in nature, which has been shown to have interesting applications to robotic systems. By leveraging the ability to store information in the environment, robots with minimal sensing, memory, and computational capabilities can solve complex problems like global path planning. In this paper, we discuss the use of stigmergy in minimalist multi-robot systems, in which robots do not need to use any internal model, long-range sensing, or position awareness. We illustrate our discussion with three case studies: building a globally optimal navigation map, building a gradient map of a sensed feature, and updating the above maps dynamically. All case studies have been implemented in a real environment with multiple ePuck robots, using a floor with 1,500 embedded radio frequency identification tags as the stigmergic medium. Results collected from tens of hours of real experiments and thousands of simulated runs demonstrate the effectiveness of our approach.  相似文献   

16.
Artificial Pheromone System Using RFID for Navigation of Autonomous Robots   总被引:1,自引:0,他引:1  
Navigation system based on the animal behavior has received a growing attention in the past few years. The navigation systems using artificial pheromone are still few so far. For this reason, this paper presents our research that aim to implement autonomous navigation with artificial pheromone system. By introducing artificial pheromone system composed of data carriers and autonomous robots, the robotic system creates a potential field to navigate their group. We have developed a pheromone density model to realize the function of pheromones with the help of data carriers. We intend to show the effectiveness of the proposed system by performing simulations and realization using modified mobile robot. The pheromone potential field system can be used for navigation of autonomous robots.  相似文献   

17.
In recent years, information theory has come into the focus of researchers interested in the sensorimotor dynamics of both robots and living beings. One root for these approaches is the idea that living beings are information processing systems and that the optimization of these processes should be an evolutionary advantage. Apart from these more fundamental questions, there is much interest recently in the question how a robot can be equipped with an internal drive for innovation or curiosity that may serve as a drive for an open-ended, self-determined development of the robot. The success of these approaches depends essentially on the choice of a convenient measure for the information. This article studies in some detail the use of the predictive information (PI), also called excess entropy or effective measure complexity, of the sensorimotor process. The PI of a process quantifies the total information of past experience that can be used for predicting future events. However, the application of information theoretic measures in robotics mostly is restricted to the case of a finite, discrete state-action space. This article aims at applying the PI in the dynamical systems approach to robot control. We study linear systems as a first step and derive exact results for the PI together with explicit learning rules for the parameters of the controller. Interestingly, these learning rules are of Hebbian nature and local in the sense that the synaptic update is given by the product of activities available directly at the pertinent synaptic ports. The general findings are exemplified by a number of case studies. In particular, in a two-dimensional system, designed at mimicking embodied systems with latent oscillatory locomotion patterns, it is shown that maximizing the PI means to recognize and amplify the latent modes of the robotic system. This and many other examples show that the learning rules derived from the maximum PI principle are a versatile tool for the self-organization of behavior in complex robotic systems.  相似文献   

18.
The inclusion of animals and robots in therapeutic interventions for Autism Spectrum Disorder (ASD) has become more common. This study provides a first comparison between the potential of living versus robotic dogs to elicit social communication behavior and regulated emotional responses in individuals with ASD. Ten children and thirteen adults with ASD and severe lan- guage delay were tested for appropriate social communication behavior and cardiac autonomic functioning during a planned, structured interaction with an experimenter alone (no-stimulus condition), an experimenter accompanied by a living dog (dog condition), and an experimenter accompanied by a robotic dog (robot condition). A within-subjects design was followed to expose all participants to all three experimental conditions. Overall, participants (children and adults) showed a higher percentage of appropriate social behaviors in Living and Robotic Dogs as Elicitors of Social Communication Behavior and Regulated Emotional?…?the dog and the robot conditions than in the no-stimulus condition. In children, the living dog was more effective than the robotic dog in promoting social communication behavior. In adults, no such difference was found between the dog and the robot condition. Only the dog appeared to elicit a positive effect in cardiac autonomic functioning by increasing heart rate variability (HRV) and buffer- ing the decrease in parasympathetic activity due to interaction with the experimenter. The data are preliminary but relevant and warrant replication in larger-scale studies.  相似文献   

19.
An important characteristic of a robot swarm that must operate in the real world is the ability to cope with changeable environments by exhibiting behavioural plasticity at the collective level. For example, a swarm of foraging robots should be able to repeatedly reorganise in order to exploit resource deposits that appear intermittently in different locations throughout their environment. In this paper, we report on simulation experiments with homogeneous foraging robot teams and show that analysing swarm behaviour in terms of information flow can help us to identify whether a particular behavioural strategy is likely to exhibit useful swarm plasticity in response to dynamic environments. While it is beneficial to maximise the rate at which robots share information when they make collective decisions in a static environment, plastic swarm behaviour in changeable environments requires regulated information transfer in order to achieve a balance between the exploitation of existing information and exploration leading to acquisition of new information. We give examples of how information flow analysis can help designers to decide on robot control strategies with relevance to a number of applications explored in the swarm robotics literature.  相似文献   

20.
Unpredictable air movements have proved to be a problem in previous studies investigating robot communication bymeans of airborne pheromone chemicals. The project described in this paper investigates the use of air vortex rings as a means ofcarrying pheromone chemicals between transmitting and receiving robots. Sensitivity to chemicals including pheromonesreleased by conspecifics is essential for many aspects of an insect’s life. They assist in finding food, locating a mate, avoidingdanger and help coordinate the activities of social insects. In the future, autonomous robots will be challenged by many situationssimilar to those that face insects and other simple creatures. Chemical communication may prove useful for these robots aswell. This paper describes the equipment developed for generating and detecting vortex rings. Results of experiments involvinglocation and tracking of a sequence of pheromone vortex rings are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号