首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of cationic polymer additives on biomass granulation and COD removal efficiency had been examined in lab-scale upflow anaerobic sludge blanket (UASB) reactors, treating low strength synthetic wastewater (COD 300-630 mg/l). Under identical conditions, two reactors were operated with and without polymer additives in inoculum under four different organic loading rates (OLRs). The optimum polymer dose was adopted based upon the results of jar test and settling test carried out with inoculum seed sludge. With the use of thick inoculum, SS greater than 110 g/l and VSS/SS ratio less than 0.3, granulation was observed in UASB reactor treating synthetic wastewater as well as actual sewage, when OLR was greater than 1.0 kg COD/m(3) d. Polymer additive with such thick inoculum was observed to deteriorate percentage granules and COD removal efficiency compared to inoculum without polymer additives. At OLR less than 1.0 kg COD/m(3) d, proper granulation could not be achieved in both the reactors inoculated with and without polymer additive. Also, under this low loading, drastic reduction in COD removal efficiency was observed with polymer additives in inoculum. Hence, it is rational to conclude that biomass granulation for treatment of low strength biodegradable wastewater depends on the applied loading rate and selection of thick inoculum sludge.  相似文献   

2.
Two SBR reactors were set up to investigate the feasibility of aerobic granulation under the combined selection pressures of hydraulic shear force and substrate loading. Aerobic granulation was studied at superficial upflow air velocity of 3.2 and 2.4 cm/s under an organic loading rate (OLR) range of 6.0-15.0 kg COD/m3d. Good reactor performance and well granule characteristics were achieved in a wide OLR range from 6.0 high up to 15.0 kg COD/m3d at 3.2 cm/s. While under the velocity of 2.4 cm/s, stable operation was limited in the OLR range of 6.0-9.0 kg COD/m3d and failed to operate with granule deterioration under further higher OLRs. The optimal combination of hydrodynamic shear force and loading selection pressure was demonstrated to be an important factor that influence aerobic granulation and govern the granule characteristics and reactor performance.  相似文献   

3.
Five laboratory scale upflow anaerobic sludge blanket (UASB) reactors were seeded with nongranular sewage sludge. Granulation was obtained after 15–35 days when between 0.5 and 2.0m/h upflow liquid velocity was applied, with an organic loading rate (OLR) of 8g COD/l.d (COD is the chemical oxygen demand). Granules had different physical characteristics and specific activity (g CODREMOVED/g volatile suspended solids) depending on the upflow liquid velocity applied. Granules were obtained in short startup periods (5 and 14 days) when a pilot-scale (180l) UASB reactor with a height of 4.7m was used to study hydraulic effects on the granulation process.  相似文献   

4.
In this paper, the differences between reinforced sequencing batch reactor, which was inoculated with superior mixed flora, and conventional sequencing batch reactor were compared in the process of treating papermaking wastewater under similar conditions. The results showed that the addition of superior mixed flora could not only shorten the sludge acclimation time, but also improve the treatment efficiency of reactor as well as make the reactor have higher ability to withstand high volume loading rate; the phenomenon of aerobic granulation only occurred in reinforced sequencing batch reactor, and superior mixed flora were the key reason that aerobic granular sludge could shape; aerobic granular sludge had many advantages over conventional activated sludge such as it possessed compacter microbial structure, better settling performance, and lower water content.  相似文献   

5.
Qiao W  Peng C  Wang W  Zhang Z 《Bioresource technology》2011,102(21):9904-9911
The supernatant of hydrothermally treated sludge was treated by an upflow anaerobic sludge blanket (UASB) reactor for a 550-days running test. The hydrothermal parameter was 170 °C for 60 min. An mesophilic 8.6 L UASB reactor was seeded with floc sludge. The final organic loading rate (OLR) could reach 18 kg COD/m3 d. At the initial stage running for 189 days, the feed supernatant was diluted, and the OLR reached 11 kg COD/m3 d. After 218 days, the reactor achieved a high OLR, and the supernatant was pumped into the reactor without dilution. The influent COD fluctuated from 20,000 to 30,000 mg/L and the COD removal rate remained at approximately 70%. After 150 days, granular sludge was observed. The energy balance calculation show that heating 1.0 kg sludge needs 0.34 MJ of energy, whereas biogas energy from the supernatant of the heated sludge is 0.43 MJ.  相似文献   

6.
Ye J  Mu Y  Cheng X  Sun D 《Bioresource technology》2011,102(9):5498-5503
Treatment of a fresh leachate with high-strength organics and calcium from municipal solid waste (MSW) incineration plant by an up-flow anaerobic sludge blanket (UASB) reactor was investigated under mesophilic conditions, emphasizing the influence of organic loading rate (OLR). When the reactor was fed with the raw leachate (COD as high as 70,390-75,480 mg/L) at an OLR of 12.5 kg COD/(m3 d), up to ∼82.4% of COD was removed suggesting the feasibility of UASB process for treating fresh leachates from incineration plants. The ratio of volatile solids/total solids (VS/TS) of the anaerobic sludge in the UASB decreased significantly after a long-term operation due to the precipitation of calcium carbonate in the granules. Scanning electron microscopy (SEM) observation shows that Methanosaeta-like species were in abundance, accompanied by a variety of other species. The result was further confirmed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and sequencing.  相似文献   

7.
The aim of this work was to study the influence of influent chemical oxygen demand (COD), upflow velocity of wastewater, and cationic polymer additives in inoculum, on biomass granulation and COD removal efficiency in upflow anaerobic sludge blanket (UASB) reactor for treating low strength wastewater. Statistical models were formulated based on these three variables to optimize the biomass granulation and COD removal efficiency in UASB reactors using a two-level, full factorial design. For the thick inoculum used in this study, having suspended solids (SS) >80 g/l and volatile suspended solids (VSS) to SS ratio <0.3, cationic polymer additives in the inoculum showed adverse effect on biomass granulation and COD removal efficiency. It is concluded that for such thick inoculum, granulation can be obtained while treating low strength wastewaters in UASB reactor by selecting proper combination of influent COD and liquid upflow velocity so as to represent the organic loading rate (OLR) greater than 1.0 kg COD/m(3) d. Validation of model predictions for treatment of synthetic wastewater and actual sewage reveals the efficacy of these models for enhancing granulation and COD removal efficiency.  相似文献   

8.
In this study, performance of a lab-scale hybrid up-flow anaerobic sludge blanket (UASB) reactor, treating a chemical synthesis-based pharmaceutical wastewater, was evaluated under different operating conditions. This study consisted of two experimental stages: first, acclimation to the pharmaceutical wastewater and second, determination of maximum loading capacity of the hybrid UASB reactor. Initially, the carbon source in the reactor feed came entirely from glucose, applied at an organic loading rate (OLR) 1 kg COD/m(3) d. The OLR was gradually step increased to 3 kg COD/m(3) d at which point the feed to the hybrid UASB reactor was progressively modified by introducing the pharmaceutical wastewater in blends with glucose, so that the wastewater contributed approximately 10%, 30%, 70%, and ultimately, 100% of the carbon (COD) to be treated. At the acclimation OLR of 3 kg COD/m(3) d the hydraulic retention time (HRT) was 2 days. During this period of feed modification, the COD removal efficiencies of the anaerobic reactor were 99%, 96%, 91% and 85%, and specific methanogenic activities (SMA) were measured as 240, 230, 205 and 231 ml CH(4)/g TVS d, respectively. Following the acclimation period, the hybrid UASB reactor was fed with 100% (w/v) pharmaceutical wastewater up to an OLR of 9 kg COD/m(3) d in order to determine the maximum loading capacity achievable before reactor failure. At this OLR, the COD removal efficiency was 28%, and the SMA was measured as 170 ml CH(4)/g TVS d. The hybrid UASB reactor was found to be far more effective at an OLR of 8 kg COD/m(3) d with a COD removal efficiency of 72%. At this point, SMA value was 200 ml CH(4)/g TVS d. It was concluded that the hybrid UASB reactor could be a suitable alternative for the treatment of chemical synthesis-based pharmaceutical wastewater.  相似文献   

9.
Aerobic granules were cultivated under temporal alternating aerobic and anoxic conditions without the presence of a carrier material in a sequencing batch reactor (SBR) with a high column height/column diameter ratio. The reactor was operated for 6h per cycle (aerobic: 4.75 h, anoxic: 1.25 h). To determine a new parameter for the definition of aerobic granules, a protocol of 4,6-diamidino-2-phenylindole hydrochloride staining and fluorescence image processing was developed. The d(tm) analysis showed that the increase in the chemical oxygen demand (COD) loading rate promoted no more growth of the aerobic granules. It was inconsistent with the results of the analysis of the sludge volume index (SVI) value but matched well with the results of the COD and nitrogen removal of the SBR and the particle size distribution by LS-PSA. The optimum COD loading rate for aerobic granulation in the SBR was 2.52 kg/m(3)d. When d(tm) was correlated with the biomass concentration and the SVI value during the period of granule formation, d(tm) could be used as a more sensitive and accurate parameter for classifying aerobic granules and optimizing the operational conditions for aerobic granulation processes.  相似文献   

10.
He R  Liu XW  Zhang ZJ  Shen DS 《Bioresource technology》2007,98(13):2526-2532
A sequential upflow anaerobic sludge blanket (UASB) and air-lift loop sludge blanket (ALSB) treatment was introduced into leachate recirculation to remove organic matter and ammonia from leachate in a lab-scale bioreactor landfill. The results showed that the sequential anaerobic-aerobic process might remove above 90% of COD and near to 100% of NH4+ -N from leachate under the optimum organic loading rate (OLR). The total COD removal efficiency was over 98% as the OLR increased to 6.8-7.7 g/l d, but the effluent COD concentration increased to 2.9-4.8 g/l in the UASB reactor, which inhibited the activity of nitrifying bacteria in the subsequent ALSB reactor. The NO3- -N concentration in recycled leachate reached 270 mg/l after treatment by the sequential anaerobic-aerobic process, but the landfill reactor could efficiently denitrify the nitrate. After 56 days operation, the leachate TN and NH4+ -N concentrations decreased to less than 200 mg/l in the bioreactor landfill system. The COD concentration was about 200 mg/l with less than 8 mg/l BOD in recycled leachate at the late stage. In addition, it was found that nitrate in recycled leachate had a negative effect on waste decomposition.  相似文献   

11.
Membrane bioreactors can replace the activated sludge process and the final clarification step in municipal wastewater treatment. The combination of bioreactor and crossflow microfiltration allows for a high chemical oxygen demand (COD) reduction of synthetic wastewater. From biomass, grown at high production rates in the aerobic bioreactor, energy rich biogas can be obtained in a subsequent anaerobic bioreactor. In this paper, experimental data from a laboratory scale membrane bioreactor are presented. The degradation of synthetic wastewater at short hydraulic retention times down to 1.5 h has been studied. The organic loading rate (OLR) has been varied in the range of 6-13 kg m(-3) per day. At steady state a high quality filtrate could be obtained at different operating conditions. At biomass concentrations of 10-22 g l(-1), COD reduction was above 95%.  相似文献   

12.
Fat waste discarded from butcheries was used as a cosubstrate in the anaerobic codigestion of sewage sludge (SS). The process was evaluated under mesophilic and thermophilic conditions. The codigestion was successfully attained despite some inhibitory stages initially present that had their origin in the accumulation of volatile fatty acids (VFA) and adsorption of long-chain fatty acids (LCFA). The addition of a fat waste improved digestion stability and increased biogas yields thanks to the higher organic loading rate (OLR) applied to the reactors. However, thermophilic digestion was characterized by an effluent of poor quality and high VFA content. Results from spectroscopic analysis suggested the adsorption of lipid components onto the anaerobic biomass, thus disturbing the complete degradation of substrate during the treatment. The formation of fatty aggregates in the thermophilic reactor prevented process failure by avoiding the exposure of biomass to the toxic effect of high LCFA concentrations.  相似文献   

13.

Nitrogen removal via nitrite is an energy-saving method for high-strength ammonia wastewater treatment. A better understanding of the formation of granular sludge dominated by aerobic ammonia-oxidizing bacteria (AerAOB) could facilitate the improved use of rapid sludge granulation for nitritation. In this study, AerAOB-dominated activated sludge (NAS) and granular sludge (NGS) produced different N-scyl-homoserine lactones (AHLs). N-(3-oxohexanoyl)-l-homoserinelactone (OHHL), only released from NGS, was shown to accelerate sludge aggregation by increasing the biomass growth rate, microbial activity, extracellular protein, and AerAOB biomass. For both NAS and NGS, sludge cells were glued together by inner extracellular polymeric substances (EPSs) with similar components to form microcolony. Different from the characterized negative effect of NAS’s outer-EPS on cell adhesion, the outer-EPS of NGS played a positive role in the attached growth of AerAOB-dominated sludge and contained more tryptophan-like substances. More interesting, OHHL enhanced the yields of tryptophan-like substances after mixing with the outer-EPS of NGS, enhancing cell adhesion. In a word, OHHL and more tryptophan-like substances were produced in the process of granulation under the selective sludge discharge condition, which was proved to be able to accelerate NAS granulation. Therefore, the sludge granulation process for nitritation can be improved by increasing the levels of OHHL and tryptophan in the initial startup stage. The appropriate engineering strategy should be further studied to facilitate the actual application of granular sludge for nitrogen removal on a large scale.

  相似文献   

14.
This article studies the operation of a new process for the production of biopolymers (polyhydroxyalkanoates, PHAs) at different applied organic load rates (OLRs). The process is based on the aerobic enrichment of activated sludge to obtain mixed cultures able to store PHAs at high rates and yields. A mixture of acetic, lactic, and propionic acids at different concentrations (in the range 8.5-31.25 gCOD/L) was fed every 2 h in a sequencing batch reactor (SBR). The resulting applied OLR was in the range 8.5-31.25 gCOD/L/day. Even though, as expected, the increase in the OLR caused an increase in biomass concentration (up to about 8.7 g COD/L), it also caused a relevant decrease of maximal polymer production rate. This decrease in polymer production rate was related to the different extent of "feast and famine" conditions, as function of the applied OLR and of the start-up conditions. As a consequence the best performance of the process was obtained at an intermediate OLR (20 gCOD/L/day) where both biomass productivity and PHA storage were high enough. However, at this high OLR the process was unstable and sudden decrease of performance was also observed. The sludge characterized by the highest PHA storage response was investigated by 16S rDNA clone library. The clone library contained sequences mostly from PHA producers (e.g., Alcaligenes and Comamonas genera); however many genera and among them, one of the dominant (Thauera), were never described before in relation to PHA storage response.  相似文献   

15.
Extraction of extracellular polymer from anaerobic sludges   总被引:5,自引:0,他引:5  
Summary Two types of anaerobic sludge were analyzed for ECP (extracellular polymers) content under five extraction conditions. Results showed that EDTA was more effective than formaldehyde as an extractant. Increase of temperature and addition caustic also enhanced the extraction. The ratio between carbohydrate and protein fractions of ECP for both acetate- and benzoate-degrading sludge was 0.16–0.18. The former sludge had only 40–45% of ECP as in the latter sludge.  相似文献   

16.
Well-formed denitrifying granular sludge with a biomass concentration of 24.8 gVSS L?1 and a specific nitrate removal rate of 0.19 gNO3-N gVSS?1 d?1 was obtained in an upflow sludge blanket (USB) reactor by cultivating seeded aerobic flocculent sludge for 6–8 weeks. Regularity phenomena exist in the granulation including flotation of flocculent sludge, formation of fine granules, occurrence of channelling, and formation of mature granular sludge. The granulation is similar to crystal growth, that the non-denitrifying bacteria evolve into the carriers (fine granules), on the surface of which denitrifying bacteria proliferate and develop into mature granular sludge.There are several key parameters that must be considered when developing a good denitrifying granular sludge. First, the proper seed sludge must be chosen (VSS/SS at 0.65–0.75, SRT over 25 days) to accelerate the granulation process. Secondly, any floating sludge should be stirred, and the sludge loading rate should be within the range of 0.05–0.15 gNO3-N gVSS?1 d?1 until fine granules emerge. Additionally, spontaneous gas agitation or interval air-blowing should be used to effectively eliminate channelling; Finally, the sludge loading rate should be less than 0.25 gNO3-N gVSS?1 d?1 until dense, mature granular sludge appears. This study could support and promote the full-scale application of denitrifying granular sludge.  相似文献   

17.
Functional bacterial consortiums that effectively tolerate high organic loading rates (OLR) were isolated using an organic shock-loading-to-extinction approach. The aerobic sludge granules were cultivated at low OLR and microbial community was challenged with stepwise increase in organic loadings to isolate functional consortiums. Strain Zoogloea resiniphila and at least two uncultured strains, Acinetobacter sp. clone JT2 and bacterium clone P1D1-516, formed the functional consortium of the aerobic granules present under a high OLR. The loss of these uncultured strains caused protein leakage from granules, thereby destabilizing the granules. The proposed organic shock-loading-to-extinction approach is effective in isolating the functional consortium from aerobic granules under high OLR.  相似文献   

18.
A novel bioreactor containing self-flocculated anaerobic granular sludge was developed for high-performance hydrogen production from sucrose-based synthetic wastewater. The reactor achieved an optimal volumetric hydrogen production rate of approximately 7.3 L/h/L (7,150 mmol/d/L) and a maximal hydrogen yield of 3.03 mol H2/mol sucrose when it was operated at a hydraulic retention time (HRT) of 0.5 h with an influent sucrose concentration of 20 g COD/L. The gas-phase hydrogen content and substrate conversion also exceeded 40 and 90%, respectively, under optimal conditions. Packing of a small quantity of carrier matrices on the bottom of the upflow reactor significantly stimulated sludge granulation that can be accomplished within 100 h. Among the four carriers examined, spherical activated carbon was the most effective inducer for granular sludge formation. The carrier-induced granular sludge bed (CIGSB) bioreactor was started up with a low HRT of 4-8 h (corresponding to an organic loading rate of 2.5-5 g COD/h/L) and enabled stable operations at an extremely low HRT (up to 0.5 h) without washout of biomass. The granular sludge was rapidly formed in CIGSB supported with activated carbon and reached a maximal concentration of 26 g/L at HRT = 0.5 h. The ability to maintain high biomass concentration at low HRT (i.e., high organic loading rate) highlights the key factor for the remarkable hydrogen production efficiency of the CIGSB processes.  相似文献   

19.
The performance of packed-bed biofilm reactor (PBBR) with self-floating bio-carriers was investigated to treat highly concentrated organic nitrogenous aniline wastewater with a COD value as high as 24,000 mg/L. With 45 vol% of carrier charge inside the reactor, the aniline wastewater can be effectively treated with 94% of COD removal efficiency at a low organic loading rate (OLR) of 0.9 kg COD/(m3 d). The removal efficiency decreased gradually down to 75% when OLR increased to 12.27 kg COD/(m3 d) that corresponded to 1 day of HRT. Separate tests with biofilm alone showed that the conversion contribution of the biofilm was about half of the overall COD conversion by the biofilm plus sludge system at the same OLRs of 3–4 kg COD/(m3 d), and that the biofilm had higher activity than suspended sludge. Ammonium released from decomposed aniline was increased gradually from 500 to 1700 mg/L with the OLR increase from 0.9 to 12.27 kg COD/(m3 d), which resulted in inhibitory effect to the microorganism due to the toxicity of free ammonia. Batch anaerobic toxicity tests showed that the biofilm was less sensitive to toxic compounds than suspended sludge and could tolerate higher concentration of free ammonia.  相似文献   

20.
Startup of laboratory anaerobic reactors and treatment efficiency were investigated by supplementing the distillery effluent feed with macronutrients (Ca, P) and micronutrients (Ni, Fe and Co) under mesophilic conditions. Calcium and phosphate were deterimental to the treatment efficiency and sludge granulation. Traces of salts of iron, nickel and cobalt, individually and in combinations improved the COD removal efficiency and sludge granulation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号