首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas aeruginosa PA4872 was identified by sequence analysis as a structurally and functionally novel member of the PEP mutase/isocitrate lyase superfamily and therefore targeted for investigation. Substrate screens ruled out overlap with known catalytic functions of superfamily members. The crystal structure of PA4872 in complex with oxalate (a stable analogue of the shared family alpha-oxyanion carboxylate intermediate/transition state) and Mg2+ was determined at 1.9 A resolution. As with other PEP mutase/isocitrate lyase superfamily members, the protein assembles into a dimer of dimers with each subunit adopting an alpha/beta barrel fold and two subunits swapping their barrel's C-terminal alpha-helices. Mg2+ and oxalate bind in the same manner as observed with other superfamily members. The active site gating loop, known to play a catalytic role in the PEP mutase and lyase branches of the superfamily, adopts an open conformation. The Nepsilon of His235, an invariant residue in the PA4872 sequence family, is oriented toward a C(2) oxygen of oxalate analogous to the C(3) of a pyruvyl moiety. Deuterium exchange into alpha-oxocarboxylate-containing compounds was confirmed by 1H NMR spectroscopy. Having ruled out known activities, the involvement of a pyruvate enolate intermediate suggested a decarboxylase activity of an alpha-oxocarboxylate substrate. Enzymatic assays led to the discovery that PA4872 decarboxylates oxaloacetate (kcat = 7500 s(-1) and Km = 2.2 mM) and 3-methyloxaloacetate (kcat = 250 s(-1) and Km = 0.63 mM). Genome context of the fourteen sequence family members indicates that the enzyme is used by select group of Gram-negative bacteria to maintain cellular concentrations of bicarbonate and pyruvate; however the decarboxylation activity cannot be attributed to a pathway common to the various bacterial species.  相似文献   

2.
The biophysical properties of a tryptophan-shifted mutant of phosphofructokinase from Bacillus stearothermophilus (BsPFK) have been examined. The mutant, designated W179Y/Y164W, has kinetic and thermodynamic properties similar to the wild-type enzyme. A 2-fold decrease in kcat is observed, and the mutant displays a 3-fold smaller K(0.5) for the substrate, fructose-6-phosphate (Fru-6-P), as compared to the wild-type enzyme. The dissociation constant for the inhibitor, phospho(enol)pyruvate (PEP), increases 2-fold, and the coupling parameter, Q(ay), decreases 2-fold. This suggests that while the mutant displays a slightly decreased affinity for PEP, PEP is still an effective inhibitor once bound. The new position of the tryptophan in W179Y/Y164W is approximately 6 A from the Fru-6-P portion of the active site. A 25% decrease in fluorescence intensity is observed upon Fru-6-P binding, and an 80% decrease in fluorescence intensity is observed with PEP binding. In addition, the intrinsic fluorescence polarization increases from 0.327 +/- 0.001 to 0.353 +/- 0.001 upon Fru-6-P binding, but decreases to 0.290 +/- 0.001 when PEP binds. Most notably, the presence of PEP induces dissociation of the tetramer. Dissociation of the tetramer into dimers occurs along the active site interface and can be monitored by the loss in activity or the loss in tryptophan fluorescence that is observed when the enzyme is titrated with PEP. Activity can be protected or recovered by incubating the enzyme with Fru-6-P. Recovery of activity is enzyme concentration dependent, and the rate constant for association is 6.2 +/- 0.3 M(-1) x s(-1). Ultracentrifugation experiments revealed that in the absence of PEP the mutant enzyme exists in an equilibrium between the dimer and tetramer forms with a dissociation constant of 11.8 +/- 0.5 microM, while in the presence of PEP the enzyme exists in equilibrium between the dimer and monomer forms with a dissociation constant of 7.5 +/- 0.02 microM. A 3.1 A crystal structure of the mutant enzyme suggests that the amino acid substitutions have not dramatically altered the tertiary structure of the enzyme. While it is clear that wild-type BsPFK exists as a tetramer under these same conditions, these results suggest that quaternary structural changes probably play an important role in allosteric communication.  相似文献   

3.
BACKGROUND: Phosphonate compounds are important secondary metabolites in nature and, when linked to macromolecules in eukaryotes, they might play a role in cell signaling. The first obligatory step in the biosynthesis of phosphonates is the formation of a carbon-phosphorus bond by converting phosphoenolpyruvate (PEP) to phosphonopyruvate (P-pyr), a reaction that is catalyzed by PEP mutase. The PEP mutase functions as a tetramer and requires magnesium ions (Mg2+). RESULTS: The crystal structure of PEP mutase from the mollusk Mytilus edulis, bound to the inhibitor Mg(2+)-oxalate, has been determined using multiwavelength anomalous diffraction, exploiting the selenium absorption edge of a selenomethionine-containing protein. The structure has been refined at 1.8 A resolution. PEP mutase adopts a modified alpha/beta barrel fold, in which the eighth alpha helix projects away from the alpha/beta barrel instead of packing against the beta sheet. A tightly associated dimer is formed, such that the two eighth helices are swapped, each packing against the beta sheet of the neighboring molecule. A dimer of dimers further associates into a tetramer. Mg(2+)-oxalate is buried close to the center of the barrel, at the C-terminal ends of the beta strands. CONCLUSIONS: The tetramer observed in the crystal is likely to be physiologically relevant. Because the Mg(2+)-oxalate is inaccessible to solvent, substrate binding and dissociation might be accompanied by conformational changes. A mechanism involving a phosphoenzyme intermediate is proposed, with Asp58 acting as the nucleophilic entity that accepts and delivers the phosphoryl group. The active-site architecture and the chemistry performed by PEP mutase are different from other alpha/beta-barrel proteins that bind pyruvate or PEP, thus the enzyme might represent a new family of alpha/beta-barrel proteins.  相似文献   

4.
Liu S  Lu Z  Jia Y  Dunaway-Mariano D  Herzberg O 《Biochemistry》2002,41(32):10270-10276
The crystal structure of PEP mutase from Mytilus edulis in complex with a substrate-analogue inhibitor, sulfopyruvate S-pyr (K(i) = 22 microM), has been determined at 2.25 A resolution. Mg(II)-S-pyr binds in the alpha/beta barrel's central channel, at the C-termini of the beta-strands. The binding mode of S-pyr's pyruvyl moiety resembles the binding mode of oxalate seen earlier. The location of the sulfo group of S-pyr is postulated to mimic the phosphonyl group of the product phosphonopyruvate (P-pyr). This sulfo group interacts with the guanidinium group of Arg159, but it is not aligned for nucleopilic attack by neighboring basic amino side chains. Kinetic analysis of site directed mutants, probing the key active site residues Asp58, Arg159, Asn122, and His190 correlate well with the structural information. The results presented here rule out a phosphoryl transfer mechanism involving a double displacement, and suggest instead that PEP mutase catalysis proceeds via a dissociative mechanism in which the pyruvyl C(3) adds to the same face of the phosphorus from which the C(2)O departs. We propose that Arg159 and His190 serve to hold the phosphoryl/metaphosphate/phosphonyl group stationary along the reaction pathway, while the pyruvyl C(1)-C(2) bond rotates upon formation of the metaphosphate. In agreement with published data, the phosphoryl group transfer occurs on the Si-face of PEP with retention of configuration at phosphorus.  相似文献   

5.
beta-Ethynyltyramine has been shown to be a potent, mechanism-based inhibitor of dopamine beta-hydroxylase (DBH). This is evidenced by pseudo-first-order, time-dependent inactivation of enzyme, a dependence of inactivation on the presence of ascorbate and oxygen cosubstrates, the ability of tyramine (substrate) and 1-(3,5-difluoro-4-hydroxybenzyl)imidazole-2-thione (competitive multisubstrate inhibitor) to protect against inactivation, and a high affinity of beta-ethynyltyramine for enzyme. Inactivation of DBH by beta-ethynyltyramine is accompanied by stoichiometric, covalent modification of the enzyme. Analysis of the tryptic map following inactivation by [3H]-beta-ethynyltyramine reveals that the radiolabel is associated with a single, 25 amino acid peptide. The sequence of the modified peptide is shown to be Cys-Thr-Gln-Leu-Ala-Leu-Pro-Ala-Ser-Gly-Ile-His-Ile-Phe-Ala-Ser-Gln-Leu- His*- Thr-His-Leu-Thr-Gly-Arg, where His* corresponds to a covalently modified histidine residue. In studies using the separated enantiomers of beta-ethynyltyramine, we have found the R enantiomer to be a reversible, competitive inhibitor versus tyramine substrate with a Ki of 7.9 +/- 0.3 microM. The S enantiomer, while also being a competitive inhibitor (Ki = 33.9 +/- 1.4 microM), is hydroxylated by DBH to give the expected beta-ethynyloctopamine product and also efficiently inactivates the enzyme [kinact(app) = 0.18 +/- 0.02 min-1; KI(app) = 57 +/- 8 microM]. The partition ratio for this process is very low and has been estimated to be about 2.5. This establishes an approximate value for kcat of 0.45 min(-1) and reveals that (S)-beta-ethynyltyramine undergoes a slow turnover relative to that of tyramine (kcat approximately 50 s(-1), despite the nearly 100-fold higher affinity of the inactivator for enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Pyruvate:quinone oxidoreductase catalyzes the oxidative decarboxylation of pyruvate to acetate and CO2 with a quinone as the physiological electron acceptor. So far, this enzyme activity has been found only in Escherichia coli. Using 2,6-dichloroindophenol as an artificial electron acceptor, we detected pyruvate:quinone oxidoreductase activity in cell extracts of the amino acid producer Corynebacterium glutamicum. The activity was highest (0.055 +/- 0.005 U/mg of protein) in cells grown on complex medium and about threefold lower when the cells were grown on medium containing glucose, pyruvate, or acetate as the carbon source. From wild-type C. glutamicum, the pyruvate:quinone oxidoreductase was purified about 180-fold to homogeneity in four steps and subjected to biochemical analysis. The enzyme is a flavoprotein, has a molecular mass of about 232 kDa, and consists of four identical subunits of about 62 kDa. It was activated by Triton X-100, phosphatidylglycerol, and dipalmitoyl-phosphatidylglycerol, and the substrates were pyruvate (kcat=37.8 +/- 3 s(-1); Km=30 +/- 3 mM) and 2-oxobutyrate (kcat=33.2 +/- 3 s(-1); Km=90 +/- 8 mM). Thiamine pyrophosphate (Km=1 microM) and certain divalent metal ions such as Mg2+ (Km=29 microM), Mn2+ (Km=2 microM), and Co2+ (Km=11 microM) served as cofactors. In addition to several dyes (2,6-dichloroindophenol, p-iodonitrotetrazolium violet, and nitroblue tetrazolium), menadione (Km=106 microM) was efficiently reduced by the purified pyruvate:quinone oxidoreductase, indicating that a naphthoquinone may be the physiological electron acceptor of this enzyme in C. glutamicum.  相似文献   

7.
St Maurice M  Bearne SL 《Biochemistry》2002,41(12):4048-4058
Mandelate racemase (EC 5.1.2.2) from Pseudomonas putida catalyzes the interconversion of the two enantiomers of mandelic acid with remarkable proficiency, producing a rate enhancement exceeding 15 orders of magnitude. The rates of the forward and reverse reactions catalyzed by the wild-type enzyme and by a sluggish mutant (N197A) have been studied in the absence and presence of several viscosogenic agents. A partial dependence on relative solvent viscosity was observed for values of kcat and kcat/Km for the wild-type enzyme in sucrose-containing solutions. The value of kcat for the sluggish mutant was unaffected by varying solvent viscosity. However, sucrose did have a slight activating effect on mutant enzyme efficiency. In the presence of the polymeric viscosogens poly(ethylene glycol) and Ficoll, no effect on kcat or kcat/Km for the wild-type enzyme was observed. These results are consistent with both substrate binding and product dissociation being partially rate-determining in both directions. The viscosity variation method was used to estimate the rate constants comprising the steady-state expressions for kcat and kcat/Km. The rate constant for the conversion of bound (R)-mandelate to bound (S)-mandelate (k2) was found to be 889 +/- 40 s(-1) compared with a value of 654 +/- 58 s(-1) for kcat in the same direction. From the temperature dependence of Km (shown to equal K(S)), k2, and the rate constant for the uncatalyzed reaction [Bearne, S. L., and Wolfenden, R. (1997) Biochemistry 36, 1646-1656], we estimated the enthalpic and entropic changes associated with substrate binding (DeltaH = -8.9 +/- 0.8 kcal/mol, TDeltaS = -4.8 +/- 0.8 kcal/mol), the activation barrier for conversion of bound substrate to bound product (DeltaH# = +15.4 +/- 0.4 kcal/mol, TDeltaS# = +2.0 +/- 0.1 kcal/mol), and transition state stabilization (DeltaH(tx) = -22.9 +/- 0.8 kcal/mol, TDeltaS(tx) = +1.8 +/- 0.8 kcal/mol) during mandelate racemase-catalyzed racemization of (R)-mandelate at 25 degrees C. Although the high proficiency of mandelate racemase is achieved principally by enthalpic reduction, there is also a favorable and significant entropic contribution.  相似文献   

8.
The kinetic properties of cytosolic pyruvate kinase (PKc) from germinating castor oil seeds (COS) have been investigated. From experiments in which the free Mg2+ concentration was varied at constant levels of either the complexed or free forms of the substrates it was determined that the true substrates are the free forms of both phosphoenolpyruvate (PEP) and ADP. This conclusion is corroborated by the quenching of intrinsic PKC tryptophan fluorescence by free PEP and ADP. Mg2+ is bound as the free bivalent cation but is likely released as MgATP. The fluorescence data, substrate interaction kinetics, and pattern of inhibition by products and substrate analogues (adenosine 5'-O-(2-thiodiphosphate) for ADP and phenyl phosphate for PEP) are compatible with a sequential, compulsory-ordered, Tri-Bi type kinetic reaction mechanism. PEP is the leading substrate, and pyruvate the last product to abandon the enzyme. The dissociation constant and limiting Km for free PEP (8.2 to 22 and 38 microM, respectively) and the limiting Km for free ADP (2.9 microM) are considerably lower than those reported for the non-plant enzyme. The results indicate that COS PKc exists naturally in an activated state, similar to the fructose 1,6-bisphosphate-activated yeast enzyme. This deduction is consistent with a previous study (F.E. Podestá and W.C. Plaxton (1991) Biochem. J. 279, 495-501) that failed to identify any allosteric activators for the COS PKc, but which proposed a regulatory mechanism based upon ATP levels and pH-dependent alterations in the enzyme's response to various metabolite inhibitors. As plant phosphofructokinases display potent inhibition by PEP, the overall rate of glycolytic flux from hexose 6-phosphate to pyruvate in the plant cytosol will ultimately depend upon variations in PEP levels brought about by the regulation of PKc.  相似文献   

9.
Fluorescence studies on both the emission of aldolase and NADH bound to the enzyme were carried out. Aldolase was found to bind four molecules of NADH with KD = 6.0 +/- 0.3 microM. KD values for NADPH and NAD+ were 41 +/- 4 microM and 140 +/- 30 microM, respectively. The affinity to NADH was comparable with that of some NAD-dependent dehydrogenases, and was not affected by the substrate or the inhibitor.  相似文献   

10.
The enzymatic decarboxylation of orotidine 5'-monophosphate may proceed by an addition-elimination mechanism involving a covalently bound intermediate or by elimination of CO2 to generate a nitrogen ylide. In an attempt to distinguish between these two alternatives, 1-(phosphoribosyl)barbituric acid was synthesized with 13C at the 5-position. Interaction of this potential transition-state analogue inhibitor with yeast orotidine-5'-monophosphate decarboxylase resulted in a small (0.6 ppm) downfield displacement of the C-5 resonance, indicating no rehybridization of the kind that might have been expected to accompany 5,6-addition of an enzyme nucleophile. When the substrate orotidine 5'-monophosphate was synthesized with deuterium at C-5, no significant change in kcat (H/D = 0.99 +/- 0.06) or kcat/KM (H/D = 1.00 +/- 0.06) was found to result, suggesting that C-5 does not undergo significant changes in geometry before or during the step that determines the rate of the catalytic process. These results are consistent with a nitrogen ylide mechanism and offer no support for the intervention of covalently bound intermediates in the catalytic process.  相似文献   

11.
Interaction of human plasmin with human alpha 2-macroglobulin   总被引:2,自引:0,他引:2  
The steady-state kinetic parameters of plasmin and the alpha 2-macroglobulin (alpha 2M)-plasmin complex toward the chromogenic substrate Val-Leu-Lys-p-nitroanilide (S-2251), in the presence and absence of plasmin competitive inhibitors, have been determined. At pH 7.4 and 22 degrees C, the Km values for plasmin and alpha 2M-plasmin for S-2251 were 0.13 +/- 0.02 mM and 0.3 +/- 0.03 mM. The kcat of this reaction, when catalyzed by alpha 2M-plasmin, was 6.0 +/- 0.5 s-1, a value significantly decreased from the kcat of 11.0 +/- 1.0 s-1, determined when free plasmin was the enzyme. KI values for benzamidine of 0.50 +/- 0.05 mM and 0.23 +/- 0.02 mM were obtained for S-2251 hydrolysis, as catalyzed by alpha 2M-plasmin and plasmin, respectively. When leupeptin was the competitive inhibitor, KI values of 5.0 +/- 0.65 microM and 1.0 +/- 0.1 microM were obtained when alpha 2M-plasmin and plasmin, respectively, were the enzymes employed for catalysis of S-2251 hydrolysis. The comparative rates of reaction of the peptide inhibitor Trasylol (Kunitz basic pancreatic inhibitor) with plasmin and alpha 2M-plasmin were also determined. A concentration of Trasylol of at least 3 orders of magnitude greater for alpha 2M-plasmin than for free plasmin was required to observe inhibition rates on comparable time scales.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Jia Y  Lu Z  Huang K  Herzberg O  Dunaway-Mariano D 《Biochemistry》1999,38(43):14165-14173
PEP mutase catalyzes the conversion of phosphoenolpyruvate (PEP) to phosphonopyruvate in biosynthetic pathways leading to phosphonate secondary metabolites. A recent X-ray structure [Huang, K., Li, Z., Jia, Y., Dunaway-Mariano, D., and Herzberg, O. (1999) Structure (in press)] of the Mytilus edulis enzyme complexed with the Mg(II) cofactor and oxalate inhibitor reveals an alpha/beta-barrel backbone-fold housing an active site in which Mg(II) is bound by the two carboxylate groups of the oxalate ligand and the side chain of D85 and, via bridging water molecules, by the side chains of D58, D85, D87, and E114. The oxalate ligand, in turn, interacts with the side chains of R159, W44, and S46 and the backbone amide NHs of G47 and L48. Modeling studies identified two feasible PEP binding modes: model A in which PEP replaces oxalate with its carboxylate group interacting with R159 and its phosphoryl group positioned close to D58 and Mg(II) shifting slightly from its original position in the crystal structure, and model B in which PEP replaces oxalate with its phosphoryl group interacting with R159 and Mg(II) retaining its original position. Site-directed mutagenesis studies of the key mutase active site residues (R159, D58, D85, D87, and E114) were carried out in order to evaluate the catalytic roles predicted by the two models. The observed retention of low catalytic activity in the mutants R159A, D85A, D87A, and E114A, coupled with the absence of detectable catalytic activity in D58A, was interpreted as evidence for model A in which D58 functions in nucleophilic catalysis (phosphoryl transfer), R159 functions in PEP carboxylate group binding, and the carboxylates of D85, D87 and E114 function in Mg(II) binding. These results also provide evidence against model B in which R159 serves to mediate the phosphoryl transfer. A catalytic motif, which could serve both the phosphoryl transfer and the C-C cleavage enzymes of the PEP mutase superfamily, is proposed.  相似文献   

13.
D-Sorbitol-6-phosphate 2-dehydrogenase catalyzes the NADH-dependent conversion of D-fructose 6-phosphate to D-sorbitol 6-phosphate and improved production and purification of the enzyme from Escherichia coli is reported. Preliminary inhibition studies of the enzyme revealed 5-phospho-D-arabinonohydroxamic acid and 5-phospho-D-arabinonate as new substrate analogue inhibitors of the F6P catalyzed reduction with IC50 values of (40 +/- 1) microM and (48 +/- 3) microM and corresponding Km/IC50 ratio values of 14 and 12, respectively. Furthermore, we report here the phosphomannose isomerase substrate D-mannose 6-phosphate as the best inhibitor of E. coli D-sorbitol-6-phosphate 2-dehydrogenase yet reported with an IC50 = 7.5 +/- 0.4 microM and corresponding Km/IC50 ratio = about 76.  相似文献   

14.
Kinetic investigations on adenosine deaminase from calf intestinal mucosa by spectrophotometric monitoring of the reaction at 264, 270, or 228 nm show that this method does not produce artifactual inhibition by substrate excess up to 0.7 mM concentration, when either adenosine or 2'-deoxyadenosine are employed with calf adenosine deaminase. The evaluation of kinetic parameters for this system was carried out both by initial rate measurements and by numerical differentiation of time progress curves according to a recently published method (S. C. Koerber and A. L. Fink, 1987, Anal. Biochem. 165, 75-87). The following results were obtained by the latter method at pH 7.0 and 30 degrees C: for the conversion of adenosine to inosine, kcat = 251 +/- 15 s-1, KMs = 29.7 +/- 2.8 microM, KMp = 613 +/- 62 microM; for the conversion of 2'-deoxyadenosine to 2'-deoxyinosine, kcat = 283 +/- 17 s-1, KMs = 22.4 +/- 2.2 microM, KMp = 331 +/- 35 microM. At 285 nm, a slight negative deviation from Beer's law was observed for adenosine at concentrations higher than 0.9 mM. No deviation was found for inosine up to 2.0 mM at the same wavelength.  相似文献   

15.
Clavulanic acid is a widely used beta-lactamase inhibitor whose key beta-lactam core is formed by beta-lactam synthetase. beta-Lactam synthetase exhibits a Bi-Ter mechanism consisting of two chemical steps, acyl-adenylation followed by beta-lactam formation. 32PPi-ATP exchange assays showed the first irreversible step of catalysis is acyl-adenylation. From a small, normal solvent isotope effect (1.38 +/- 0.04), it was concluded that beta-lactam synthesis contributes at least partially to kcat. Site-specific mutation of Lys-443 identified this residue as the ionizable group at pKa approximately 8.1 apparent in the pH-kcat profile that stabilizes the beta-lactam-forming step. Viscosity studies demonstrated that a protein conformational change was also partially rate-limiting on kcat attenuating the observed solvent isotope effect on beta-lactam formation. Adherence to Kramers' theory gave a slope of 1.66 +/- 0.08 from a plot of log(o kcat/kcat) versus log(eta/eta(o)) consistent with opening of a structured loop visible in x-ray data preceding product release. Internal "friction" within the enzyme contributes to a slope of > 1 in this analysis. Correspondingly, earlier in the catalytic cycle ordering of a mobile active site loop upon substrate binding was manifested by an inverse solvent isotope effect (0.67 +/- 0.15) on kcat/Km. The increased second-order rate constant in heavy water was expected from ordering of this loop over the active site imposing torsional strain. Finally, an Eyring plot displayed a large enthalpic change accompanying loop movement (DeltaH approximately 20 kcal/mol) comparable to the chemical barrier of beta-lactam formation.  相似文献   

16.
The crystal structures of 3-deoxy-D-manno-2-octulosonate-8-phosphate synthase (KDOPS) from Escherichia coli complexed with the substrate phosphoenolpyruvate (PEP) and with a mechanism-based inhibitor (K(d) = 0.4 microM) were determined by molecular replacement using X-ray diffraction data to 2.8 and 2.3 A resolution, respectively. Both the KDOPS.PEP and KDOPS.inhibitor complexes crystallize in the cubic space group I23 with cell constants a = b = c = 117.9 and 117.6 A, respectively, and one subunit per asymmetric unit. The two structures are nearly identical, and superposition of their Calpha atoms indicates an rms difference of 0.41 A. The PEP in the KDOPS.PEP complex is anchored to the enzyme in a conformation that blocks its si face and leaves its re face largely devoid of contacts. This results from KDOPS's selective choice of a PEP conformer in which the phosphate group of PEP is extended toward the si face. Furthermore, the structure reveals that the bridging (P-O-C) oxygen atom and the carboxylate group of PEP are not strongly hydrogen-bonded to the enzyme. The resulting high degree of negative charge on the carboxylate group of PEP would then suggest that the condensation step between PEP and D-arabinose-5-phosphate (A5P) should proceed in a stepwise fashion through the intermediacy of a transient oxocarbenium ion at C2 of PEP. The molecular structural results are discussed in light of the chemically similar but mechanistically distinct reaction that is catalyzed by the enzyme 3-deoxy-D-arabino-2-heptulosonate-7-phosphate synthase and in light of the preferred enzyme-bound states of the substrate A5P.  相似文献   

17.
The involvement of Mg2+ ions in the reaction catalysed by phosphofructokinase from Trypanosoma brucei was studied. The true substrate for the enzyme was shown to be the MgATP2-complex, and free Mg2+ ions are also required for enzyme activity. At concentrations of MgATP2- of 2.92 mM and greater, and a fructose 6-phosphate concentration of 1 mM and in the presence of EDTA as a Mg2+ buffer, the Km value for Mg2+ was determined to be 294 +/- 18 microM. Neither MgATP nor free ATP is an inhibitor of the enzyme, although apparent inhibition by the latter can be observed as a consequence of the decrease in free Mg2+ by chelation.  相似文献   

18.
Meinnel T  Patiny L  Ragusa S  Blanquet S 《Biochemistry》1999,38(14):4287-4295
Series of substrates derivatives of peptide deformylase were systematically synthesized and studied for their capacities to undergo hydrolysis. Data analysis indicated the requirement for a hydrophobic first side chain and for at least two main chain carbonyl groups in the substrate. For instance, Fo-Met-OCH3 and Fo-Nle-OCH3 were the minimal substrates of peptide deformylase obtained in this study, while positively charged Fo-Nle-ArgNH2 was the most efficient substrate (kcat/Km = 4.5 x 10(5) M-1.s-1). On the basis of this knowledge, 3-mercapto-2-benzylpropanoylglycine (thiorphan), a known inhibitor of thermolysin, could be predicted and further shown to inhibit the deformylation reaction. The inhibition by this compound was competitive and proved to depend on the hydrophobicity at the P1' position. Spectroscopic evidence that the sulfur group of thiorphan binds next to the active site metal ion on the enzyme could be obtained. Consequently, a small thiopseudopeptide derived from Fo-Nle-OCH3 was designed and synthesized. This compound behaved as a competitive inhibitor of peptide deformylase with KI = 52 +/- 5 microM. Introduction of a positive charge to this thiopeptide via addition of an arginine at P2' improved the inhibition constant up to 2.5 +/- 0.5 microM, a value 4 orders of magnitude smaller than that of the starting inhibitors. Evidence that this inhibitor, imino[(5-methoxy-5-oxo-4-[[2-(sulfanylmethyl)hexanoyl]amino]pentyl )am ino]methanamine, binds inside the active site cavity of peptide deformylase, while keeping intact the 3D fold of the protein, was provided by NMR. A fingerprint of the interaction of the inhibitor with the residues of the enzyme was obtained.  相似文献   

19.
Phosphoenolpyruvate (PEP) mutase catalyzes the conversion of phosphoenolpyruvate to phosphonopyruvate, the initial step in the formation of many naturally occurring phosphonate compounds. The phosphonate compound 2-aminoethylphosphonate is present as a component of complex carbohydrates on the surface membrane of many trypanosomatids including glycosylinositolphospholipids of Trypanosoma cruzi. Using partial sequence information from the T. cruzi genome project we have isolated a full-length gene with significant homology to PEP mutase from the free-living protozoan Tetrahymena pyriformis and the edible mussel Mytilus edulis. Recombinant expression in Escherichia coli confirms that it encodes a functional PEP mutase with a Km apparent of 8 microM for phosphonopyruvate and a kcat of 12 s-1. The native enzyme is a homotetramer with an absolute requirement for divalent metal ions and displays negative cooperativity for Mg2+ (S0.5 0.4 microM; n = 0.46). Immunofluorescence and sub-cellular fractionation indicates that PEP mutase has a dual localization in the cell. Further evidence to support this was obtained by Western analysis of a partial sub-cellular fractionation of T. cruzi cells. Southern and Western analysis suggests that PEP mutase is unique to T. cruzi and is not present in the other medically important parasites, Trypanosoma brucei and Leishmania spp.  相似文献   

20.
Using the activated cGMP-dependent protein kinase in the presence of the phosphorylatable peptide [[Ala34]histone H2B-(29-35)], we found that lin-benzoadenosine 5'-diphosphate (lin-benzo-ADP) was a competitive inhibitor of the enzyme with respect to ATP with a Ki (22 microM) similar to the Kd (20 microM) determined by fluorescence polarization titrations. The Kd for lin-benzo-ADP determined in the absence of the phosphorylatable peptide, however, was only 12 microM. ADP bound with lower affinity (Ki = 169 microM; Kd = 114 microM). With [Ala34]histone H2B-(29-35) as phosphoryl acceptor, the Km for lin-benzo-ATP was 29 microM, and that for ATP was 32 microM. The Vmax with lin-benzo-ATP, however, was only 0.06% of that with ATP as substrate [0.00623 +/- 0.00035 vs. 11.1 +/- 0.17 mumol (min.mg)-1]. Binding of lin-benzo-ADP to the kinase was dependent upon a divalent cation. Fluorescence polarization revealed that Mg2+, Mn2+, Co2+, Ni2+, Ca2+, Sr2+, and Ba2+ supported nucleotide binding to the enzyme; Ca2+, Sr2+, and Ba2+, however, did not support any measurable phosphotransferase activity. The rank order of metal ion effectiveness in mediating phosphotransferase activity was Mg2+ greater than Ni2+ greater than Co2+ greater than Mn2+. Although these results were similar to those observed with the cAMP-dependent protein kinase [Hartl, F. T., Roskoski, R., Jr., Rosendahl, M. S., & Leonard, N. J. (1983) Biochemistry 22, 2347], major differences in the Vmax with lin-benzo-ATP as substrate and the effect of peptide substrates on nucleotide (both lin-benzo-ADP and ADP) binding were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号