首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although bacteria and fungi are well-known to be decomposers of leaf litter, few studies have examined their compositions and diversities during the decomposition process in tropical stream water. Xishuangbanna is a tropical region preserving one of the highest floristic diversity areas in China. In this study, leaf litter of four dominant plant species in Xishuangbanna was incubated in stream water for 42 days during which samples were taken regularly. Following DNA extraction, PCR-DGGE (denaturing gradient gel electrophoresis) and clone-sequencing analyses were performed using bacterial and fungal specific primers. Leaf species have slightly influences on bacterial community rather than fungal community. The richness and diversity of bacteria was higher than that of fungi, which increased towards the end of the 42-day-incubation. The bacterial community was initially more specific upon the type of leaves and gradually became similar at the later stage of decomposition with alpha-proteobacteria as major component. Sequences affiliated to methanotrophs were obtained that indicates potentially occurrence of methane oxidation and methanogenesis. For the fungal community, sequences affiliated to Aspergillus were predominant at the beginning and then shifted to Pleosporales. Our results suggest that the microorganisms colonizing leaf biofilm in tropical stream water were mostly generalists that could exploit the resources of leaves of various species equally well.  相似文献   

2.
Background and Aims Halophytic eudicots are characterized by enhanced growth under saline conditions. This study combines physiological and anatomical analyses to identify processes underlying growth responses of the mangrove Avicennia marina to salinities ranging from fresh- to seawater conditions.Methods Following pre-exhaustion of cotyledonary reserves under optimal conditions (i.e. 50 % seawater), seedlings of A. marina were grown hydroponically in dilutions of seawater amended with nutrients. Whole-plant growth characteristics were analysed in relation to dry mass accumulation and its allocation to different plant parts. Gas exchange characteristics and stable carbon isotopic composition of leaves were measured to evaluate water use in relation to carbon gain. Stem and leaf hydraulic anatomy were measured in relation to plant water use and growth.Key Results Avicennia marina seedlings failed to grow in 0–5 % seawater, whereas maximal growth occurred in 50–75 % seawater. Relative growth rates were affected by changes in leaf area ratio (LAR) and net assimilation rate (NAR) along the salinity gradient, with NAR generally being more important. Gas exchange characteristics followed the same trends as plant growth, with assimilation rates and stomatal conductance being greatest in leaves grown in 50–75 % seawater. However, water use efficiency was maintained nearly constant across all salinities, consistent with carbon isotopic signatures. Anatomical studies revealed variation in rates of development and composition of hydraulic tissues that were consistent with salinity-dependent patterns in water use and growth, including a structural explanation for low stomatal conductance and growth under low salinity.Conclusions The results identified stem and leaf transport systems as central to understanding the integrated growth responses to variation in salinity from fresh- to seawater conditions. Avicennia marina was revealed as an obligate halophyte, requiring saline conditions for development of the transport systems needed to sustain water use and carbon gain.  相似文献   

3.
The feeding activity of the gastropod Smaragdia viridis on Zostera marina (eelgrass) was studied under laboratory conditions and from shoots collected in a deep eelgrass bed (12–14 m depth) in southern Spain (Alboran Sea). This gastropod preferentially ingested young leaf tissues, such as those located in the central leaf and first pair of adjacent leaves and at close distances from the junction of the leaves with the sheath. The ingestion rate of this gastropod was size dependent, ingesting up to 40.6 mm2 of epidermal tissues in 24 h (for large individuals), however this value generally represented a very low percentage of the area of a single shoot (0.3–2.1%). The absorption of eelgrass tissues, in relation to digested/non-digested eelgrass cells in faecal pellets, was not size dependent and reached high values (75–90% cells digested). The grazing impact in an eelgrass bed, based on the affected area (length of radular marks by leaf width), also represented a very low value (0.3–1.1%) in relation to the total LAI (Leaf Area Index) available. A seasonal trend of herbivory was registered with maximum values in summer together with maximum densities of S. viridis.  相似文献   

4.
Eelgrass ecosystems have a wide variety of ecological functions in which living tissues and detritus may be a food source for many marine animals. In this study, we conducted a laboratory simulating experiment to understand the trophic relationship between the eelgrass Zostera marina L and the sea cucumber Apostichopus japonicus. A mixture of decaying eelgrass debris and seafloor surface muddy sediments was used as food to feed A. japonicus, and then specific growth rates (SGR) and fecal production rates (FPR) were measured. According to the proportion of eelgrass debris, we designed five treatment diets, i.e., ES0, ES10, ES20, ES40, and ES100, with eelgrass debris accounting for 0%, 10%, 20%, 40%, and 100% in dry weight, respectively. Results showed that diet composition had a great influence on the growth of A. japonicus. Sea cucumbers could use decaying eelgrass debris as their food source; and when the organic content of a mixture of eelgrass debris and sediment was 19.6% (ES40), a relatively high SGR (1.54%·d−1) and FPR (1.31 g·ind.−1 d−1) of A. japonicus were obtained. It is suggested that eelgrass beds can not only provide habitat for the sea cucumber A. japonicus but can also provide an indirect food source for the deposit feeder. This means that the restoration and reconstruction of eelgrass beds, especially in coastal waters of China, would be a potential and effective measure for sea-cucumber fisheries, in respect to both resource restoration and aquaculture of this valuable species.  相似文献   

5.
Current methods for assessing leaf injury in Zostera marina (eelgrass) utilize subjective indexes for desiccation injury and wasting disease. Because of the subjective nature of these measures, they are inherently imprecise making them difficult to use in quantifying complex leaf injuries from multiple sources. We have developed a method using color digital photography of eelgrass leaves which are then manipulated using image processing programs and analyzed using geographic digital image analysis. The resulting false color images are then assigned by the user into uninjured and injured groupings which may then be reported as a percentage of leaf area affected. If images are rectified, leaf area (cm2) of injured and uninjured leaf segments may be determined. Although this method is time consuming and still requires some subjective judgments, it does allow for precise analysis of highly complex leaf injuries and has the potential to be a substantial improvement over existing leaf injury indexes.  相似文献   

6.
Host-associated microbes influence host health and function and can be a first line of defence against infections. While research increasingly shows that terrestrial plant microbiomes contribute to bacterial, fungal, and oomycete disease resistance, no comparable experimental work has investigated marine plant microbiomes or more diverse disease agents. We test the hypothesis that the eelgrass (Zostera marina) leaf microbiome increases resistance to seagrass wasting disease. From field eelgrass with paired diseased and asymptomatic tissue, 16S rRNA gene amplicon sequencing revealed that bacterial composition and richness varied markedly between diseased and asymptomatic tissue in one of the two years. This suggests that the influence of disease on eelgrass microbial communities may vary with environmental conditions. We next experimentally reduced the eelgrass microbiome with antibiotics and bleach, then inoculated plants with Labyrinthula zosterae, the causative agent of wasting disease. We detected significantly higher disease severity in eelgrass with a native microbiome than an experimentally reduced microbiome. Our results over multiple experiments do not support a protective role of the eelgrass microbiome against L. zosterae. Further studies of these marine host–microbe–pathogen relationships may continue to show new relationships between plant microbiomes and diseases.  相似文献   

7.
Blue mussels and eelgrass have been found to coexist in many locations. However, knowledge of the interactions between these species is limited. Two experiments were conducted in the laboratory, a “Deposit” and an “Epiphyte” experiment. The Deposit experiment examined possible effects of increasing load of blue mussel (Mytilus edulis) biodeposits on sediment biogeochemistry and eelgrass (Zostera marina) performance. Z. marina mesocosms received normal or high loads of mussel biodeposits (Normal and High), while no biodeposits were added to the Control. High dosage had overall negative effects on Z. marina, which was reflected as lower leaf numbers and biomass and accumulation of elemental sulphur in rhizomes. The sediment biogeochemical conditions were altered, as the mussel biodeposits enhanced sulphate reduction rates and increased sulphide concentrations in the porewater, which may result in sulphide invasion and reduced growth of Z. marina.In the Epiphyte experiment effects of mussel excretion, with particular emphasis on ammonium, on the growth of Z. marina and their epiphytes were examined. A thick cover of epiphytes developed on Z. marina growing together with M. edulis, and the relative growth rate was reduced with 20% compared to plants from control without mussels. Overall the experiments showed negative effects on Z. marina growing together with M. edulis, thereby supporting a preceding field study by Vinther et al. [Vinther, H.F., Laursen, J.S., Holmer, M. 2008. Negative effects of blue mussel (Mytilus edulis) presence in eelgrass (Zostera marina) beds in Flensborg fjord, Denmark. Est. Coast Shelf. Sci. 77, 91-103.].  相似文献   

8.
The leaves of fescue grasses are protected from herbivores by the production of loline alkaloids by the mutualist fungal endophytes Neotyphodium sp. or Epichloë sp. Most bacteria that reside on the leaf surface of such grasses can consume these defensive chemicals. Loline-consuming bacteria are rare on the leaves of other plant species. Several bacterial species including Burkholderia ambifaria recovered from tall fescue could use N-formyl loline as a sole carbon and nitrogen source in culture and achieved population sizes that were about eightfold higher when inoculated onto plants harboring loline-producing fungal endophytes than on plants lacking such endophytes or which were colonized by fungal variants incapable of loline production. In contrast, mutants of B. ambifaria and other bacterial species incapable of loline catabolism achieved similarly low population sizes on tall fescue colonized by loline-producing Neotyphodium sp. and on plants lacking this endophytic fungus. Lolines that are released onto the surface of plants benefiting from a fungal mutualism thus appear to be a major resource that can be exploited by epiphytic bacteria, thereby driving the establishment of a characteristic bacterial community on such plants.  相似文献   

9.
The relationship between the morphology of eelgrass, Zostera marina L., and ammonium in the sediment interstitial water was examined. The size of eelgrass plants collected from an intertidal terrace showed a consistent relationship with the size of the interstitial ammonium pool. Leaf area, length, and width all showed a linear increase in size towards stations having higher ammonium, while within the stations with the highest ammonium the leaf size was relatively unchanged. The size and extent of the root system in eelgrass varied across the environmental gradient. Eelgrass shoot density and flower abundance were inversely correlated with sediment nitrogen across the eelgrass meadow. Shoot density described a strong logarithmic relation with interstitial ammonium, opposite to the relationships for leaf size. Comparison of these results indicates the importance of sediment nitrogen in determining eelgrass bed structure.  相似文献   

10.
The contribution of benthic microalgal production has been compared both within and outside a coastal eelgrass (Zostera marina L.) meadow. Carbon and nitrogen stable isotope ratios of suspended particulate organic matter (POM), epiphytic and epilithic organic matter (EOM), leaves of Z. marina (inside the meadow only) and two secondary consumer species (small crustaceans and fish) were measured inside and outside a meadow in Mitsukuchi Bay, Northwest Seto Inland Sea, Japan. Inside the meadow, primary producers (epiphyton) and consumers showed higher δ13C signatures than outside. Primary and secondary consumers inside the meadow were mainly dependent on epiphyton on the leaves of Z. marina, while consumer species outside the meadow were basically dependent on epilithon.  相似文献   

11.
The uptake of 14C-labeled organic compounds by Zostera marina L. (eelgrass) and its epiphytes was examined in an eelgrass community near Beaufort, North Carolina. Assimilation and respiration by new leaf growth (few epiphytes), heavily colonized Zostera, and an epiphytized artificial substratum were determined. Glutamic acid was removed from the medium most rapidly, followed by acetate, glucose, and glycine, which were removed at approximately equal rates. The compound with the highest assimilation efficiency was glucose (90.4%), but all compounds were incorporated with efficiencies of > 75%. Incorporation by epiphytes on the artificial substratum was greater than uptake by epiphytes on eelgrass. The leaves of Zostera also accumulated radioactive material, but at low rates, and when combined with uptake by the epiphytic community, resulted in average turnover times for the tested compounds of < 7 h. Artificial epiphyte communities had similar turnover times. Kinetic analysis showed no saturation effect, with uptake being linear for the concentrations of substrata tested. We hypothesize that heterotrophic epiphytes are potentially a significant source of new particulate matter in estuarine food webs, and that the microbial communities play a significant role in seagrass carbon cycles.  相似文献   

12.
Diverse communities of bacteria inhabit plant leaves and roots and those bacteria play a crucial role for plant health and growth. Arabidopsis thaliana is an important model to study plant pathogen interactions, but little is known about its associated bacterial community under natural conditions. We used 454 pyrosequencing to characterize the bacterial communities associated with the roots and the leaves of wild A. thaliana collected at 4 sites; we further compared communities on the outside of the plants with communities in the endophytic compartments. We found that the most heavily sequenced bacteria in A. thaliana associated community are related to culturable species. Proteobacteria, Actinobacteria, and Bacteroidetes are the most abundant phyla in both leaf and root samples. At the genus level, sequences of Massilia and Flavobacterium are prevalent in both samples. Organ (leaf vs root) and habitat (epiphytes vs endophytes) structure the community. In the roots, richness is higher in the epiphytic communities compared to the endophytic compartment (P = 0.024), while the reverse is true for the leaves (P = 0.032). Interestingly, leaf and root endophytic compartments do not differ in richness, diversity and evenness, while they differ in community composition (P = 0.001). The results show that although the communities associated with leaves and roots share many bacterial species, the associated communities differ in structure.  相似文献   

13.
The distribution of nitrate and nitrite in the interstitial water of the sediment of eelgrass (Zostera marina) bed of Izembek Lagoon, Alaska, were investigated. Their concentrations were relatively high (0 to 9.8 μg-at.N·1?1, average 4.8 for nitrate; 0 to 4.0 μ-at.N·1?1, average 1.9 for nitrite) although the sediments were anoxic and contained hydrogen sulphide. The rates of bacterial denitrification measured by 15N tracer technique ranged from 0.49×10?10 to 1.2 × 10?9 g-atN·g?1·h?1. When a steady state is maintained, the loss of nitrate and nitrite must be balanced by their production by bacterial nitrification. Experimentally determined rate of nitrification in the sediment was of the same order. A model experiment demonstrated that oxygen is transported from leaves to rhizomes and roots of eelgrass and released into the sediment. The oxygen is used for nitrification in the rhizosphere in anoxic sediments.  相似文献   

14.
Eelgrass beds in coastal waters of China have declined substantially over the past 30 years. In this study, a simple new transplanting technique was developed for eelgrass (Zostera marina L.) restoration. To assist in anchoring single shoots, several rhizomes of rooted shoots were bound to a small elongate stone (50–150 g) with biodegradable thread (cotton or hemp), and then the bound packet was buried at an angle in the sediments at a depth of 2–4 cm. This stone anchoring method was used to transplant eelgrass in early November 2009 and late May 2010 in Huiquan Bay, Qingdao. The method led to high success. Three month survivorship of the transplanted shoots at the two transplant sites was >95%. From April 20 to November 19, 2012, the following characteristics of the 2009 and 2010 transplanted eelgrass beds were monitored: morphological changes, shoot density, shoot height, leaf biomass, and sediment particle size. Results showed that the sexual reproduction period of the planted eelgrass was from April to August, and vegetative reproduction reached its peak in autumn. Maximum shoot height and biomass were observed in June and July. After becoming established, the transplanted eelgrass beds were statistically equal to natural eelgrass beds nearby in terms of shoot height, biomass, and seasonal variations. This indicates that the transplant technique is effective for eelgrass restoration in coastal waters.  相似文献   

15.
We tested the effects of salinity and water temperature on the ecological performance of eelgrass (Zostera marina L.) in culture-experiments to identify levels that could potentially limit survival and growth and, thus, the spatial distribution of eelgrass in temperate estuaries. The experiments included eight levels of salinity (2.5, 5, 10, 15, 20, 25, 30 and 35‰) and seven water temperatures (5, 10, 15, 20, 25, 27.5 and 30 °C). Low salinity (i.e. 5 and 2.5‰) increased mortality (3–6-fold) and had a strong negative effect on shoot morphology (number of leaves per shoot reduced by 40% and shoot biomass reduced by 30–40%), photosynthetic capacity (Pmax—reduced by 30–80%) and growth (production of new leaves reduced by 50–60%, leaf elongation rate reduced by 60–70% and production of side-shoots reduced by 40–60%), whereas eelgrass performed almost equally well at salinities between 10 and 35‰. The optimum salinity for eelgrass was between 10 and 25‰ depending on the response parameter in question. Extreme water temperatures had an overall negative impact on eelgrass, although via different mechanisms. Low water temperatures (5 °C) slowed down photosynthetic rate (by 75%) and growth (production of new leaves by 30% and leaf elongation rate by 80%), but did not affect mortality, whereas high temperatures (25–30 °C) increased mortality (12-fold) and lowered both photosynthetic rate (by 50%) and growth (production of new leaves by 50% and leaf elongation rate by 75%). The optimum water temperature for eelgrass appeared to lie between 10 and 20 °C. These results show that extreme conditions may affect the fitness of eelgrass and, thus, may potentially limit its distribution in coastal and estuarine waters.  相似文献   

16.
Localised changes in photosynthesis in oat leaves infected with the biotrophic rust fungus Puccinia coronata Corda were examined at different stages of disease development by quantitative imaging of chlorophyll fluorescence. Following inoculation of oat leaves with crown rust the rate of whole-leaf gas exchange declined. However, crown rust formed discrete areas of infection which expanded as the disease progressed and these localised regions of infection gave rise to heterogeneous changes in photosynthesis. To quantify these changes, images of chlorophyll fluorescence were taken 5, 8 and 11 d after inoculation and used to calculate images representing two parameters; ΦII, a measure of PSII photochemical efficiency and ΔFm/Fm′, a measure of non-photochemical energy dissipation (qN). Five days after inoculation, disease symptoms appeared as yellow flecks which were correlated with the extent of the fungal mycelium within the leaf. At this stage, ΔII was slightly reduced in the infected regions but, in uninfected regions of the leaf, values of ΦII were similar to those of healthy leaves. In contrast, qN (ΔFm/Fm′) was greatly reduced throughout the infected leaf in comparison to healthy leaves. We suggest that the low value of qN in an infected leaf reflects a high demand for ATP within these leaves. At sporulation, 8 d after inoculation, ΦII was reduced throughout the infected leaf although the reduction was most marked in areas invaded by fungal mycelium. In the infected leaf the pattern of non-photochemical quenching was complex; qN was low within invaded regions, perhaps reflecting high metabolic activity, but was now much higher in uninfected regions of the infected leaf, in comparison to healthy leaves. Eleven days after inoculation “green islands” formed in regions of the leaf associated with the fungal mycelium. At this stage, photosynthesis was severely inhibited over the entire leaf; however, heterogeneity was still apparent. In the region not invaded by the fungal mycelium, ΦII and qN were very low and these regions of the leaf were highly fluorescent, indicating that the photosynthetic apparatus was severely damaged. In the greenisland tissue, ΦII was low but detectable, indicating that some photosynthetic processes were still occurring. Moreover, qN was high and fluorescence low, indicating that the cells in this region were not dead and were capable of significant quenching of chlorophyll fluorescence.  相似文献   

17.
The assessment of the status of eelgrass (Zostera marina) beds at the bay-scale in turbid, shallow estuaries is problematic. The bay-scale assessment (i.e., tens of km) of eelgrass beds usually involves remote sensing methods such as aerial photography or satellite imagery. These methods can fail if the water column is turbid, as is the case for many shallow estuaries on Canada’s eastern seaboard. A novel towfish package was developed for the bay-scale assessment of eelgrass beds irrespective of water column turbidity. The towfish consisted of an underwater video camera with scaling lasers, sidescan sonar and a transponder-based positioning system. The towfish was deployed along predetermined transects in three northern New Brunswick estuaries. Maps were created of eelgrass cover and health (epiphyte load) and ancillary bottom features such as benthic algal growth, bacterial mats (Beggiatoa) and oysters. All three estuaries had accumulations of material reminiscent of the oomycete Leptomitus, although it was not positively identified in our study. Tabusintac held the most extensive eelgrass beds of the best health. Cocagne had the lowest scores for eelgrass health, while Bouctouche was slightly better. The towfish method proved to be cost effective and useful for the bay-scale assessment of eelgrass beds to sub-meter precision in real time.  相似文献   

18.
A habitat-based framework is a practical method for developing models (or, ecological production functions, EPFs) to describe the spatial distribution of ecosystem services. To generate EPFs for Yaquina estuary, Oregon, USA, we compared bird use patterns among intertidal habitats. Visual censuses were used to quantify abundance of bird groups and general species richness in: Zostera marina (eelgrass), Upogebia (mud shrimp)/mudflat, Neotrypaea (ghost shrimp)/sandflat, Zostera japonica (Japanese eelgrass), and low marsh estuarine habitats. Also assessed were (1) spatial variation within a habitat along the estuary gradient and, (2) temporal variation based on bi-monthly samples over a year at five tidal ranges. Z. marina was an important estuarine habitat based on nearly all metrics of bird use, except for shorebird densities. This suggests that reductions in native eelgrass habitat may reduce the abundance and diversity of birds in Yaquina estuary. Our results suggest that a habitat based assessment approach is generally feasible for developing relative EPFs related to the presence of birds within estuarine systems.  相似文献   

19.
The transport and establishment of non-indigenous species in coastal marine environments are increasing worldwide, yet few studies have experimentally addressed the interactions between potentially dominant non-native species and native organisms. We studied the effects of the introduced mussel Musculista senhousia on leaf and rhizome growth and shoot density of eelgrass Zostera marina in San Diego Bay, California. We added M. senhousia over a natural range in biomass (0–1200 g dry mass/m2) to eelgrass in transplanted and established beds. The effects of the non-indigenous mussel varied from facilitation to interference depending on time, the abundance of M. senhousia, and the response variable considered. Consistent results were that mussel additions linearly inhibited eelgrass rhizome elongation rates. With 800 g dry mass/m2 of M. senhousia, eelgrass rhizomes grew 40% less than controls in two eelgrass transplantations and in one established eelgrass bed. These results indicate that M. senhousia, could both impair the success of transplantations of eelgrass, which spread vegetatively by rhizomes, and the spread of established Z. marina beds to areas inhabited by M. senhousia. Although effects on leaf growth were not always significant, in August in both eelgrass transplantations and established meadows leaf growth was fertilized by mussels, and showed a saturation-type relationship to sediment ammonium concentrations. Ammonium concentrations and sediment organic content were linear functions of mussel biomass. We found only small, non-consistent effects of M. senhousia on shoot density of eelgrass over 6-month periods. In established eelgrass beds, but not in transplanted eelgrass patches (≈0.8 m in diameter), added mussels suffered large declines. Hence, eelgrass is likely to be affected by M. senhousia primarily where Z. marina beds are patchy and sparse. Our study has management and conservation implications for eelgrass because many beds are already seriously degraded and limited in southern California where the mussel is very abundant. Received: 31 May 1997 / Accepted: 4 September 1997  相似文献   

20.
We examined the effects of shoot position on shoot growth and morphology of Avicennia marina (Forssk.) Vierh. in the Red Sea coastal region of Egypt. To determine differences in morphological characteristics, we collected shoots from the upper and lower canopies of A. marina individuals in the wild and compared the morphological characteristics of these shoots. The study plot was established in an A. marina mangrove forest. Heights and diameters of individual trunks (n = 14) in the plot were measured at ground level. Then, five shoots with young but fully expanded leaves were collected from the upper and lower canopies of the individuals. We measured shoot length, and dry weight and also area, dry weight, thickness, and Soil Plant Analysis Development (SPAD) value of collected leaves. Our measurements showed that leaf area, dry weight, specific leaf area, and SPAD value of leaves from the upper canopy were smaller than those of lower-canopy leaves in most individuals. From the differences in traits between upper and lower leaves, we concluded that leaves in the upper canopy are typically adapted to high light levels, whereas leaves in the lower canopy exhibit adaptations to low light conditions. In addition, soil-water salinity at the study site was far higher than the optimum salinity for A. marina. Hence, it is also suggested the salinity level at this site may have influenced the reduced leaf size in the upper canopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号