首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stable coexistence of transposable elements (TEs) with their host genome over long periods of time suggests TEs have to impose some deleterious effect upon their host fitness. Three mechanisms have been proposed to account for the deleterious effect caused by TEs: host gene interruptions by TE insertions, chromosomal rearrangements by TE-induced ectopic recombination, and costly TE expression. However, the relative importance of these mechanisms remains controversial. Here, we test specifically if TE expression accounts for the host fitness cost imposed by TE insertions. In the retrotransposon Doc, expression requires binding of the host RNA polymerase to the internal promoter. If expression of Doc elements is deleterious to their host, Doc copies with promoters would be more strongly selected against and would persist in the population for shorter periods of time compared with Docs lacking promoters. We tested this prediction using sequence-specific amplified polymorphism (SSAP) analyses. We compared the populations of these two types of Doc elements in two sets of lines of Drosophila melanogaster: selection-free isogenic lines accumulating new Doc insertions and isogenized isofemale lines sampled from a natural population. We found that (1) there is no difference in the proportion of promoter-bearing and promoter-lacking copies between sets of lines, and (2) the site occupancy distribution of promoter-bearing copies does not skew toward lower frequency compared with that of promoter-lacking copies. Thus, selection against promoter-bearing copies does not appear to be stronger than that of promoter-lacking copies. Our results show that expression is not playing a major role in stabilizing Doc copy numbers.  相似文献   

2.
The activity of several families of transposable elements (TEs) in the genome of Fusarium oxysporum represents a potential source of karyotypic instability. We investigated transposon-mediated chromosome rearrangements by analyzing the karyotypes of a set of strains in which transposition events had occurred. We uncovered exceptional electrophoretic karyotype (EK) variability, in both number and size of chromosomal bands. We showed that EK differences result from chromosomal translocations, large deletions, and even more complex rearrangements. We also revealed many duplicated chromosomal regions. By following transposition of two elements and analyzing the distribution of different families of TEs on whole chromosomes, we find (i) no evidence of chromosomal breakages induced by transposition, (ii) a clustering of TEs in some regions, and (iii) a correlation between the high level of chromosomal polymorphism and the concentration of TEs. These results suggest that chromosome length polymorphisms likely result from ectopic recombination between TEs that can serve as substrates for these changes.  相似文献   

3.
The distribution pattern of the hobo transposon and Dm412 retrotransposon hybridization sites on the salivary gland polytene chromosomes from larvae of the Drosophila melanogaster isogenic strain 51 used to analyze the effect of the transposition of transposable elements (TEs) on selection for quantitative traits was studied. It was shown that no more than half of the Dm412 hybridization sites were retained 15 years after isogenization; the frequency of the Dm412 transposition varied from 2.0 × 10−4 to 8.8 × 10−5 sites per genome for generation depending on whether the appearance of the same hybridization sites in a part of individuals was considered as independent events or as the manifestation of the appearing sample heterogeneity. The distribution patterns of hobo hybridization sites in two isofemale strains derived from the isogenic strain 51 differed much more markedly; the number of the hobo sites in one of the derivative strains was threefold smaller than in the other one and only some of the sites were common. Within each derivative strain, the TE distribution was uniform, which suggests that inbreeding had no effect on Dm412 activity in this strain. The rates of change in the distribution patterns of various TE in the strain 51 corresponded to their spontaneous transposition rates. Since the isogenic strain accumulates polymorphism in the TE distribution without selection, the TEs are more likely to be the markers of selection events rather than their inducers. Thus, when studying the effects of various environmental factors on TE transposition even in isogenic strains, it is necessary to perform additional close inbreeding to reduce the potential polymorphism.  相似文献   

4.
We present a global analysis of the distribution of 43 transposable elements (TEs) in 228 species of the Drosophila genus from our data and data from the literature. Data on chromosome localization come from in situ hybridization and presence/absence of the elements from southern analyses. This analysis shows great differences between TE distributions, even among closely related species. Some TEs are distributed according to the phylogeny of their host specie; others do not entirely follow the phylogeny, suggesting horizontal transfers. A higher number of insertion sites for most TEs in the genome of D. melanogaster is observed when compared with that in D. simulans. This suggests either intrinsic differences in genomic characteristics between the two species, or the influence of differing effective population sizes, although biases due to the use of TE probes coming mostly from D. melanogaster and to the way TEs are initially detected in species cannot be ruled out. Data on TEs more specific to the species under consideration are necessary for a better understanding of their distribution in organisms and populations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Several laboratory surveys have shown that transposable elements (TEs) can cause chromosomal breaks and lead to inversions, as in dysgenic crosses involving P-elements. However, it is not presently clear what causes inversions in natural populations of Drosophila. The only direct molecular studies must be taken as evidence against the involvement of mobile elements. Here, in Drosophila lines transformed with the hobo transposable element, and followed for 100 generations, we show the appearance of five different inversions with hobo inserts at breakpoints. Almost all breakpoints occurred in hobo insertion sites detected in previous generations. Therefore, it can be assumed that such elements are responsible for restructuring genomes in natural populations.  相似文献   

6.
Deceliere G  Charles S  Biémont C 《Genetics》2005,169(1):467-474
We analyzed the dynamics of transposable elements (TEs) according to Wright's island and continent-island models, assuming that selection tends to counter the deleterious effects of TEs. We showed that migration between host populations has no impact on either the existence or the stability of the TE copy number equilibrium points obtained in the absence of migration. However, if the migration rate is slower than the transposition rate or if selection is weak, then the TE copy numbers in all the populations can be expected to slowly become homogeneous, whereas a heterogeneous TE copy number distribution between populations is maintained if TEs are mobilized in some populations. The mean TE copy number is highly sensitive to the population size, but as a result of migration between populations, it decreases as the sum of the population sizes increases and tends to reach the same value in these populations. We have demonstrated the existence of repulsion between TE insertion sites, which is established by selection and amplified by drift. This repulsion is reduced as much as the migration rate is higher than the recombination rate between the TE insertion sites. Migration and demographic history are therefore strong forces in determining the dynamics of TEs within the genomes and the populations of a species.  相似文献   

7.
The effect of selection for radius vein length on the distribution of hybridization sites of the P and hobo transposons and the mdgl and mdg2 retrotransposons on polytene chromosomes of Drosophila melanogaster salivary glands was studied. The patterns of these transposable elements (TEs) distribution were polymorphic in both the parental strain and selected strains. The similarity in mdg1 and mdg2 patterns between strains selected in one direction was closer than between strains selected in opposite directions, but the selected strains were closer to each other than to the parental strain regardless of selection direction. No mdg2 hybridization sites that would be absent in the control were found in the selected strains. There were more mdg2 and hobo hybridization sites in the strains selected in the (+) direction than in the (-) direction. The mobility of hobo copies in the strains studied correlated with the presence of its full-sized copy in the genome. The polymorphism of all TEs studied except for mdgl was greater for strains selected in the (+) direction that in the (-) direction. These facts suggest that some TEs migrate over the genome independently of selection, and others are markers of evolutionary events rather than their causes.  相似文献   

8.
The abundance and distribution of transposable elements (TEs) in a representative part of the euchromatic genome of Drosophila melanogaster were studied by analyzing the sizes and locations of TEs of all known families in the genomic sequences of chromosomes 2R, X, and 4. TEs contribute to up to 2% of the sequenced DNA, which corresponds roughly to the euchromatin of these chromosomes. This estimate is lower than that previously available from in situ data and suggests that TEs accumulate in the heterochromatin more intensively than was previously thought. We have also found that TEs are not distributed at random in the chromosomes and that their abundance is more strongly associated with local recombination rates, rather than with gene density. The results are compatible with the ectopic exchange model, which proposes that selection against deleterious effects of chromosomal rearrangements is a major force opposing element spread in the genome of this species. Selection against insertional mutations also influences the observed patterns, such as an absence of insertions in coding regions. The results of the analyses are discussed in the light of recent findings on the distribution of TEs in other species.  相似文献   

9.
10.
Chromosomal distribution of transposable elements (TEs) Osvaldo and blanco in D. buzzatii was studied in three original natural populations from Argentina (Berna, Puerto Tirol and La Nostalgia) and a colonizer population from the Iberian Peninsula (Carboneras). The Spanish population showed significant differences for Osvaldo and blanco copy numbers when we compared the X chromosome and the autosomes; but it is mainly the accumulation of copies in chromosome 2, where most sites with high insertion frequency were located, that causes the discrepancy with the negative selection model. We found no significant differences in TE frequency between chromosomal regions with different exchange rates, and no evident accumulation of TE was detected within chromosomal inversions where recombination rate is reduced. The Carboneras population shows euchromatic sites of Osvaldo and blanco with high occupancy and others with low copy number. On the contrary, Argentinian populations show only a generalized low occupancy per insertion site. Moreover, the mean copy number of both elements is higher in Spain than in Argentina. All these results suggest an important role of the colonization process in the distribution of TEs. The increase in the copy number of the TEs analysed and their elevated frequency in some chromosomal sites in Carboneras is, most probably, a sequel of the founder event and drift that took place at the time of the colonization of the Old World by D. buzzatii from the New World some 300 years ago.  相似文献   

11.
It has been previously reported that the abundance and distribution of transposable elements (TEs) in Drosophila heterochromatin are conserved in unrelated stocks although they may greatly differ between families. The biases in genomic distribution of TEs are potentially informative for understanding host–transposon interactions. Here we report that in most stocks, one to four elements of the 1731 retrotransposon family are located on the Y chromosome within regions that appear to be polytenized in larval salivary glands. We discuss the hypothesis that these elements may be beneficial to the host and consider the relevance of our observations to the organization of sequences within the heterochromatin.  相似文献   

12.
Hughes AL  Friedman R 《Genetica》2004,121(2):181-185
Statistical analysis of the distribution of transposable elements (TEs) and tRNA genes in the genome of yeast Saccharomyces cerevisiae indicated that, although tRNA genes and other genes transcribed by RNA polymerase III are targets for TE insertion, the distribution of TEs was significantly more clumped than that of tRNAs. Genomic blocks putatively duplicated as the result of an ancient polyploidization event contained fewer TEs than expected by their length, and nearly two thirds of duplicated blocks lacked TEs altogether. In addition, the edges of duplicated blocks tended to be located in TE-poor genomic regions. These results can be explained by the hypotheses: (1) that transposition events have occurred well after block duplication; (2) that TEs have frequently played a role in genomic rearrangement events in yeast. According to this model, duplicated blocks identifiable as such in the present-day yeast genome are found largely in regions with low TE density because in such regions the duplicated structure has not been obscured by TE-mediated rearrangements.  相似文献   

13.
The goal of this study was to assess the extent to which transposable elements (TEs) have contributed to protein-coding regions in Arabidopsis thaliana. To do this, we first characterized the extent of chimeric TE-gene constructs. We compared a genome-wide TE database to genomic sequences, annotated coding regions, and EST data. The comparison revealed that 7.8% of expressed genes contained a region with close similarity to a known TE sequence. Some groups of TEs, such as helitrons, were underrepresented in exons relative to their genome-wide distribution; in contrast, Copia-like and En/Spm-like sequences were overrepresented in exons. These 7.8% percent of genes were enriched for some GO-based functions, particularly kinase activity, and lacking in other functions, notably structural molecule activity. We also examined gene family evolution for these genes. Gene family information helped clarify whether the sequence similarity between TE and gene was due to a TE contributing to the gene or, instead, the TE co-opting a portion of the gene. Most (66%) of these genes were not easily assigned to a gene family, and for these we could not infer the direction of the relationship between TE and gene. For the remainder, where appropriate, we built phylogenetic trees to infer the direction of the TE-gene relationship by parsimony. By this method, we verified examples where TEs contributed to expressed proteins. Our results are undoubtedly conservative but suggest that TEs may have contributed small protein segments to as many as 1.2% of all expressed, annotated A. thaliana genes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
果蝇转座因子对基因组进化的影响   总被引:2,自引:0,他引:2  
真核生物基因组织有很多可移动DNA片段为称转座因子,果蝇是大量系统研究的最好实验材料之一,其基因组的10%-12%是由转座因子组成,在宿主中,TEs也许改变基因表达模型,也许改变ORFs编码序列,也许对细胞功能产生影响,这此因子遗传的可动性也可能使它们适于建造载体产生转基因生物。因此,对TEs进化的动态研究以及对宿主基因组进化影响的探索将有助于TEs作为载体的细胞工程研究。  相似文献   

15.
We analysed the distribution of transposable elements (TEs) in 100 aligned pairs of orthologous intergenic regions from the mouse and human genomes. Within these regions, conserved segments of high similarity between the two species alternate with segments of low similarity. Identifiable TEs comprise 40-60% of segments of low similarity. Within such segments, a particular copy of a TE found in one species has no orthologue in the other. Overall, TEs comprise only approximately 20 % of conserved segments. However, TEs from two families, MIR and L2, are rather common within conserved segments. Statistical analysis of the distributions of TEs suggests that a majority of the MIR and L2 elements present in murine intergenic regions have human orthologues. These elements must have been present in the common ancestor of human and mouse and have remained under substantial negative selection that prevented their divergence beyond recognition. If so, recruitment of MIR- and L2-derived sequences to perform a function that increases host fitness is rather common, with at least two such events per host gene. The central part of the MIR consensus sequence is over-represented in conserved segments given its background frequency in the genome, suggesting that it is under the strongest selective constraint.  相似文献   

16.
Population studies of the distribution of transposable elements (TEs) on the chromosomes of Drosophila melanogaster have suggested that their copy number increase due to transposition is balanced by some form of natural selection. Theory suggests that, as a consequence of deleterious ectopic meiotic exchange between TEs, selection can favor genomes with lower TE copy numbers. This predicts that TEs should be less deleterious, and hence more abundant, in chromosomal regions in which recombination is reduced. To test this, we surveyed the abundance and locations of 10 families of TEs in recombination-suppressing chromosomal inversions from a natural population. The sample of 49 chromosomes included multiple independent isolates of seven different inversions and a corresponding set of standard chromosomes. For all 10 TE families pooled, copy numbers were significantly higher overall within low frequency inversions than within corresponding regions of standard chromosomes. TEs occupied chromosomal sites at significantly higher frequencies within the In(3R)M0 and In(3R)K inversions than within the corresponding regions of standard 3R chromosomes. These results are consistent with the predictions of the ectopic exchange model.  相似文献   

17.
C. Biémont 《Genetica》1992,86(1-3):67-84
This paper is an attempt to bring together the various, dispersed data published in the literature on insertion polymorphism of transposable elements from various kinds of populations (natural populations, laboratory strains, isofemale and inbred lines). Although the results deal mainly with Drosophila, data on other organisms have been incorporated when necessary to illustrate the discussion. The data pertinent to the regions of insertion, the rates of transposition and excision, the copy number regulation, and the degree of heterozygosity were analysed in order to be confronted with the speculations made with various theoretical models of population biology of transposable elements. The parameters of these models are very sensitive to the values of the transposable element characteristics estimated on populations, and according to the difficulties of these estimations (population not at equilibrium, particular mutations used to estimate the transposition and excision rates, trouble with the in situ technique used to localize the insertions, undesired mobilization of TEs in crosses, spontaneous genome resetting, environmental effects, etc.) it cannot be decided accurately which model better accounts for the population dynamics of these TEs. Tendencies, however, emerge in Drosophila: the copia element shows evidence for deficiency of insertions on the X chromosomes, a result consistent with selection against mutational effects of copia insertions; the P element repartition does not significantly deviate from the neutral assumption, in spite of a systematic copy number of insertions higher on the X than on the autosomes. Data on other elements support either the neutral model of TE containment, neither of the two models, or both. Prudence in conclusion should then be de rigueur when dealing with such kind of data. Finally the potential roles of TEs in population adaptation and evalution are discussed.  相似文献   

18.
Distribution of transposable elements in prokaryotes   总被引:5,自引:0,他引:5  
We consider models for the distribution of the number of elements per host genome for families of transposable elements (TEs). The hosts are assumed to be prokaryotes. These models assume a constant rate of infection of uninfected hosts by TEs, replicative transposition within each host, and a reduction of the fitness of a host dependent on the number of TEs it contains. No provision was made for the deletion of individual TEs within a host or for recombination, since both are relatively rare events in prokaryotes. These models mostly assume that the TE performs no function for the host, and that the reduction in fitness with increased copy number is due to effects such as the impairment of beneficial genes by transposition or homologous recombination. We also consider a model in which the TEs can convey a selective advantage to the host. The equilibrium distributions of copy number are determined for these models, and are of a variety of classical types. Relevant parameters of the models are estimated using data on the distribution of insertion sequences in natural isolates of Escherichia coli.  相似文献   

19.
We have conducted molecular population genetics analyses to understand the relationships among the transposable elements (TEs) in Drosophila melanogaster, in combination with sequence comparisons of TEs from two related species, D. simulans and D. yakuba. We observed much lower than expected genetic differences among elements, clear evidence for departure from expectations for equilibrium copy numbers and little divergence between species. This suggests that a large proportion of TEs in D. melanogaster had a recent origin as a result of interspecies movement.  相似文献   

20.
Transposable elements (TEs) are DNA segments that can mediate or cause movement within genomes. We performed a comprehensive, whole-genome analysis of annotated TEs in rice (Oryza sativa L.) and Arabidopsis thaliana, focusing on their expression (mRNA data) and silencing (small RNA data), and we compared these data with annotated genes that are not annotated as transposons. TEs demonstrated higher levels of antisense mRNA expression in comparison to non-TE genes. The majority of the TEs were silenced, as demonstrated by higher levels of small RNAs and a lack of mRNA MPSS data. When TEs were expressed, their activity was usually limited to just one or a few of the mRNA libraries. When we examined TE expression at the whole-genome level and across the complete mRNA dataset, we observed that most activity was contributed by a few highly expressed transposable elements. These TEs were characterized by their low copy number and few matching small RNAs. Our results help define the relationship between gene expression and gene silencing for TEs, and indicate that TE silencing can impact neighboring genes, perhaps via a mechanism of heterochromatin formation and spreading. These data may be used to define active TEs and families of transposable elements that continue to shape plant genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号