首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Type C Niemann-Pick disease (NPC) is an autosomal recessive neurovisceral storage disorder in which defective intracellular cholesterol processing has been demonstrated in fibroblasts from NPC patients and obligate heterozygotes. In the present paper, the ability to esterify LDL-cholesterol was examined in cultured lymphocytes from 8 NPC patients, 8 obligate heterozygotes and 8 controls. Cholesteryl ester synthesis was 8% (+/- 5%) and 45% (+/- 16%) of controls in homozygous and heterozygous cell lines, respectively. Histochemical and electron microscopic examinations confirmed that this biochemical lesion was associated with abnormal intracellular accumulation of unesterified cholesterol in mutant lymphocytes. These results demonstrate that measurement of cholesterol esterification in cultured lymphocytes offers a quick and reliable means of confirming the diagnosis of NPC and that these cells may be useful for probing the primary molecular lesion of NPC.  相似文献   

2.
We analyzed Niemann-Pick type C disease 1 (NPC1) gene in 12 patients with Niemann-Pick type C disease by sequencing both cDNA obtained from fibroblasts and genomic DNA. All the patients were compound heterozygotes. We found 15 mutations, eight of which previously unreported. The comparison of cDNA and genomic DNA revealed discrepancies in some subjects. In two unrelated patients carrying the same mutations (P474L and nt 2972del2) only one mutant allele (P474L), was expressed in fibroblasts. The mRNA corresponding to the other allele was not detected even in cells incubated with cycloheximide. The promoter variants (-1026T/G and -1186T/C or -238 C/G), found to be in linkage with 2972del2 allele do not explain the lack of expression of this allele, as they were also found in control subjects. In another patient, (N1156S/Q922X) the N1156S allele was expressed in fibroblasts while the expression of the other allele was hardly detectable. In a fourth patient cDNA analysis revealed a point mutation in exon 20 (P1007A) and a 56 nt deletion in exon 22 leading to a frameshift and a premature stop codon. The first mutation was confirmed in genomic DNA; the second turned out to be a T-->G transversion in exon 22, predicted to cause a missense mutation (V1141G). In fact, this transversion generates a donor splice site in exon 22, which causes an abnormal pre-mRNA splicing leading to a partial deletion of this exon. In some NPC patients, therefore, the comparison between cDNA and genomic DNA may reveal an unexpected expression of some mutant alleles of NPC1 gene.  相似文献   

3.
To investigate biochemical heterogeneity within Niemann-Pick type C disease (NPC), the two most characteristic abnormalities, namely (1) kinetics of LDL-stimulated cholesteryl ester formation and (2) intravesicular accumulation of LDL-derived unesterified cholesterol, evaluated by histochemical filipin staining, were studied in cultured skin fibroblasts from a population of 125 NPC patients. Profound alterations (esterification rates less than 10% of normal, very numerous and intensely fluorescent cholesterol-filipin granules) were demonstrated in 86% of the cases, depicting the 'classical' NPC phenotype. The remaining cell lines showed a graded less severe impairment and more transient delay in the induction of LDL-mediated cholesteryl esterification, along with an attenuated accumulation of unesterified cholesterol. In particular, cells from a small group (7%) of patients, which have been individualized as representative of a 'variant' phenotype, showed only slight alterations of esterification, restricted to the early phase of LDL uptake and undistinguishable from those in heterozygotes. In these cells, an abnormal cytochemical distribution of LDL-derived cholesterol, although moderate, was still evident provided rigorous experimental conditions were followed. A third, less clearly individualized group (7%), differing from the classical phenotype mostly by higher rates of cholesteryl ester formation, has been designated as an 'intermediary' phenotype to reflect a more difficult diagnosis of such patients. These findings have an important bearing with regard to diagnosis and genetic counselling, although the significance of such a phenotypic variation in terms of genetic heterogeneity has still to be demonstrated. A given biochemical phenotype was however a constant observation within a family (14 pairs of siblings tested so far). The unique feature of LDL-cholesterol processing alterations in NPC has been further established from comparative studies in Wolman disease and I-cell disease, showing normal or different intracellular distribution of unesterified LDL-derived cholesterol in the latter disorders. Correlation between biochemical and clinical NPC phenotypes was only partial, but a correlation between the severity of alterations in cholesterol processing and sphingomyelin catabolism could be established.  相似文献   

4.
The esterification of cholesterol derived from human low density lipoprotein (LDL) or fetal bovine serum (FBS) was deficient in cultured fibroblasts from subjects with heterozygous and homozygous type C Niemann-Pick (NPC) disease. Failure to significantly esterify LDL-derived cholesterol resulted in abnormal accumulation of predominantly unesterified cholesterol in homozygous NPC fibroblasts. Compared with normal and homozygous fibroblasts, heterozygous NPC fibroblasts synthesized intermediate levels of cholesteryl ester during the initial 6 h of incubation with LDL. The rate of cholesterol esterification in heterozygous cells was normal when measured over a 24-h period of incubation with LDL. In addition to demonstrating a defect in cholesterol esterification, homozygous NPC fibroblasts accumulated more total cholesterol when incubated with LDL or FBS than normal fibroblasts accumulated. When heterozygous NPC fibroblasts were incubated with LDL or FBS, cellular accumulation of cholesterol reached levels that were high-normal or intermediary between levels observed in normal and homozygous NPC fibroblasts. The partial expression of these metabolic errors in the heterozygous genotype relevantly links these errors to the primary mutation of this disorder.  相似文献   

5.
6.
Niemann-Pick Type C (NPC) disease is an autosomal recessive disorder caused by mutations in either the NPC1 or HE1 genes. Hallmarks of this presently incurable disease include abnormal intracellular accumulation of cholesterol and glycosphingolipids, progressive neuropathology and neurodegeneration, and premature death. There have been increased efforts to understand the effects of NPC disease on neurons of the brain, in part due to the recent development of improved research tools and reagents, and in part due to the rapidly growing appreciation of the importance of cholesterol and lipoproteins in the brain during neuronal development, function, and degeneration. Here, we highlight fundamental aspects of neurons that appear to be affected by NPC disease, including their morphology, metabolism, intracellular transport, electrical signaling, and response to environmental factors, and suggest other potentially important areas for future investigation. This provides a framework for acquiring additional insight to this disorder and shaping new therapeutic approaches to NPC disease.  相似文献   

7.
《Autophagy》2013,9(7):1157-1158
Although traditionally regarded as a cellular adaptive process triggered by nutrient deprivation, autophagy in neurons appears to provide an important neuroprotective mechanism. Neurons in the brain are protected from starvation, and neuronal autophagy serves a critical role in the turnover of abnormal proteins and damaged organelles. As post-mitotic, highly polarized cells with active protein trafficking, neurons rely heavily on an efficient autophagic pathway. Using human embryonic stem cell-derived neurons engineered to mimic the cholesterol lysosomal storage disease Niemann Pick type C1 (NPC1), we have shown that excessive activation and impaired progression of the autophagic pathway conspire to cause abnormal mitochondrial clearance. Defective mitophagy is exceptionally severe in human NPC1 neurons, as compared with patient fibroblasts, and may explain the selective neuronal failure observed in NPC1 and related neurodegenerative disorders.  相似文献   

8.
Although traditionally regarded as a cellular adaptive process triggered by nutrient deprivation, autophagy in neurons appears to provide an important neuroprotective mechanism. Neurons in the brain are protected from starvation, and neuronal autophagy serves a critical role in the turnover of abnormal proteins and damaged organelles. As post-mitotic, highly polarized cells with active protein trafficking, neurons rely heavily on an efficient autophagic pathway. Using human embryonic stem cell-derived neurons engineered to mimic the cholesterol lysosomal storage disease Niemann Pick type C1 (NPC1), we have shown that excessive activation and impaired progression of the autophagic pathway conspire to cause abnormal mitochondrial clearance. Defective mitophagy is exceptionally severe in human NPC1 neurons, as compared with patient fibroblasts, and may explain the selective neuronal failure observed in NPC1 and related neurodegenerative disorders.  相似文献   

9.
The purpose of this study was to determine the capacity of Niemann-Pick type C (NPC) fibroblasts to transport cholesterol from the cell surface to intracellular membranes. This is relevant in light of the observations that NPC cells display a sluggish metabolism of LDL-derived cholesterol, a phenomenon which could be explained by a defective intracellular transport of cholesterol. Treatment of NPC cells for 4 h with 0.1 mg/ml of LDL failed to increase the incorporation of [14C]oleic acid into cholesterol [14C]oleate, an observation consistent with previous reports on this cell type (Pentchev et al. (1985) Proc. Natl. Acad. Sci. USA 82, 8247). Normal fibroblasts, however, displayed the classical upregulation (6-fold over control) of the endogenous esterification reaction in response to LDL exposure. Incubation of normal or NPC fibroblasts with sphingomyelinase (100 mU/ml; Staphylococcus aureus) led to a rapid and marked increase (9- and 10-fold for normal and NPC fibroblasts, respectively, after 4 h) in the esterification of plasma-membrane-derived [3H]cholesterol suggesting that sphingomyelin degradation forced a net transfer of cholesterol from the cell surface to the endoplasmic reticulum. The similar response in normal and mutant fibroblasts to the degradation of sphingomyelin suggests that plasma membrane cholesterol can be transported into the substrate pool of ACAT to about the same extent in these two cell types. Degradation of cell sphingomyelin in NPC fibroblasts also resulted in the movement of 20-25% of the cellular cholesterol from a cholesterol oxidase susceptible pool into oxidase-resistant pools, implying that a substantial amount of plasma membrane cholesterol was internalized after sphingomyelin degradation. This cholesterol internalization was not accompanied by an increased rate of membrane internalization, as measured by [3H]sucrose uptake. Although NPC cells showed a relative accumulation of unesterified cholesterol and a sluggish esterification of LDL-derived cholesterol when exposed to LDL, these cells responded like normal fibroblasts with regard to their capacity to transport cholesterol from the cell surface into intracellular sites in response to sphingomyelin degradation. It therefore appears that NPC cells, in contrast to the impaired intracellular movement of lipoprotein-derived cholesterol, do not display a general impairment of cholesterol transport between the cell surface and the intracellular regulatory pool of cholesterol.  相似文献   

10.
Brain fatty acid-binding protein (FABP7) and PAX6 are both expressed in radial glial cells and have been implicated in neurogenesis and glial cell differentiation. FABP7 and PAX6 have also been postulated to play a role in malignant glioma cell growth and invasion. Here, we address the role of PAX6 in regulating FABP7 gene expression in malignant glioma cells. We report that PAX6 and FABP7 RNA are generally co-expressed in malignant glioma cell lines, tumors and tumor neurospheres. Using the CAT reporter gene assay, we show that FABP7 promoter activity is upregulated by PAX6. Sequential deletion analysis of the FABP7 promoter, combined with gel shift and supershift assays demonstrate the presence of a PAX6 responsive region located upstream of the FABP7 gene, at -862 to -1033 bp. Inclusion of sequences between -1.2 and -1.8 kb reduced CAT activity, suggesting the presence of a repressor element within this region. While PAX6 overexpression did not induce endogenous FABP7 expression in FABP7-negative cells, knock-down of PAX6 in PAX6-positive malignant glioma cells resulted in reduced FABP7 levels. These data provide the first evidence of direct transactivation of the FABP7 proximal promoter by PAX6 and suggest a synergistic mechanism for PAX6 and other co-factor(s) in regulating FABP7 expression in malignant glioma.  相似文献   

11.
Incubation of mutant Niemann-Pick C fibroblasts with low-density lipoprotein (LDL) resulted in excessive internalization of lipoprotein and extensive cellular over-accumulation of unesterified cholesterol. The uptake of LDL by the mutant cells appeared to occur through the classic LDL receptor pathway and internalized lipoprotein was processed in lysosomes. Lipoprotein uptake into mutant cells was associated with delays in the initiation of established cellular cholesterol homeostatic responses. Subcellular fractionation of mutant Niemann-Pick C fibroblasts accumulating LDL-cholesterol showed excess unesterified sterol to be localized in the light lysosome-light membrane region of a Percoll gradient, and revealed that cholesterol storage was associated with a specific alteration in the normal profiles of lysosomal marker enzymes.  相似文献   

12.
Niemann-Pick disease is a genetic disorder, affecting approximately 1 to 150,000 living births per year; in Poland 1-5 cases. Usually diagnosed in the childhood, Niemann-Pick disease results in death in the teenage years. Niemann-Pick disease is defined as a lysosomal storage disorder and is related to impaired transport and/or accumulation of specific lipids inside the cell. In this report, we provide evidence about potential role of annexins, calcium- and membrane-binding proteins, in the formation and stabilization of cholesterol-rich microdomains and their possible function in organizing the membranes of early and late endosomes, organelles affected in the type C Niemann-Pick disease characterized by abnormal accumulation of cholesterol and glycosphingolipids in lysosomal like organelles.  相似文献   

13.
Progesterone inhibits intracellular transport of lysosomal cholesterol in cultured cells, and thus at least in part mimics the biochemical phenotype of Niemann–Pick type C disease (NPC) in human fibroblasts. The goal of this study was to determine whether metabolism of progesterone to other steroids is affected by the NPC mutation or by P-glycoprotein (a known progesterone target). We found that human fibroblasts metabolize progesterone in three steps: rapid conversion to 5-pregnane-3,20-dione, which is then reduced to 5-pregnane-3β()-ol-20-one with subsequent 6-hydroxylation. The pattern and rates of progesterone metabolism were not significantly different in a variety of fibroblasts from normal individuals, NPC patients, and obligate heterozygotes. Inhibition of steroid 5-reductase with finasteride completely blocked metabolism of progesterone but had no effect on inhibition of LDL-stimulated cholesterol esterification (IC50=10 μM). Progesterone also partially inhibited 25-hydroxycholesterol-induced cholesterol esterification, with similar dose-dependence in normal and NPC fibroblasts. P-glycoprotein levels varied significantly among the various fibroblasts tested, but no correlation with NPC phenotype or rate of progesterone metabolism was noted, and P-glycoprotein inhibitors did not affect conversion of progesterone to products. These results indicate that metabolism of progesterone in human fibroblasts is largely independent of its ability to interfere with cholesterol traffic and P-glycoprotein function.  相似文献   

14.
A central feature of Niemann-Pick Type C (NPC) disease is sequestration of cholesterol and glycosphingolipids in lysosomes. A large phenotypic variability, on both a clinical as well as a molecular level, challenges NPC diagnosis. For example, substantial difficulties in identifying or excluding NPC in a patient exist in cases with a "variant" biochemical phenotype, where cholesterol levels in cultured fibroblasts, the primary diagnostic indicator, are only moderately elevated. Here we apply quantitative microscopy as an accurate and objective diagnostic tool to measure cholesterol accumulation at the level of single cells. When employed to characterize cholesterol enrichment in fibroblasts from 20 NPC patients and 11 controls, considerable heterogeneity became evident both within the population of cells cultured from one individual as well as between samples from different probands. An obvious correlation between biochemical phenotype and clinical disease course was not apparent from our dataset. However, plasma levels of HDL-cholesterol (HDL-c) tended to be in the normal range in patients with a "variant" as opposed to a "classic" biochemical phenotype. Attenuated lysosomal cholesterol accumulation in "variant" cells was associated with detectable NPC1 protein and residual capability to upregulate expression of ABCA1 in response to LDL. Taken together, our approach opens perspectives not only to support diagnosis, but also to better characterize mechanisms impacting cholesterol accumulation in NPC patient-derived cells.  相似文献   

15.
Summary A complex analysis of liver from a series of eight cases of Niemann-Pick disease type C showed practically generalized storage of glycolipids and phosphoglycerides by chemical and histochemical techniques. In six of the eight cases the storage process was of low degree, barely recognizable by routine histology, but well recognizable by histochemistry and electronmicroscopy. In two cases it was marked and led to early functional impairment of the liver. Changes in various enzyme activities and in ultrastructural features of the storage process are described. Sphingomyelin was found to participate to a very low low degree and its accumulation was not proportional to the extent of overall storage. In two cases with prominent involvement of the liver normal levels of sphingomyelin were found. In other cases sphingomyelin was found, by lipid histochemistry, to be stored only in macrophages. To stress that the storage process in Niemann-Pick disease type C is qualitatively different a comparison was made with liver findings in sphingomyelinase-deficient patients. This feature is of practical as well as theoretical importance.  相似文献   

16.
Summary Sphingomyelinase activity in cultured skin fibroblasts from a fetus affected with infantile-type Niemann-Pick disease was 0.5% of control activity; the activities in cells from two patients with adult-type disease (Cases 2 and 3) were 5.0% and 59.0%.Sphingomyelinase activity was separated into three peaks (I–III) by isoelectric focusing. The isoelectric points were 4.5, 4.9, and 5.2 for peaks I, II, and III, respectively. The three peaks in the Case 2 cells were drastically reduced; only a very small peak could be distinguished (pI of 4.7). On the other hand, three peaks were observed in the Case 3 cells. Peak I had a pI of 4.4, peak II a pI of 4.7, and peak III a pI of 5.2. Peak I was found at near normal level, but both peaks II and III were markedly reduced.Sphingomyelinase in the peak I fraction obtained from isoelectric focusing in Case 3 cells was found to have the same Km value as that in control cells.  相似文献   

17.
Cultured normal human skin fibroblasts actively degraded sphingomyelin [choline-methyl-14C] introduced in ethanolic solution in the culture medium. After 17 h incubation, about 65 to 80 % of the cellular radioactivity was recovered in phosphatidylcholine. In fibroblasts from Niemann-Pick disease type A the in situ degradation of sphingomyelin was less than 2 % of controls, which was in good agreement with the strong decrease of the sphingomyelinase activity measured in vitro by conventional methods. In the two cases of Niemann-Pick disease type C studied, the in situ degradation of sphingomyelin was significantly but not dramatically decreased compared to controls.  相似文献   

18.
19.
20.
Low density lipoprotein (LDL) internalization by mutant type C Niemann-Pick (NPC) fibroblasts results in uptake of excess total cholesterol. Uptake of excess lipoprotein cholesterol appears to be mediated by the specific LDL receptor pathway. Associated with excessive LDL-cholesterol uptake is a lesion in early intracellular cholesteryl ester synthesis. In vitro acylCoA:cholesterol acyltransferase activity is normal in cell-free extracts of mutant cells. The ability of exogenous sterols to enhance intracellular esterification of [3H]mevalonate-derived [3H]cholesterol was severely limited in mutant cell cultures suggesting that in vivo activation and/or expression of activated acylCoA:cholesterol acyltransferase may be compromised by the primary mutation of type C Niemann-Pick disease. After 2 days of LDL uptake, rates of intracellular cholesteryl ester synthesis in mutant cells paralleled the rates of esterification in normal cells suggesting that specific early in vivo expression of the acyltransferase may be affected in this disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号