共查询到20条相似文献,搜索用时 15 毫秒
1.
Dynamic rearrangements of the actin cytoskeleton play a key role in numerous cellular processes. In Drosophila, fusion between a muscle founder cell and a fusion competent myoblast (FCM) is mediated by an invasive, F-actin-enriched podosome-like structure (PLS). Here, we show that the dynamics of the PLS is controlled by Blown fuse (Blow), a cytoplasmic protein required for myoblast fusion but whose molecular function has been elusive. We demonstrate that Blow is an FCM-specific protein that colocalizes with WASP, WIP/Solitary, and the actin focus within the PLS. Biochemically, Blow modulates the stability of the WASP-WIP complex by competing with WASP for WIP binding, leading to a rapid exchange of WASP, WIP and G-actin within the PLS, which, in turn, actively invades the adjacent founder cell to promote fusion pore formation. These studies identify a regulatory protein that modulates the actin cytoskeletal dynamics by controlling the stability of the WASP-WIP complex. 相似文献
2.
Rajmohan R Meng L Yu S Thanabalu T 《Biochemical and biophysical research communications》2006,342(2):529-536
Wiskott-Aldrich syndrome is caused by alterations in the Wiskott-Aldrich syndrome protein (WASP) and several of these mutations affect WASP's interaction with WIP (WASP-interacting protein), suggesting that loss of interaction between WASP and WIP is causal to the disease. Las17p is the yeast homologue of WASP and las17Delta strain is unable to grow at 37 degrees C. We show that Human WASP suppresses the growth defect of Saccharomyces cerevisiae las17Delta strain, only in the presence of WIP. WIP mediates cortical localisation of WASP as well as stabilise WASP in yeast cells. Mutations which affected WASP-WIP interaction abolished WASP's ability to suppress the growth defect of las17Delta strain. We have demonstrated that WASP-WIP is an active complex and WASP's ability to suppress the growth defect of las17Delta strain is dependent on the presence of a functional Arp2/3 activating domain of WASP and also the Verprolin domain (V) of WIP. 相似文献
3.
Calponin repeats regulate actin filament stability and formation of podosomes in smooth muscle cells 下载免费PDF全文
Gimona M Kaverina I Resch GP Vignal E Burgstaller G 《Molecular biology of the cell》2003,14(6):2482-2491
Phorbol ester induces actin cytoskeleton rearrangements in cultured vascular smooth muscle cells. Calponin and SM22 alpha are major components of differentiated smooth muscle and potential regulators of actin cytoskeleton interactions. Here we show that actin fibers decorated with h1 CaP remain stable, whereas SM22 alpha-decorated actin bundles undergo rapid reorganization into podosomes within 30 min of PDBu exposure. Ectopic expression of GFP alpha-actinin had no effect on the stability of the actin cytoskeleton and alpha-actinin was transported rapidly into PDBu-induced podosomes. Our results demonstrate the involvement of CaP and SM22 alpha in coordinating the balance between stabilization and dynamics of the actin cytoskeleton in mammalian smooth muscle. We provide evidence for the existence of two functionally distinct actin filament populations and introduce a molecular mechanism for the stabilization of the actin cytoskeleton by the unique actin-binding interface formed by calponin family-specific CLIK23 repeats. 相似文献
4.
Kennedy Omondi Okeyo Taiji Adachi Junko Sunaga Masaki Hojo 《Journal of biomechanics》2009,42(15):2540-2548
Coupling interactions among mechanical and biochemical factors are important for the realization of various cellular processes that determine cell migration. Although F-actin network dynamics has been the focus of many studies, it is not yet clear how mechanical forces generated by actomyosin contractility spatiotemporally regulate this fundamental aspect of cell migration. In this study, using a combination of fluorescent speckle microscopy and particle imaging velocimetry techniques, we perturbed the actomyosin system and examined quantitatively the consequence of actomyosin contractility on F-actin network flow and deformation in the lamellipodia of actively migrating fish keratocytes. F-actin flow fields were characterized by retrograde flow at the front and anterograde flow at the back of the lamellipodia, and the two flows merged to form a convergence zone of reduced flow intensity. Interestingly, activating or inhibiting actomyosin contractility altered network flow intensity and convergence, suggesting that network dynamics is directly regulated by actomyosin contractility. Moreover, quantitative analysis of F-actin network deformation revealed that the deformation was significantly negative and predominant in the direction of cell migration. Furthermore, perturbation experiments revealed that the deformation was a function of actomyosin contractility. Based on these results, we suggest that the actin cytoskeletal structure is a mechanically self-regulating system, and we propose an elaborate pathway for the spatiotemporal self-regulation of the actin cytoskeletal structure during cell migration. In the proposed pathway, mechanical forces generated by actomyosin interactions are considered central to the realization of the various mechanochemical processes that determine cell motility. 相似文献
5.
Chen X Doffek K Sugg SL Shilyansky J 《Journal of immunology (Baltimore, Md. : 1950)》2004,173(5):2985-2994
Phosphatidylserine (PS), which is exposed on the surface of apoptotic cells, has been implicated in immune regulation. However, the effects of PS on the maturation and function of dendritic cells (DCs), which play a central role in both immune activation and regulation, have not been described. Large unilamellar liposomes containing PS or phosphatidylcholine were used to model the plasma membrane phospholipid composition of apoptotic and live cells, respectively. PS liposomes inhibited the up-regulation of HLA-ABC, HLA-DR, CD80, CD86, CD40, and CD83, as well as the production of IL-12p70 by human DCs in response to LPS. PS did not affect DC viability directly but predisposed DCs to apoptosis in response to LPS. DCs exposed to PS had diminished capacity to stimulate allogeneic T cell proliferation and to activate IFN-gamma-producing CD4(+) T cells. Exogenous IL-12 restored IFN-gamma production by CD4(+) T cells. Furthermore, activated CTLs proliferated poorly to cognate Ag presented by DCs exposed to PS. Our findings suggest that PS exposure provides a sufficient signal to inhibit DC maturation and to modulate adaptive immune responses. 相似文献
6.
Lanzardo S Curcio C Forni G Antón IM 《The international journal of biochemistry & cell biology》2007,39(1):262-274
The WASP (Wiskott Aldrich Syndrome Protein) Interacting Protein, WIP, regulates actin polymerization and the formation of actin-rich structures such as filopodia and lamellipodia, each of which is involved in cellular adhesion, spreading and migration. To define the role for WIP in these activities, we analysed cell adhesion and spreading as well as the redistribution of polymerised actin and paxillin that occurred when fibroblasts were plated onto different substrata. We compared the effect of WIP overexpression (gain of function) with that of WIP deficiency (loss of function) on these parameters. WIP-overexpression delayed cellular adhesion and spreading, an effect that could be compensated for by exposure to Y-27632, a well characterized ROCK (Rho kinase) inhibitor. WIP overexpression augmented the phosphorylation of Erk and JNK induced by binding to fibronectin, suggesting that WIP participates in signal transduction pathways initiated by integrin engagement. Conversely, WIP deficiency accelerated fibroblast adhesion to plastic and led to the formation of enlarged focal adhesions. The influence of WIP on fibroblast migration was measured by scratch assay. WIP-overexpression reduced migration while WIP-deficiency increased it, suggesting that WIP acts as a negative regulator of fibroblast migration. Together, these findings suggest a novel role for WIP in fibroblast adhesion, spreading and migration. 相似文献
7.
Polarized delivery of signaling and adhesion molecules to the leading edge is required for directional migration of cells. Here, we describe a role for the PIP(2)-synthesizing enzyme, PIPKIγi2, in regulation of exocyst complex control of cell polarity and polarized integrin trafficking during migration. Loss of PIPKIγi2 impaired directional migration, formation of cell polarity, and integrin trafficking to the leading edge. Upon initiation of directional migration, PIPKIγi2 via PIP(2) generation controls the integration of the exocyst complex into an integrin-containing trafficking compartment that requires the talin-binding ability of PIPKIγi2, and talin for integrin recruitment to the leading edge. A PIP(2) requirement is further emphasized by inhibition of PIPKIγi2-regulated directional migration by an Exo70 mutant deficient in PIP(2) binding. These results reveal how phosphoinositide generation orchestrates polarized trafficking of integrin in coordination with talin that links integrins to the actin cytoskeleton, processes that are required for directional migration. 相似文献
8.
Koduru S Massaad M Wilbur C Kumar L Geha R Ramesh N 《Biochemical and biophysical research communications》2007,353(4):875-881
The majority of Wiskott-Aldrich syndrome protein (WASP) in T cells is in a complex with WASP interacting protein (WIP), a 503 a.a. long proline rich protein. Here we demonstrate that a novel anti-WIP mAb, 3D10, recognizes an epitope in the N-terminal domain of the WIP protein, within the sequence 13PTFALA18. mAb 3D10 competes with actin, but not with WASP or Nck, for WIP binding. Analysis of 3D10 immunoprecipitates failed to demonstrate dissociation of the WASP-WIP complex after TCR ligation that we previously reported using a polyclonal anti-WIP anti-serum raised against a C-terminal peptide (a.a. 459-503) that spanned the WASP binding site. 3D10 mAb allowed the detection of a novel isoform of WIP consisting of a truncated 403 a.a. long protein that includes the 377 a.a. encoded by the first 4 exons of WIP followed by a 26 a.a. sequence encoded by intron 4. 相似文献
9.
Dendritic cells (DCs) are well known as professional antigen-presenting cells (APC) able to initiate specific T-cell responses to pathogens in lymph nodes (LN) draining the site of infection. However, the respective contribution of migratory and LN-resident DCs in this process remains unclear. As DC subsets represent important targets for vaccination strategies, more precise knowledge of DC subsets able to present vaccine antigens to T cells efficiently is required. To investigate the capacities of DCs migrating in the lymph (L-DCs) to initiate a specific T-cell response, we used physiologically generated DCs collected from a pseudoafferent lymphatic cannulation model in sheep. The CD1b+ L-DCs were assessed for presenting antigens from the vaccine attenuated strain of Salmonella enterica serovar Abortusovis. CD1b+ L-DCs were able to phagocytose, process and to present efficiently Salmonella antigens to effector/memory T cells in vitro. They were shown to be efficient APC for the priming of allogeneic naive T cells associated with inducing both IFN-γ and IL-4 responses. They were also efficient in presenting Salmonella antigens to autologous naive T cells associated with inducing both IFN-γ and IL-10 responses. The capacities of L-DCs to process and present Salmonella antigens to T cells were investigated in vivo after conjunctival inoculation of Salmonella. The CD1b+ L-DCs collected after inoculation were able to induce the proliferative response of CD4+ T cells suggesting the in vivo capture of Salmonella antigens by the CD1b+ L-DCs, and their potential to present them directly to CD4+ T cells. In this study, CD1b+ L-DCs present potential characteristics of APC to initiate by themselves T cell priming in the LN. They could be used as target cells for driving immune activation in vaccinal strategies. 相似文献
10.
Yanagita M Kobayashi R Kashiwagi Y Shimabukuro Y Murakami S 《Biochemical and biophysical research communications》2007,364(2):318-324
Thrombin is the key enzyme in the coagulation cascade and activates endothelial cells, neutrophils and monocytes via protease-activated receptors (PARs). At the inflammatory site, immune cells have an opportunity to encounter thrombin. However little is known about the effect of thrombin for dendritic cells (DC), which are efficient antigen-presenting cells and play important roles in initiating and regulating immune responses. The present study revealed that thrombin has the ability to stimulate blood DC. Plasmacytoid DC (PDC) and myeloid DC (MDC) isolated from PBMC expressed PAR-1 and released MCP-1, IL-10, and IL-12 after thrombin stimulation. Unlike blood DC, monocyte-derived DC (MoDC), differentiated in vitro did not express PAR-1 and were unresponsive to thrombin. Effects of thrombin on blood DC were significantly diminished by the addition of anti-PAR-1 Ab or hirudin, serine protease inhibitor. Moreover, thrombin induced HLA-DR and CD86 expression on DC and the thrombin-treated DC induced allogenic T cell proliferation. These findings indicate that thrombin plays a role in the regulation of blood DC functions. 相似文献
11.
《Cell Adhesion & Migration》2013,7(4):378-383
Cell migration is a highly integrated, multistep process that plays an important role in physiological and pathological processes. The migrating cell is highly polarized, with complex regulatory pathways that integrate its component processes spatially and temporally.1 The Drosophila tumor suppressor, Lethal (2) giant larvae (Lgl), regulates apical-basal polarity in epithelia and asymmetric cell division.2 But little is known about the role of Lgl in establishing cell polarity in migrating cells. Recently, we showed that the mammalian Lgl1 interacts directly with non-muscle myosin IIA (NMIIA), inhibiting its ability to assemble into filaments in vitro.3 Lgl1 also regulates the cellular localization of NMIIA, the maturation of focal adhesions, and cell migration.3 We further showed that phosphorylation of Lgl1 by aPKCζ prevents its interaction with NMIIA and is important for Lgl1 and acto-NMII cytoskeleton cellular organization.4 Lgl is a critical downstream target of the Par6-aPKC cell polarity complex; we showed that Lgl1 forms two distinct complexes in vivo, Lgl1-NMIIA and Lgl1-Par6-aPKCζ in different cellular compartments.4 We further showed that aPKCζ and NMIIA compete to bind directly to Lgl1 through the same domain. These data provide new insights into the role of Lgl1, NMIIA, and Par6-aPKCζ in establishing front-rear polarity in migrating cells. In this commentary, I discuss the role of Lgl1 in the regulation of the acto-NMII cytoskeleton and its regulation by the Par6-aPKCζ polarity complex, and how Lgl1 activity may contribute to the establishment of front-rear polarity in migrating cells. 相似文献
12.
Immunoelectron microscopic localization of actin in migrating cells during planarian wound healing 总被引:2,自引:0,他引:2
Wound repair in planarians is mainly characterized by two cell-migratory events involving the epidermis adjacent to the wound and its basement membrane. The first event is the migration of epidermal cells to cover the wound surface; the second one is the migration of newly differentiating replacement epidermal cells from the parenchyma to the epidermis. In addition to these events, migration of fixed parenchymal cells is observed during wound healing. All migrating cells were characterized by the presence of actin, as shown by the results obtained by means of indirect immunolocalization with fluorescent and electron microscopy. Migrating cells were heavily labeled with gold particles, which clustered at the level of cell-matrix and cell-cell contacts. 相似文献
13.
Throughout pregnancy the cytotrophoblast, the stem cell of the placenta, gives rise to the differentiated forms of trophoblasts. The two main cell lineages are the syncytiotrophoblast and the invading extravillous trophoblast. A successful pregnancy requires extravillous trophoblasts to migrate and invade through the decidua and then remodel the maternal spiral arteries. Many invasive cells use specialised cellular structures called invadopodia or podosomes in order to degrade extracellular matrix. Despite being highly invasive cells, the presence of invadapodia or podosomes has not previously been investigated in trophoblasts. In this study these structures have been identified and characterised in extravillous trophoblasts. The role of specialised invasive structures in trophoblasts in the degradation of the extracellular matrix was compared with well characterised podosomes and invadopodia in other invasive cells and the trophoblast specific structures were characterised by using a sensitive matrix degradation assay which enabled visualisation of the structures and their dynamics. We show trophoblasts form actin rich protrusive structures which have the ability to degrade the extracellular matrix during invasion. The degradation ability and dynamics of the structures closely resemble podosomes, but have unique characteristics that have not previously been described in other cell types. The composition of these structures does not conform to the classic podosome structure, with no distinct ring of plaque proteins such as paxillin or vinculin. In addition, trophoblast podosomes protrude more deeply into the extracellular matrix than established podosomes, resembling invadopodia in this regard. We also show several significant pathways such as Src kinase, MAPK kinase and PKC along with MMP-2 and 9 as key regulators of extracellular matrix degradation activity in trophoblasts, while podosome activity was regulated by the rigidity of the extracellular matrix. 相似文献
14.
Since being introduced globally as Aspirin in 1899, acetylsalicylic acid (ASA) has been widely used as an analgesic, immune-regulatory, anti-pyretic and anti-thrombotic drug. ASA and its metabolite, salicylate, were also reported to be able to modulate antigen presenting functions of dendritic cells (DC). However, the intracellular targets of ASA in DC are still poorly understood. Since phagocytosis is the initial step taken by antigen-presenting cells in the uptake of antigens for processing and presentation, ASA might exerts its immune-regulatory effects by regulating phagocytosis. Here we show that ASA inhibits phagocytosis and modulates expression of endosomal SNAREs, such as Vti1a, Vti1b, VAMP-3, VAMP-8 and Syn-8 (but not syn-6 and syn-16) in DC. We further show that the phagocytic inhibitory effect of ASA is dependent on the expression of Vti1a and Vti1b. Consistently, Vti1a and Vti1b localize to the phagosomes and up-regulation of Vti1a and Vti1b inhibits phagocytosis in DC. Our results suggest that ASA modulates phagocytosis in part through the control of endosomal SNARE protein expression and localization in DC. All experiments were performed using either a murine DC line (DC2.4) or primary DC derived from murine bone marrow cells. 相似文献
15.
miRNA是一类高度保守的内源性非编码小RNA,主要作用于靶mRNA的3′-非翻译区,在转录后水平调控基因表达。miRNA可调控造血细胞的增殖、分化及免疫系统的内环境稳定,在固有免疫和适应性免疫中发挥重要的作用。树突状细胞(dendritic cell,DC)是目前发现的抗原递呈能力最强的细胞,是启动、调控并维持免疫应答的中心环节。证据显示,miRNA也参与了树突状细胞的发育、分化和功能的调控,本文将综述miRNA与树突状细胞的关系的最新研究进展。 相似文献
16.
17.
Shoshana Ravid 《Cell Adhesion & Migration》2014,8(4):378-383
Cell migration is a highly integrated, multistep process that plays an important role in physiological and pathological processes. The migrating cell is highly polarized, with complex regulatory pathways that integrate its component processes spatially and temporally.1 The Drosophila tumor suppressor, Lethal (2) giant larvae (Lgl), regulates apical-basal polarity in epithelia and asymmetric cell division.2 But little is known about the role of Lgl in establishing cell polarity in migrating cells. Recently, we showed that the mammalian Lgl1 interacts directly with non-muscle myosin IIA (NMIIA), inhibiting its ability to assemble into filaments in vitro.3 Lgl1 also regulates the cellular localization of NMIIA, the maturation of focal adhesions, and cell migration.3 We further showed that phosphorylation of Lgl1 by aPKCζ prevents its interaction with NMIIA and is important for Lgl1 and acto-NMII cytoskeleton cellular organization.4 Lgl is a critical downstream target of the Par6-aPKC cell polarity complex; we showed that Lgl1 forms two distinct complexes in vivo, Lgl1-NMIIA and Lgl1-Par6-aPKCζ in different cellular compartments.4 We further showed that aPKCζ and NMIIA compete to bind directly to Lgl1 through the same domain. These data provide new insights into the role of Lgl1, NMIIA, and Par6-aPKCζ in establishing front-rear polarity in migrating cells. In this commentary, I discuss the role of Lgl1 in the regulation of the acto-NMII cytoskeleton and its regulation by the Par6-aPKCζ polarity complex, and how Lgl1 activity may contribute to the establishment of front-rear polarity in migrating cells. 相似文献
18.
《Molecular membrane biology》2013,30(2):90-102
AbstractSince being introduced globally as Aspirin in 1899, acetylsalicylic acid (ASA) has been widely used as an analgesic, immune-regulatory, anti-pyretic and anti-thrombotic drug. ASA and its metabolite, salicylate, were also reported to be able to modulate antigen presenting functions of dendritic cells (DC). However, the intracellular targets of ASA in DC are still poorly understood. Since phagocytosis is the initial step taken by antigen-presenting cells in the uptake of antigens for processing and presentation, ASA might exerts its immune-regulatory effects by regulating phagocytosis. Here we show that ASA inhibits phagocytosis and modulates expression of endosomal SNAREs, such as Vti1a, Vti1b, VAMP-3, VAMP-8 and Syn-8 (but not syn-6 and syn-16) in DC. We further show that the phagocytic inhibitory effect of ASA is dependent on the expression of Vti1a and Vti1b. Consistently, Vti1a and Vti1b localize to the phagosomes and up-regulation of Vti1a and Vti1b inhibits phagocytosis in DC. Our results suggest that ASA modulates phagocytosis in part through the control of endosomal SNARE protein expression and localization in DC. All experiments were performed using either a murine DC line (DC2.4) or primary DC derived from murine bone marrow cells. 相似文献
19.
20.
Daniel Radoux Ernst Heinen Cécile Kinet-Denoël Elisabeth Tihange Léon Simar 《Cell and tissue research》1984,235(2):267-274
Summary Horse-spleen ferritin or bovine serum albumin conjugated to colloidal gold (BSA-gold) were injected subcutaneously in preimmunized mice. In draining lymph nodes both antigens were located in macrophages or between the cytoplasmic processes of follicular dendritic cells (FDC). Some of the antigens remained trapped on FDC until day 31 after injection. Simultaneous injection of both antigens showed that they were located between the infoldings of the same FDC. These cells are thus able to retain at least two different antigens on their surface. The peculiar arrangement of ferritin between the cytoplasmic infoldings suggests that this antigen is fixed on both cell membranes by specific antibodies. The trapped immune complexes could thus stabilize the FDC membrane system.The antigen retention requires the presence of specific antibodies since BSA-gold or ferritin injected without preimmunization were not found between FDC processes. Nonantigenic materials, such as colloidal gold or carbon particles, are not trapped by FDC, except when injected in large amounts.The antigens were trapped on the surface of FDC, however unfrequently in close contact with lymphocytes. FDC might protect lymphocytes against an excess of immune complexes and act as regulators of contacts between lymphocytes and immune complexes.Abbreviations BSA
bovine serum albumin
- BSA-gold
BSA conjugated to colloidal gold particles
- FDC
follicular dendritic cells 相似文献