首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CHIP targets toxic alpha-Synuclein oligomers for degradation   总被引:3,自引:0,他引:3  
alpha-Synuclein (alphaSyn) can self-associate, forming oligomers, fibrils, and Lewy bodies, the pathological hallmark of Parkinson disease. Current dogma suggests that oligomeric alphaSyn intermediates may represent the most toxic alphaSyn species. Here, we studied the effect of a potent molecular chaperone, CHIP (carboxyl terminus of Hsp70-interacting protein), on alphaSyn oligomerization using a novel bimolecular fluorescence complementation assay. CHIP is a multidomain chaperone, utilizing both a tetratricopeptide/Hsp70 binding domain and a U-box/ubiquitin ligase domain to differentially impact the fate of misfolded proteins. In the current study, we found that co-expression of CHIP selectively reduced alphaSyn oligomerization and toxicity in a tetratricopeptide domain-dependent, U-box-independent manner by specifically degrading toxic alphaSyn oligomers. We conclude that CHIP preferentially recognizes and mediates degradation of toxic, oligomeric forms of alphaSyn. Further elucidation of the mechanisms of CHIP-induced degradation of oligomeric alphaSyn may contribute to the successful development of drug therapies that target oligomeric alphaSyn by mimicking or enhancing the powerful effects of CHIP.  相似文献   

2.
A number of acute and chronic neurodegenerative disorders are caused due to misfolding and aggregation of many intra- and extracellular proteins. Protein misfolding and aggregation processes in cells are strongly regulated by cellular molecular chaperones known as heat-shock proteins (Hsps) that include Hsp60, Hsp70, Hsp40, and Hsp90. Recent studies have shown the evidences that Hsps are colocalized in protein aggregates in Alzheimer’s disease (AD), Parkinson’s disease (PD), Polyglutamine disease (PGD), Prion disease, and other neurodegenerative disorders. This fact indicates that Hsps might have attempted to prevent aggregate formation in cells and thus to suppress disease conditions. Experimental findings have already established in many cases that selective overexpression of Hsps like Hsp70 and Hsp40 prevented the disease progression in various animal models and cellular models. However, recently, various Hsp modulators like geldanamycin, 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin, and celastrol have shown to up-regulate the expression level of Hsp70 and Hsp40, which in turn triggers the solubilization of diseased protein aggregates. Hsps are, therefore, if appropriately selected, an attractive choice for therapeutic targeting in various kinds of neurodegeneration and hence are expected to have strong potential as therapeutic agents in suppressing or curing AD, PD, PGD, and other devastative neurodegenerative disorders. In the present review, we report the experimental findings that describe the implication of Hsps in the development of neurodegeneration and explore the possibility of how Hsps can be used directly or as a target by other agents to prevent various neurodegeneration through preventing aggregation process and thus reducing the toxicity of the oligomers based on the previous reports.  相似文献   

3.
Parkinson's disease (PD) is a common neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra and the aggregation of α-synuclein into Lewy bodies. Existing therapies address motor dysfunction but do not halt progression of the disease. A still unresolved question is the biochemical pathway that modulates the outcome of protein misfolding and aggregation processes in PD. The molecular chaperone network plays an important defensive role against cellular protein misfolding and has been identified as protective in experimental models of protein misfolding diseases like PD. Molecular mechanisms underlying chaperone-neuroprotection are actively under investigation. Current evidence implicates a number of molecular chaperones in PD including Hsp25, Hsp70 and Hsp90, however their precise involvement in the neurodegenerative cascade is unresolved. The J protein family (DnaJ or Hsp40 protein family) has long been known to be important in protein conformational processes.We assessed sensory and motor function of control and PD rats and then evaluated the brain region-specific expression levels of select J proteins by Western analysis. Surprisingly, we observed a widespread 26 kDa breakdown product of the J protein, TID1, (tumorous imaginal discs, mtHsp40 or DnaJ3) in a 6-hydroxydopamine (6-OHDA) rat model of PD in which food handling, gait symmetry and sensory performance were impaired. Greater behavioral deficits were associated with lower TID1 expression. Furthermore, direct application of either 6-OHDA or MPP+ (1-methyl-4-phenylpyridinum) to CAD (CNS-derived catecholinaminergic neuronal cell line) cell cultures, reduced TID1 expression levels.Our results suggest that changes in cellular TID1 are a factor in the pathogenesis of PD by impeding functional and structural compensation and exaggerating neurodegenerative processes. In contrast, no changes were observed in CSPα, Hsp40, Hsp70, Hsc70 and PrP(C) levels and no activation of caspase3 was observed. This study links TID1 to PD and provides a new target for therapeutics that halts the PD progression.  相似文献   

4.
Protein misfolding and overloaded proteostasis networks underlie a range of neurodegenerative diseases. No cures exist for these diseases, but developing effective therapeutic agents targeting the toxic, misfolded protein species in disease is one promising strategy. AAA+ (ATPases associated with diverse cellular activities) protein translocases, which naturally unfold and translocate substrate proteins, could be potent therapeutic agents to disassemble toxic protein conformers in neurodegenerative disease. Here, we discuss repurposing AAA+ protein translocases Hsp104 and proteasome-activating nucleotidase (PAN) to alleviate the toxicity from protein misfolding in neurodegenerative disease. Hsp104 effectively protects various animal models from neurodegeneration underpinned by protein misfolding, and enhanced Hsp104 variants strongly counter neurodegenerative disease-associated protein misfolding toxicity in yeast, Caenorhabditis elegans, and mammalian cells. Similarly, a recently engineered PAN variant (PANet) mitigates photoreceptor degeneration instigated by protein misfolding in a mouse model of retinopathy. Further study and engineering of AAA+ translocases like Hsp104 and PAN will reveal promising agents to combat protein misfolding toxicity in neurodegenerative disease.  相似文献   

5.
Protein misfolding and inclusion formation are common events in neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD) or Huntington's disease (HD). Alpha-synuclein (aSyn) is the main protein component of inclusions called Lewy bodies (LB) which are pathognomic of PD, Dementia with Lewy bodies (DLB), and other diseases collectively known as LB diseases. Heat shock proteins (HSPs) are one class of the cellular quality control system that mediate protein folding, remodeling, and even disaggregation. Here, we investigated the role of the small heat shock proteins Hsp27 and alphaB-crystallin, in LB diseases. We demonstrate, via quantitative PCR, that Hsp27 messenger RNA levels are approximately 2-3-fold higher in DLB cases compared to control. We also show a corresponding increase in Hsp27 protein levels. Furthermore, we found that Hsp27 reduces aSyn-induced toxicity by approximately 80% in a culture model while alphaB-crystallin reduces toxicity by approximately 20%. In addition, intracellular inclusions were immunopositive for endogenous Hsp27, and overexpression of this protein reduced aSyn aggregation in a cell culture model.  相似文献   

6.
Aggregation and accumulation of the microtubule-associated protein tau are associated with cognitive decline and neuronal degeneration in Alzheimer's disease and other tauopathies. Thus, preventing the transition of tau from a soluble state to insoluble aggregates and/or reversing the toxicity of existing aggregates would represent a reasonable therapeutic strategy for treating these neurodegenerative diseases. Here we demonstrate that molecular chaperones of the heat shock protein 70 (Hsp70) family are potent inhibitors of tau aggregation in vitro, preventing the formation of both mature fibrils and oligomeric intermediates. Remarkably, addition of Hsp70 to a mixture of oligomeric and fibrillar tau aggregates prevents the toxic effect of these tau species on fast axonal transport, a critical process for neuronal function. When incubated with preformed tau aggregates, Hsp70 preferentially associated with oligomeric over fibrillar tau, suggesting that prefibrillar oligomeric tau aggregates play a prominent role in tau toxicity. Taken together, our data provide a novel molecular basis for the protective effect of Hsp70 in tauopathies.  相似文献   

7.
Aberrant protein folding is severely problematic and manifests in numerous disorders, including amyotrophic lateral sclerosis (ALS), Parkinson disease (PD), Huntington disease (HD), and Alzheimer disease (AD). Patients with each of these disorders are characterized by the accumulation of mislocalized protein deposits. Treatments for these disorders remain palliative, and no available therapeutics eliminate the underlying toxic conformers. An intriguing approach to reverse deleterious protein misfolding is to upregulate chaperones to restore proteostasis. We recently reported our work to re-engineer a prion disaggregase from yeast, Hsp104, to reverse protein misfolding implicated in human disease. These potentiated Hsp104 variants suppress TDP-43, FUS, and α-synuclein toxicity in yeast, eliminate aggregates, reverse cellular mislocalization, and suppress dopaminergic neurodegeneration in an animal model of PD. Here, we discuss this work and its context, as well as approaches for further developing potentiated Hsp104 variants for application in reversing protein-misfolding disorders.  相似文献   

8.
Protein misfolding is linked to different neurodegenerative disorders like Alzheimer's disease, polyglutamine, and prion diseases. We investigated the cytotoxic effects of aberrant conformers of the prion protein (PrP) and show that toxicity is specifically linked to misfolding of PrP in the cytosolic compartment and involves binding of PrP to the anti-apoptotic protein Bcl-2. PrP targeted to different cellular compartments, including the cytosol, nucleus, and mitochondria, adopted a misfolded and partially proteinase K-resistant conformation. However, only in the cytosol did the accumulation of misfolded PrP induce apoptosis. Apoptotic cell death was also induced by two pathogenic mutants of PrP, which are partially localized in the cytosol. A mechanistic analysis revealed that the toxic potential is linked to an internal domain of PrP (amino acids 115-156) and involves coaggregation of cytosolic PrP with Bcl-2. Increased expression of the chaperones Hsp70 and Hsp40 prevented the formation of PrP/Bcl-2 coaggregates and interfered with PrP-induced apoptosis. Our study reveals a compartment-specific toxicity of PrP misfolding that involves coaggregation of Bcl-2 and indicates a protective role of molecular chaperones.  相似文献   

9.
10.
Heat shock proteins (Hsps) are a set of highly conserved proteins involved in cellular repair and protective mechanisms. They counter protein misfolding and aggregation that are characteristic features of neurodegenerative diseases. Hsps act co-operatively in disaggregation/refolding machines that assemble at sites of protein misfolding and aggregation. Members of the DNAJ (Hsp40) family act as “holdases” that detect and bind misfolded proteins, while members of the HSPA (Hsp70) family act as “foldases” that refold proteins to biologically active states. HSPH1 (Hsp105α) is an important additional member of the mammalian disaggregation/refolding machine that acts as a disaggregase to promote the dissociation of aggregated proteins. Components of a disaggregation/refolding machine were targeted to nuclear speckles after thermal stress in differentiated human neuronal SH-SY5Y cells, namely: HSPA1A (Hsp70-1), DNAJB1 (Hsp40-1), DNAJA1 (Hsp40-4), and HSPH1 (Hsp105α). Nuclear speckles are rich in RNA splicing factors, and heat shock disrupts RNA splicing which recovers after stressful stimuli. Interestingly, constitutively expressed HSPA8 (Hsc70) was also targeted to nuclear speckles after heat shock with elements of a disaggregation/refolding machine. Hence, neurons have the potential to rapidly assemble a disaggregation/refolding machine after cellular stress using constitutively expressed Hsc70 without the time lag needed for synthesis of stress-inducible Hsp70. Constitutive Hsc70 is abundant in neurons in the mammalian brain and has been proposed to play a role in pre-protecting neurons from cellular stress.  相似文献   

11.
Aberrant folding and fibrillar aggregation by polyglutamine (polyQ) expansion proteins are associated with cytotoxicity in Huntington's disease and other neurodegenerative disorders. Hsp70 chaperones have an inhibitory effect on fibril formation and can alleviate polyQ cytotoxicity. Here we show that the cytosolic chaperonin, TRiC, functions synergistically with Hsp70 in this process and is limiting in suppressing polyQ toxicity in a yeast model. In vitro reconstitution experiments revealed that TRiC, in cooperation with the Hsp70 system, promotes the assembly of polyQ-expanded fragments of huntingtin (Htt) into soluble oligomers of approximately 500 kDa. Similar oligomers were observed in yeast cells upon TRiC overexpression and were found to be benign, in contrast to conformationally distinct Htt oligomers of approximately 200 kDa, which accumulated at normal TRiC levels and correlated with inhibition of cell growth. We suggest that TRiC cooperates with the Hsp70 system as a key component in the cellular defense against amyloid-like protein misfolding.  相似文献   

12.
The pathogenesis of Huntington disease (HD) is attributed to the misfolding of huntingtin (htt) caused by an expanded polyglutamine (polyQ) domain. Considerable effort has been devoted to identifying molecules that can prevent or reduce htt misfolding and the associated neuropathology. Although overexpression of chaperones is known to reduce htt cytotoxicity in cellular models, only modest protection is seen with Hsp70 overexpression in HD mouse models. Because the activity of Hsp70 is modulated by co-chaperones, an interesting issue is whether the in vivo effects of chaperones on polyQ protein toxicity are dependent on other modulators. In the present study, we focused on BAG1, a co-chaperone that interacts with Hsp70 and regulates its activity. Of htt mice expressing the N171-82Q mutant, we found that male N171-82Q mice show a greater deficit in rotarod performance than female N171-82Q mice. This sex-dependent motor deficit was improved by crossing N171-82Q mice with transgenic mice overexpressing BAG1 in neurons. Transgenic BAG1 also reduces the levels of mutant htt in synaptosomal fraction of male HD mice. Overexpression of BAG1 augmented the effects of Hsp70 by reducing aggregation of mutant htt in cultured cells and improving neurite outgrowth in htt-transfected PC12 cells. These findings suggest that the effects of chaperones on HD pathology are influenced by both their modulators and sex-dependent factors.  相似文献   

13.
14.
《朊病毒》2013,7(2):90-109
Abstract

Protein misfolding and aggregation underpin several fatal neurodegenerative diseases, including Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). There are no treatments that directly antagonize the protein-misfolding events that cause these disorders. Agents that reverse protein misfolding and restore proteins to native form and function could simultaneously eliminate any deleterious loss-of-function or toxic gain-of-function caused by misfolded conformers. Moreover, a disruptive technology of this nature would eliminate self-templating conformers that spread pathology and catalyze formation of toxic, soluble oligomers. Here, we highlight our efforts to engineer Hsp104, a protein disaggregase from yeast, to more effectively disaggregate misfolded proteins connected with PD, ALS, and FTD. Remarkably subtle modifications of Hsp104 primary sequence yielded large gains in protective activity against deleterious α-synuclein, TDP-43, FUS, and TAF15 misfolding. Unusually, in many cases loss of amino acid identity at select positions in Hsp104 rather than specific mutation conferred a robust therapeutic gain-of-function. Nevertheless, the misfolding and toxicity of EWSR1, an RNA-binding protein with a prion-like domain linked to ALS and FTD, could not be buffered by potentiated Hsp104 variants, indicating that further amelioration of disaggregase activity or sharpening of substrate specificity is warranted. We suggest that neuroprotection is achievable for diverse neurodegenerative conditions via surprisingly subtle structural modifications of existing chaperones.  相似文献   

15.
The role of molecular chaperones in human misfolding diseases   总被引:1,自引:0,他引:1  
Sarah A. Broadley 《FEBS letters》2009,583(16):2647-144
Human misfolding diseases arise when proteins adopt non-native conformations that endow them with a tendency to aggregate and form intra- and/or extra-cellular deposits. Molecular chaperones, such as Hsp70 and TCP-1 Ring Complex (TRiC)/chaperonin containing TCP-1 (CCT), have been implicated as potent modulators of misfolding disease. These chaperones suppress toxicity of disease proteins and modify early events in the aggregation process in a cooperative and sequential manner reminiscent of their functions in de novo protein folding. Further understanding of the role of Hsp70, TRiC, and other chaperones in misfolding disease is likely to provide important insight into basic pathomechanistic principles that could potentially be exploited for therapeutic purposes.  相似文献   

16.
The ATP‐dependent protein chaperone heat‐shock protein 70 (Hsp70) displays broad anti‐aggregation functions and has a critical function in preventing protein misfolding pathologies. According to in vitro and in vivo models of Parkinson's disease (PD), loss of Hsp70 activity is associated with neurodegeneration and the formation of amyloid deposits of α‐synuclein (αSyn), which constitute the intraneuronal inclusions in PD patients known as Lewy bodies. Here, we show that Hsp70 depletion can be a direct result of the presence of aggregation‐prone polypeptides. We show a nucleotide‐dependent interaction between Hsp70 and αSyn, which leads to the aggregation of Hsp70, in the presence of ADP along with αSyn. Such a co‐aggregation phenomenon can be prevented in vitro by the co‐chaperone Hip (ST13), and the hypothesis that it might do so also in vivo is supported by studies of a Caenorhabditis elegans model of αSyn aggregation. Our findings indicate that a decreased expression of Hip could facilitate depletion of Hsp70 by amyloidogenic polypeptides, impairing chaperone proteostasis and stimulating neurodegeneration.  相似文献   

17.
Protein misfolding is implicated in numerous lethal neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and Parkinson disease (PD). There are no therapies that reverse these protein-misfolding events. We aim to apply Hsp104, a hexameric AAA+ protein from yeast, to target misfolded conformers for reactivation. Hsp104 solubilizes disordered aggregates and amyloid, but has limited activity against human neurodegenerative disease proteins. Thus, we have previously engineered potentiated Hsp104 variants that suppress aggregation, proteotoxicity and restore proper protein localization of ALS and PD proteins in Saccharomyces cerevisiae, and mitigate neurodegeneration in an animal PD model. Here, we establish that potentiated Hsp104 variants possess broad substrate specificity and, in yeast, suppress toxicity and aggregation induced by wild-type TDP-43, FUS and α-synuclein, as well as missense mutant versions of these proteins that cause neurodegenerative disease. Potentiated Hsp104 variants also rescue toxicity and aggregation of TAF15 but not EWSR1, two RNA-binding proteins with a prion-like domain that are connected with the development of ALS and frontotemporal dementia. Thus, potentiated Hsp104 variants are not entirely non-specific. Indeed, they do not unfold just any natively folded protein. Rather, potentiated Hsp104 variants are finely tuned to unfold proteins bearing short unstructured tracts that are not recognized by wild-type Hsp104. Our studies establish the broad utility of potentiated Hsp104 variants.KEY WORDS: FUS, Hsp104, TDP-43, α-synuclein, Disaggregase, Neurodegeneration  相似文献   

18.
Inclusion bodies of aggregated mutant huntingtin (htt) fragments are a neuropathological hallmark of Huntington disease (HD). The molecular chaperones Hsp70 and Hsp40 colocalize to inclusion bodies and are neuroprotective in HD animal models. How these chaperones suppress mutant htt toxicity is unclear but might involve direct effects on mutant htt misfolding and aggregation. Using size exclusion chromatography and atomic force microscopy, we found that mutant htt fragments assemble into soluble oligomeric species with a broad size distribution, some of which reacted with the conformation-specific antibody A11. Hsp70 associated with A11-reactive oligomers in an Hsp40- and ATP-dependent manner and inhibited their formation coincident with suppression of caspase 3 activity in PC12 cells. Thus, Hsp70 and Hsp40 (DNAJB1) dynamically target specific subsets of soluble oligomers in a classic ATP-dependent reaction cycle, supporting a pathogenic role for these structures in HD.  相似文献   

19.
Kennedy's disease is a degenerative disorder of motor neurons caused by the expansion of a glutamine tract near the amino terminus of the androgen receptor (AR). Ligand binding to the receptor is associated with several post-translational modifications, but it is poorly understood whether these affect the toxicity of the mutant protein. Our studies now demonstrate that mutation of lysine residues in wild-type AR that are normally acetylated in a ligand-dependent manner mimics the effects of the expanded glutamine tract on receptor trafficking, misfolding, and aggregation. Mutation of lysines 630 or 632 and 633 to alanine markedly delays ligand-dependent nuclear translocation. The K632A/K633A mutant also undergoes ligand-dependent misfolding and aggregation similar to the expanded glutamine tract AR. This acetylation site mutant exhibits ligand-dependent 1C2 immunoreactivity, forms aggregates that co-localize with Hsp40, Hsp70, and the ubiquitin-protein isopeptide ligase (E3) ubiquitin ligase carboxyl terminus of Hsc70-interacting protein (CHIP), and inhibits proteasome function. Ligand-dependent nuclear translocation of the wild-type receptor and misfolding and aggregation of the K632A/K633A mutant are blocked by radicicol, an Hsp90 inhibitor. These data identify a novel role for the acetylation site as a regulator of androgen receptor subcellular distribution and folding and indicate that ligand-dependent aggregation is dependent upon intact Hsp90 function.  相似文献   

20.
Protein misfolding is implicated in neurodegenerative diseases and occurs in aging. However, the contribution of the misfolded ensembles to toxicity remains largely unknown. Here we introduce 2 primate cell models of destabilized proteins devoid of specific cellular functions and interactors, as bona fide misfolded proteins, allowing us to isolate the gain-of-function of non-native structures. Both GFP-degron and a mutant chloramphenicol-acetyltransferase fused to GFP (GFP-Δ9CAT) form perinuclear aggregates, are degraded by the proteasome, and colocalize with and induce the chaperone Hsp70 (HSPA1A/B) in COS-7 cells. We find that misfolded proteins neither significantly compromise chaperone-mediated folding capacity nor induce cell death. However, they do induce growth arrest in cells that are unable to degrade them and promote stress-induced death upon proteasome inhibition by MG-132 and heat shock. Finally, we show that overexpression of all heat-shock factor-1 (HSF1) and Hsp70 proteins, as well as wild-type and deacetylase-deficient (H363Y) SIRT1, rescue survival upon stress, implying a noncatalytic action of SIRT1 in response to protein misfolding. Our study establishes a novel model and extends our knowledge on the mechanism of the function-independent proteotoxicity of misfolded proteins in dividing cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号