首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M P Ryan  M C Rea  C Hill    R P Ross 《Applied microbiology》1996,62(2):612-619
Lactococcus lactis DPC3147, a strain isolated from an Irish kefir grain, produces a bacteriocin with a broad spectrum of inhibition. The bacteriocin produced is heat stable, particularly at a low pH, and inhibits nisin-producing (Nip+) lactococci. On the basis of the observation that the nisin structural gene (nisA) does not hybridize to DPC3147 genomic DNA, the bacteriocin produced was considered novel and designated lacticin 3147. The genetic determinants which encode lacticin 3147 are contained on a 63-kb plasmid, which was conjugally mobilized to a commercial cheese starter, L. lactis subsp. cremoris DPC4268. The resultant transconjugant, DPC4275, both produces and is immune to lacticin 3147. The ability of lacticin 3147-producing lactococci to perform as cheddar cheese starters was subsequently investigated in cheesemaking trials. Bacteriocin-producing starters (which included the transconjugant strain DPC4275) produced acid at rates similar to those of commercial strains. The level of lacticin 3147 produced in cheese remained constant over 6 months of ripening and correlated with a significant reduction in the levels of nonstarter lactic acid bacteria. Such results suggest that these starters provide a means of controlling developing microflora in ripened fermented products.  相似文献   

2.
Permeabilization induced by lacticin 3147, lactococcins A, B and M, enterocin AS-48 and nisin, bacteriocins described as cell membrane-pore forming and lytic agents, enhanced in all cases aldehyde formation by Lactococcus lactis IFPL730. Nevertheless, the conversion of isoleucine into 2-methylbutyraldehyde depended not only on the degree of permeabilization but also on the bacteriocin that caused the cell membrane damage. The highest values of 2-methylbutyraldehyde corresponded to cell suspensions containing lacticin 3147 and lactococcins, treatments that provoked further lysis in addition to induced permeabilization.  相似文献   

3.
The aim of the present study was to develop adjunct strains which can grow in the presence of bacteriocin produced by lacticin 3147-producing starters in fermented products such as cheese. A Lactobacillus paracasei subsp. paracasei strain (DPC5336) was isolated from a well-flavored, commercial cheddar cheese and exposed to increasing concentrations (up to 4,100 arbitrary units [AU]/ml) of lantibiotic lacticin 3147. This approach generated a stable, more-resistant variant of the isolate (DPC5337), which was 32 times less sensitive to lacticin 3147 than DPC5336. The performance of DPC5336 was compared to that of DPC5337 as adjunct cultures in two separate trials using either Lactococcus lactis DPC3147 (a natural producer) or L. lactis DPC4275 (a lacticin 3147-producing transconjugant) as the starter. These lacticin 3147-producing starters were previously shown to control adventitious nonstarter lactic acid bacteria in cheddar cheese. Lacticin 3147 was produced and remained stable during ripening, with levels of either 1,280 or 640 AU/g detected after 6 months of ripening. The more-resistant adjunct culture survived and grew in the presence of the bacteriocin in each trial, reaching levels of 10(7) CFU/g during ripening, in contrast to the sensitive strain, which was present at levels 100- to 1,000-fold lower. Furthermore, randomly amplified polymorphic DNA-PCR was employed to demonstrate that the resistant adjunct strain comprised the dominant microflora in the test cheeses during ripening.  相似文献   

4.
Lacticin 3147 is a broad-spectrum bacteriocin produced by Lactococcus lactis subsp. lactis DPC3147 (M. P. Ryan, M. C. Rea, C. Hill, and R. P. Ross, Appl. Environ. Microbiol. 62:612–619, 1996). Partial purification of the bacteriocin by hydrophobic interaction chromatography and reverse-phase fast protein liquid chromatography revealed that two components are required for full activity. Lacticin 3147 is bactericidal against L. lactis, Listeria monocytogenes, and Bacillus subtilis; at low concentrations of the bacteriocin, bactericidal activity is enhanced when target cells are energized. This finding suggests that the presence of a proton motive force promotes the interaction of the bacteriocin with the cytoplasmic membrane, leading to the formation of pores at these low lacticin 3147 concentrations. These pores were shown to be selective for K+ ions and inorganic phosphate. The loss of these ions resulted in immediate dissipation of the membrane potential and hydrolysis of internal ATP, leading to an eventual collapse of the pH gradient at the membrane and ultimately to cell death. Our results suggest that lacticin 3147 is a pore-forming bacteriocin which acts on a broad range of gram-positive bacteria.  相似文献   

5.
Lacticin 3147 is a two-component bacteriocin produced by Lactococcus lactis subspecies lactis DPC3147. In order to further characterize the biochemical nature of the bacteriocin, both peptides were isolated which together are responsible for the antimicrobial activity. The first, LtnA1, is a 3,322 Da 30-amino acid peptide and the second component, LtnA2, is a 29-amino acid peptide with a mass of 2,847 Da. Conventional amino acid analysis revealed that both peptides contain the thioether amino acid, lanthionine, as well as an excess of alanine to that predicted from the genetic sequence of the peptides. Chiral phase gas chromatography coupled with mass spectrometry of amino acid composition indicated that both LtnA1 and LtnA2 contain D-alanine residues and amino acid sequence analysis of LtnA1 confirmed that the D-alanine results from post-translational modification of a serine residue in the primary translation product. Taken together, these results demonstrate that lacticin 3147 is a novel, two-component, D-alanine containing lantibiotic that undergoes extensive post-translational modification which may account for its potent antimicrobial activity against a wide range of Gram-positive bacteria.  相似文献   

6.
Lacticin 3147 is a broad-spectrum, two-component, lanthionine-containing bacteriocin produced by Lactococcus lactis DPC3147 which has widespread food and biomedical applications as a natural antimicrobial. Other two-component lantibiotics described to date include cytolysin and staphylococcin C55. Interestingly, cytolysin, produced by Enterococcus faecalis, has an associated haemolytic activity. The objective of this study was to compare the biological activity of lacticin 3147 with cytolysin. The lacticin 3147-encoding determinants were heterologously expressed in Ent. faecalis FA2-2, a plasmid-free strain, to generate Ent. faecalis pOM02, thereby facilitating a direct comparison with Ent. faecalis FA2-2.pAD1, a cytolysin producer. Both heterologously expressed lacticin 3147 and cytolysin exhibited a broad spectrum of activity against bacterial targets. Furthermore, enterococci expressing active lacticin 3147 did not exhibit a haemolytic activity against equine blood cells. The results thus indicate that the lacticin 3147 biosynthetic machinery can be heterologously expressed in an enterococcal background resulting in the production of the bacteriocin with no detectable haemolytic activity.  相似文献   

7.
The ability and frequency at which target organisms can develop resistance to bacteriocins is a crucial consideration in designing and implementing bacteriocin-based biocontrol strategies. Lactococcus lactis ssp. lactis IL1403 was used as a target strain in an attempt to determine the frequency at which spontaneously resistant mutants are likely to emerge to the lantibiotic lacticin 3147. Following a single exposure to lacticin 3147, resistant mutants only emerged at a low frequency (10(-8)-10(-9)) and were only able to withstand low levels of the bacteriocin (100 AU mL(-1)). However, exposure to increasing concentrations, in a stepwise manner, resulted in the isolation of eight mutants that were resistant to moderately higher levels of lacticin 3147 (up to 600 AU mL(-1)). Interestingly, in a number of cases cross-resistance to other lantibiotics such as nisin and lacticin 481 was observed, as was cross-resistance to environmental stresses such as salt. Finally, reduced adsorption of the bacteriocin in to the cell was documented for all resistant mutants.  相似文献   

8.
AIMS: The potential of a powdered preparation of the bacteriocin, lacticin 3147, was investigated for the inhibition of Listeria monocytogenes and Bacillus cereus. METHODS AND RESULTS: A 10% solution of reconstituted demineralized whey powder was fermented with Lactococcus lactis DPC3147 for the generation of a lacticin 3147 containing powdered product. A 99.9% reduction in L. monocytogenes numbers occurred in the presence of the lacticin 3147 powder within 2 h in natural yogurt, and an 85% reduction was observed in cottage cheese within the same time frame. Counts of B. cereus were reduced by 80% in soup, in the presence of 1% (w/w) lacticin 3147 powder, within 3 h. CONCLUSIONS: A powdered preparation of lacticin 3147 was effective for the control of Listeria and Bacillus in natural yogurt, cottage cheese and soup. SIGNIFICANCE AND IMPACT OF THE STUDY: The bioactive lacticin 3147 powder may find broad applications for control of Gram-positive pathogens/spoilage bacteria in a range of foods.  相似文献   

9.
The aim of the present study was to develop adjunct strains which can grow in the presence of bacteriocin produced by lacticin 3147-producing starters in fermented products such as cheese. A Lactobacillus paracasei subsp. paracasei strain (DPC5336) was isolated from a well-flavored, commercial cheddar cheese and exposed to increasing concentrations (up to 4,100 arbitrary units [AU]/ml) of lantibiotic lacticin 3147. This approach generated a stable, more-resistant variant of the isolate (DPC5337), which was 32 times less sensitive to lacticin 3147 than DPC5336. The performance of DPC5336 was compared to that of DPC5337 as adjunct cultures in two separate trials using either Lactococcus lactis DPC3147 (a natural producer) or L. lactis DPC4275 (a lacticin 3147-producing transconjugant) as the starter. These lacticin 3147-producing starters were previously shown to control adventitious nonstarter lactic acid bacteria in cheddar cheese. Lacticin 3147 was produced and remained stable during ripening, with levels of either 1,280 or 640 AU/g detected after 6 months of ripening. The more-resistant adjunct culture survived and grew in the presence of the bacteriocin in each trial, reaching levels of 107 CFU/g during ripening, in contrast to the sensitive strain, which was present at levels 100- to 1,000-fold lower. Furthermore, randomly amplified polymorphic DNA-PCR was employed to demonstrate that the resistant adjunct strain comprised the dominant microflora in the test cheeses during ripening.  相似文献   

10.
The use of hydrostatic pressure and lacticin 3147 treatments were evaluated in milk and whey with a view to combining both treatments for improving the quality of minimally processed dairy foods. The system was evaluated using two foodborne pathogens: Staphylococcus aureus ATCC6538 and Listeria innocua DPC1770. Trials against Staph. aureus ATCC6538 were performed using concentrated lacticin 3147 prepared from culture supernatant. The results demonstrated a more than additive effect when both treatments were used in combination. For example, the combination of 250 MPa (2.2 log reduction) and lacticin 3147 (1 log reduction) resulted in more than 6 logs of kill. Similar results were obtained when a foodgrade powdered form of lacticin 3147 (developed from a spray dried fermentatation of reconstituted demineralized whey powder) was evaluated for the inactivation of L. innocua DPC1770. Furthermore, it was observed that treatment of lacticin 3147 preparations with pressures greater than 400 MPa yielded an increase in bacteriocin activity (equivalent to a doubling of activity). These results indicate that a combination of high pressure and lacticin 3147 may be suitable for improving the quality of minimally processed foods at lower hydrostatic pressure levels.  相似文献   

11.
Developing applications for lactococcal bacteriocins   总被引:7,自引:0,他引:7  
While much of the applied research carried out to date with bacteriocins has concerned nisin, lactococci produce other bacteriocins with economic potential. An example is the two component bacteriocin lacticin 3147, which is active over a wide pH range and has a broad spectrum of activity against Gram-positive bacteria. Since the genetic determinants for lacticin 3147 are encoded on a large self-transmissible plasmid, the bacteriocin genes may be conveniently transferred to different lactococcal starters. The resulting food-grade strains can then be used to make a significant impact on the safety and quality of a variety of fermented foods, through the inhibition of undesirable microflora. The bacteriocin is heat stable so it can also be used as an ingredient in a powdered form such as a spray-dried fermentate. Given the observation that lacticin 3147 is effective at physiological pH, there is also considerable potential for biomedical applications. Field trials have demonstrat ed its efficacy in the prevention of mastitis infections in dairy cows. In contrast to lacticin 3147, the lactococcin bacteriocins A, B and M have a narrow spectrum of activity limited to lactococci. Strains which produce these inhibitors can be exploited in the acceleration of cheese ripening by assisting the premature lysis of starter cultures.  相似文献   

12.
Lacticin 3147 is a broad-spectrum bacteriocin produced by Lactococcus lactis subsp. lactis DPC3147 which is bactericidal against a range of mastitis-causing streptococci and staphylococci. In this study, both lacticin 3147 and the lantibiotic nisin were separately incorporated into an intramammary teat seal product. The seal containing lacticin 3147 exhibited excellent antimicrobial activity and might form the basis of an improved treatment for the prevention of mastitis in dry cows.  相似文献   

13.
The bacteriocin, lacticin 3147, increased isoleucine transamination by Lactococcus lactis IFPL359 in a cheese model system. The formation of -keto--methyl-n-valeric acid and 2-hydroxy-3-methyl-valeric acid increased by three times in cheese slurries at 12 °C and cheese aroma intensity increased as well, which corresponded with a higher 2-methylbutanal formation.  相似文献   

14.
The efficacy of using a lacticin 3147-producing starter as a protective culture to improve the safety of cottage cheese was investigated. This involved the manufacture of cottage cheese using Lactococcus lactis DPC4268 (control) and L. lactis DPC4275, a bacteriocin-producing transconjugant strain derived from DPC4268. A number of Listeria monocytogenes strains, including a number of industrial isolates, were assayed for their sensitivity to lacticin 3147. These strains varied considerably with respect to their sensitivity to the bacteriocin. One of the more tolerant strains, Scott A, was used in the cottage cheese study; the cheese was subsequently inoculated with approximately 10(4) L. monocytogenes Scott A g-1. The bacteriocin concentration in the curd was measured at 2560 AU ml-1, and bacteriocin activity could be detected throughout the 1 week storage period. In cottage cheese samples held at 4 degrees C, there was at least a 99.9% reduction in the numbers of L. monocytogenes Scott A in the bacteriocin-containing cheese within 5 d, whereas in the control cheeses, numbers remained essentially unchanged. At higher storage temperatures, the kill rate was more rapid. These results demonstrate the effectiveness of lacticin 3147 as an inhibitor of L. monocytogenes in a food system where post-manufacture contamination by this organism could be problematic.  相似文献   

15.
Lacticin 3147 is a broad-spectrum bacteriocin produced by Lactococcus lactis subsp. lactis DPC3147, which has been shown to be active against a range of food-borne bacteria. The reported inhibitory range for lacticin is extended to include methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecalis, penicillin-resistant Pneumococcus, Propionibacterium acne and Streptococcus mutans. This extended host range is not obvious from traditional agar plate-based methods, but reductions in bacterial cell numbers by up to 6 log10 cfu ml-1 was observed after 2 h in time-kill curve studies conducted in broth, suggesting that the bacteriocin may have potential as a therapeutic agent in the treatment of human infections.  相似文献   

16.
Bacteriocinogenic strains, Lactococcus lactis subsp. lactis DPC 3147 and L. lactis DPC 496, producing lacticin 3147 and nisin, respectively, were immobilized in double-layered calcium alginate beads. These beads were inoculated into MRS broth at a ratio of 1:4 and continuously fermented for 180 h. Free cells were used to compare the effect of immobilization on bacteriocin production. After equilibrium was reached, a flow rate of 580 ml h(-1) was used in the immobilized cell (IC), and 240 ml h(-1) in free-cell (FC) bioreactors. Outgrowth from beads was observed after 18 h. Bacteriocin production peaked at 5120 AU ml(-1) in both IC and FC bioreactors. However, FC production declined after 80 h to 160 AU ml(-1) at the end of the fermentation. Results of this study indicate that immobilization offers the possibility of a more stable and long-term means of producing lacticin 3147 in laboratory media than with free cells.  相似文献   

17.
AIMS: A live Lactococcus lactis culture, producing the two-component broad spectrum bacteriocin lacticin 3147, was assessed for ability to inhibit the food pathogen Listeria monocytogenes on the surface of smear-ripened cheese. METHODS AND RESULTS: In initial experiments, the addition of Listeria to a lacticin 3147-containing fermentate produced with L. lactis DPC4275 (a transconjugant strain derived from L. lactis DPC3147) resulted in at least a 4 log reduction of the pathogen in 30 min. Two separate trials were performed in order to assess the most suitable method for application of the potential protective culture to smear-ripened cheese. In the initial trial, the L. lactis was sprayed onto the surface of the cheese either before or after Listeria was deliberately applied. Application of the culture following Listeria challenge, yielded up to a 1000-fold reduction of the pathogen in contrast to the pretreatment where Listeria numbers were unaffected. In a further trial, three applications of the live lacticin 3147-producing culture was used on a cheese surface containing Listeria. Listeria numbers were found to be up to 100-fold lower than in the cheese treated with L. lactis DPC4268 (control). CONCLUSION: While application of the live lacticin 3147 producer did not give complete elimination of the pathogen the results nonetheless demonstrate the potential of the bioprotectant for improving the safety of smear-ripened cheeses and particularly those that contain low level contamination with Listeria. SIGNIFICANCE AND IMPACT OF THE STUDY: The application of lacticin 3147 as a live-culture can serve as a bioprotectant for the control of L. monocytogenes on the surface of smear-ripened cheese.  相似文献   

18.
The component peptides of lacticin 3147 were degraded by alpha-chymotrypsin in vitro with a resultant loss of antimicrobial activity. Activity was also lost in ileum digesta. Following oral ingestion, neither of the lacticin 3147 peptides was detected in the gastric, jejunum, or ileum digesta of pigs, and no lacticin 3147 activity was found in the feces. These observations suggest that lacticin 3147 ingestion is unlikely to have adverse effects, since it is probably inactivated during intestinal transit.  相似文献   

19.
Gastrointestinal survival of the bacteriocin-producing strain, Lactococcus lactis DPC6520, was evaluated systematically in vitro and in vivo with a view to using this strain to deliver biologically active lacticin 3147, a broad-spectrum bacteriocin, to the gut. The activity of the lacticin 3147 producer was also evaluated against two clinically relevant pathogens: Clostridium difficile and Listeria monocytogenes. When suspended in an appropriate matrix, the lactococcal strain is capable of surviving simulated gastrointestinal juices similar to the porcine probiotic, Lactobacillus salivarius DPC6005. Upon administration of L. lactis DPC6520 to pigs (n=4), excretion rates of ~10(2) -10(5) CFU g(-1) faeces were observed by day 5. Although passage through the gastrointestinal tract (GIT) did not affect lacticin 3147 production by L. lactis DPC6520 isolates, activity was undetectable in faecal samples by an agar well diffusion assay. Furthermore, L. lactis DPC6520 had no inhibitory effect on C. difficile or other bacterial populations in a human distal colon model, while lactococcal counts declined 10,000-fold over 24 h. The lacticin 3147 producer failed to prevent L. monocytogenes infection in a mouse model, even though a mean L. lactis DPC6520 count of 4.7 × 10(4) CFU g(-1) faeces was obtained over the 5-day administration period. These data demonstrate that L. lactis DPC6520 is capable of surviving transit through the GIT, and yet lacks antimicrobial efficacy in the models of infection used.  相似文献   

20.
The component peptides of lacticin 3147 were degraded by α-chymotrypsin in vitro with a resultant loss of antimicrobial activity. Activity was also lost in ileum digesta. Following oral ingestion, neither of the lacticin 3147 peptides was detected in the gastric, jejunum, or ileum digesta of pigs, and no lacticin 3147 activity was found in the feces. These observations suggest that lacticin 3147 ingestion is unlikely to have adverse effects, since it is probably inactivated during intestinal transit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号