首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Murine 3T3-L1 preadipocytes proliferate normally in medium containing fetal calf serum depleted of insulin, growth hormone, and insulin-like growth factor-I (IGF-I). However, the cells do not differentiate into adipocytes in the presence of the hormone-depleted serum. Supplementation of the growth medium with 10-20 nM IGF-I or 2 microM insulin restores the ability of 3T3-L1 cells to develop into adipocytes. The cells acquire an adipocyte morphology, accumulate triglycerides, and express a 450-fold increase in the activity of the lipogenic enzyme glycerol-3-phosphate dehydrogenase. The increase in glycerol-3-phosphate dehydrogenase activity is paralleled by the accumulation of glycerol-3-phosphate dehydrogenase mRNA and mRNA for the myelin P2-like protein aP2, another marker for fat cell development. IGF-I or insulin-stimulated adipogenesis in 3T3-L1 cells is not dependent on growth hormone. Occupancy of preadipocyte IGF-I receptors by IGF-I (or insulin) is implicated as a central step in the differentiation process. The IGF-I receptor binds insulin with a 70-fold lower affinity than IGF-I, and 30-70-fold higher levels of insulin are required to duplicate the effects of an optimal amount of IGF-I. The effects of 10-20 nM IGF-I are likely to be mediated by high affinity (KD = 5 nM) IGF-I receptors that are expressed at a density of 13,000 sites/preadipocyte. In undifferentiated cells the IGF-I receptor concentration is twice that of the insulin receptor. After adipocyte differentiation is triggered, the number and affinity of IGF-I receptors remain constant while insulin receptor number increases approximately 25-fold as developing adipocytes become responsive to insulin at the level of metabolic regulation. Thus, preadipocytes have the potential for a maximal response to IGF-I, whereas the accumulation of more than 95% of adipocyte insulin receptors and the appearance of responsiveness to insulin are consequences of differentiation. IGF-I or insulin is essential for the induction of a variety of abundant and nonabundant mRNAs characteristic of 3T3-L1 adipocytes.  相似文献   

2.
3.
The human placenta lacks the enzyme 17-hydroxylase/17-20-lyase, and is thus unable to convert cholesterol into estrogens. Therefore estrogen synthesis of trophoblast cells depends on the supply of precursors such as dehydroepiandrosterone-3-sulfate (DHEA-S) and 16-hydroxy-dehydroepiandrosterone-3-sulfate by maternal and fetal blood. To investigate the cellular internalisation of these anionic hydrophilic precursors, the uptake of [3H]-/[35S]-DHEA-S and [3H]-taurocholate by isolated cytotrophoblasts, cells of choriocarcinoma cell lines (JEG-3, BeWo, Jar), BHK and BHK cells transfected with human sterylsulfatase-cDNA (BHK-STS cells) was studied. Furthermore, the activity of sterylsulfatase of these cells in suspension and in corresponding cell homogenate was measured.

During the first 5 min of incubation with [3H]-DHEA-S or [35S]-DHEA-S, radioactivity of cytotrophoblasts increased significantly, while radioactivity of JEG-3, Jar, BHK and BHK-STS cells did not increase. Radioactivity of BeWo cells increased slightly. For all cell types, there was no significant difference for uptake of either substrate. During incubation with [3H]-taurocholate, radioactivity of cytotrophoblasts did not increase. Sterylsulfatase activity of cytotrophoblast homogenate was significantly lower than that of cytotrophoblast suspension. Sterylsulfatase activity of BHK-STS, JEG-3 or BeWo cell homogenate was significantly higher than that of the corresponding cell suspension. In BHK and Jar cells sterylsulfatase activity was not detectable.

Cytotrophoblasts take up DHEA-S without prior hydrolysis. BHK, BHK-STS, JEG-3, and Jar cells do not take up and BeWo cells slowly take up DHEA-S. In cytotrophoblasts extracellular DHEA-S rapidly gains access to intracellular sterylsulfatase, while in choriocarcinoma and BHK-STS cells access of DHEA-S to sterylsulfatase is limited. Our results indicate, that uptake by cytotrophoblasts is mediated by a carrier which is not expressed in choriocarcinoma or BHK cells and which is different from the known taurocholate-transporting organic anion transporting polypetides.  相似文献   


4.
Effects of fatty acids, prostaglandins, and phospholipids on the activity of purified cGMP-stimulated cyclic nucleotide phosphodiesterase from calf liver were investigated. Prostaglandins A2, E1, E2, F1 alpha, and F2 alpha, thromboxane B2, and most phospholipids were without effect; lysophosphatidylcholine was a potent inhibitor. Several saturated fatty acids (carbon chain length 14-24), at concentrations up to 1 mM, had little or no effect on hydrolysis of 0.5 microM [3H]cGMP or 0.5 microM [3H]cAMP with or without 1 microM cGMP. In general, unsaturated fatty acids were inhibitory, except for myristoleic and palmitoleic acids which increased hydrolysis of 0.5 microM [3H]cAMP. The extent of inhibition by cis-isomers correlated with the number of double bonds. Increasing concentrations of palmitoleic acid from 10 to 100 microM increased hydrolysis of [3H]cAMP with maximal activation (60%) at 100 microM; higher concentrations were inhibitory. Palmitoleic acid inhibited cGMP hydrolysis and cGMP-stimulated cAMP hydrolysis with IC50 values of 110 and 75 microM, respectively. Inhibitory effects of palmitoleic acid were completely or partially prevented by equimolar alpha-tocopherol. Palmitelaidic acid, the trans isomer, had only slightly inhibitory effects. The effects of palmitoleic acid (100 microM) were dependent on substrate concentration. Activation was maximal with 1 microM [3H]cAMP and was reduced with increasing substrate; with greater than 10 microM cAMP, palmitoleic had no effect. Inhibition of cGMP hydrolysis was maximal at 2.5 microM cGMP and was reduced with increasing cGMP; at greater than 100 microM cGMP palmitoleic acid increased hydrolysis slightly. Palmitoleic acid did not affect apparent Km or Vmax for cAMP hydrolysis, but increased the apparent Km (from 17 to 60 microM) and Vmax for cGMP hydrolysis with little or no effect on the Hill coefficient for either substrate. These results suggest that certain hydrophobic domains play an important role in modifying the catalytic specificity of the cGMP-stimulated phosphodiesterase for cAMP and cGMP.  相似文献   

5.
6.
1. Binding of insulin and insulin-like growth factor I (IGF-I) to HepG2 cells was analysed with regard to competition by both insulin and IGF-I. At concentrations of insulin that caused maximal phosphorylation of the insulin receptor, virtually no displacement of IGF-I binding was observed. Similarly, at concentrations of IGF-I that caused maximal phosphorylation of the IGF-I receptor, no displacement of insulin binding was observed. 2. When the phosphorylation of both receptors was examined individually by using specific monoclonal antibodies to immunoprecipitate the receptors, phosphorylation of the insulin receptor was found to increase on both serine and tyrosine residues in cells treated with 100 ng of IGF-I/ml. In contrast, no increased phosphorylation of IGF-I receptor was observed in cells treated with 100 ng of insulin/ml. 3. The increase in phosphorylation of insulin receptor in response to IGF-I correlated with the dose-response of IGF-I-stimulated phosphorylation of the IGF-I receptor. 4. The IGF-I-stimulated phosphorylation of the insulin receptor could be blocked by preincubation with a monoclonal antibody that blocks IGF-I binding to the IGF-I receptor.  相似文献   

7.
One major approach to the study of growth factor receptor action has been to overexpress wild-type or mutant receptors in cultured cells and to evaluate biological responses to exogenous ligand. Studies of this type with insulin and insulin-like growth factor-I (IGF-I) receptors often use Chinese hamster ovary (CHO) cells. We have compared the effect of receptor overexpression in CHO cells and in NIH-3T3 fibroblasts in order to assess the suitability of CHO cells for studies of this nature and the contribution of cell type-specific factors to those responses generally assayed. Overexpression of IGF-I receptors in NIH-3T3 cells resulted in increased sensitivity and maximal responsiveness of thymidine incorporation, 2-deoxyglucose uptake, and phosphatidylinositol-3 (PI3) kinase activation to IGF-I stimulation. In CHO cells, on the other hand, overexpression of either IGF-I or insulin receptors increased the sensitivity of thymidine incorporation to ligand, but maximal responsiveness was unchanged or decreased. Overexpression of the insulin receptor increased sensitivity of glucose uptake and the maximal response of PI3 kinase activation to insulin. Overexpression of the IGF-I receptor did not affect sensitivity or maximal responsiveness of glucose uptake or PI3 kinase activation to IGF-I. These data suggest that IGF-I and insulin signal pathways may differ in CHO cells, and that there may even be divergent IGF-I signaling pathways for short vs. long-term effects. Whether this is a result of differences in the number of endogenous receptors, hybrid receptor formation, or defects in post-receptor signaling, the use of CHO cells to assess receptor function must be approached with caution. © Wiley-Liss, Inc.  相似文献   

8.
Insulin and insulin-like growth factor I (IGF-I) are known to affect cardiovascular disease. We have investigated ligand binding and the dose-response relationship for insulin and IGF-I on vascular smooth muscle cells (VSMCs) at the receptor level. VSMCs from rat thoracic aorta were serum starved, stimulated with IGF-I or insulin, lysed, immunoprecipitated, and analyzed by Western blot. d-[U-(14)C]Glucose accumulation and [6-(3)H]thymidine incorporation into DNA were also measured. Specific binding of both insulin and IGF-I was demonstrated, being higher for IGF-I. Both IGF-I receptor (IGF-IR) and insulin receptor (IR) beta-subunits were detected and coprecipitated after immunoprecipitation (IP) against either of the two. No coprecipitation was found after reduction of disulphide bonds with dithiotreitol before IP. After stimulation with 10(-10)-10(-9) M IGF-I, IP of the IGF-IR, or IR beta-subunit and immunoblot with anti-phosphotyrosine antibody, we found two distinct bands indicating phosphorylation of both the IGF-IR and the IR beta-subunit. Stimulation with 10(-10)-10(-9) M insulin and IP against the IGF-IR did not show phosphorylation of either beta-subunit, whereas after IP of the IR we found phosphorylation of the IR beta-subunit. [(14)C]Glucose accumulation and [(3)H]thymidine incorporation were elevated in cells stimulated with IGF-I at 10(-10)-10(-7) M, reaching maximum by 10(-9) M. Insulin stimulation showed measurable effects only at supraphysiological concentrations, 10(-8)-10(-7) M. In conclusion, coprecipitation of both the IGF-IR and the IR beta-subunit indicates the presence of hybrid insulin/IGF-I receptors in VSMC. At a physiological concentration, insulin activates the IR but does not affect either glucose metabolism or DNA synthesis, whereas IGF-I both activates the receptor and elicits biological effect.  相似文献   

9.
Competitive binding studies indicated that PC12 cells have receptors for insulin-like growth factor-I (IGF-I). There are approximately 11,000 +/- 1,500 IGF-I receptors/cell; these receptors have an apparent KD for IGF-I of 7.2 +/- 0.6 nM. Covalent cross-linking of 125I-IGF-I to PC12 cells labeled a 125,000-130,000-Mr protein, presumably the alpha-subunit of the IGF-I receptor. Although PC12 cells also have insulin receptors, the 125I-IGF-I appeared to be cross-linked to IGF-I receptors, because 100 nM IGF-I competed for labeling but 100 nM insulin did not. Bovine chromaffin cells also have IGF-I receptors. The protein tyrosyl kinase activity of IGF-I receptors from bovine adrenal medulla and PC12 cells was examined after purification of the receptors by wheat germ agglutinin-Sepharose chromatography. IGF-I (10 nM) stimulated autophosphorylation of the beta-subunits of the IGF-I receptors from both preparations; the beta-subunits from both sources had Mr values of approximately 97,000. IGF-I also stimulated phosphorylation of the synthetic substrate poly(Glu:Tyr)4:1 by both receptor preparations. IGF-I (IC50 of approximately 0.2 nM) was much more potent than insulin at stimulating phosphorylation of poly(Glu:Tyr) by the bovine adrenal medulla preparation. A maximal concentration of IGF-I (10 nM) increased phosphorylation approximately threefold. IGF-I was slightly more effective than insulin at stimulating the phosphorylation of poly(Glu:Tyr) by the PC12 cell receptor preparation, but neither ligand produced a maximal effect at concentrations up to 100 nM. This result probably reflects the presence of comparable numbers of IGF-I and insulin receptors on PC12 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The activity of steroid 21-sulfatase, the enzyme that catalyzes the hydrolysis of deoxycorticosterone sulfate (DOC-SO4) is demonstrable in human placenta. Thus, it is possible that this placental enzyme, by way of the hydrolysis of either DOC-SO4 or 21-hydroxypregnenolone mono- or di-sulfate of fetal origin, may be important in the biosynthesis of DOC, which is present in the plasma of pregnant women in high concentration. To investigate this issue further, we evaluated steroid 21-sulfatase activity in microsomal preparations of a sulfatase-deficient placenta. Immediately after delivery, at term, of a living male fetus with sulfatase deficiency, a microsome-enriched fraction of placental tissue was prepared; sulfatase activity was evaluated by use of three substrates, viz. dehydroisoandrosterone sulfate (DS), estrone sulfate (E1-SO4), and DOC-SO4, in various concentrations. Similar incubations were conducted with aliquots of a microsome-enriched fraction prepared from placental tissue of a normal fetus that was delivered, at term, within minutes of the time of delivery of the infant with sulfatase deficiency. In microsomal fractions from the normal placenta, each of the steroid sulfates was hydrolyzed. In the absence of microsomes, and in the presence of microsomal fractions from the sulfatase-deficient placenta, the hydrolysis of DOC-SO4 and DS was not detected. Moreover, in microsomes prepared from the sulfatase-deficient placenta, E1-SO4 was hydrolyzed at a rate that was only 10% of that in incubations with microsomal preparations of the normal placenta. We conclude that with sulfatase deficiency, the placenta is deficient not only in sulfatase activity for steroid-3-sulfates but for steroid 21-sulfates, e.g. DOC-SO4, as well.  相似文献   

11.
Direct production of gonadal steroids from sulfated adrenal androgens may be an important alternative or complementary pathway for ovarian steroidogenesis. The conversion of sulfated adrenal androgens, present in serum at micromolar concentrations in adult women, into unconjugated androgens or estrogens requires steroid sulfatase (STS) activity. STS activity has not been characterized in the rat ovary. Substantial STS activity was present in homogenates of rat ovaries, primary cultures of rat granulosa cells, and a granulosa cell line, as determined by conversion of radiolabeled estrone sulfate (E1S) to unconjugated estrone. The potent inhibitor estrone sulfamate eliminated the STS activity. Using E1S as a substrate with microsomes prepared from a granulosa cell line, the Km of STS activity was approximately 72 μM, a value in agreement with previously published data for rat STS. Therefore, ovarian cells possess STS and can remove the sulfate from adrenal androgens such as dehydroepiandrosterone sulfate (DHEA-S). Using DHEA-S as a steroidogenic substrate represents an alternative model for the production of ovarian steroids versus the “two cell, two gonadotropin” model of ovarian estrogen synthesis, whereby thecal cells produce androgens from substrate cholesterol and granulosa cells convert the androgens into estrogens. The relative contribution of STS activity to ovarian steroidogenesis remains unclear but may have important physiological and pathophysiological implications.  相似文献   

12.
13.
1. The corticosteroids cortisol, cortisone and corticosterone were tested for their ability to affect the hydrolysis of serum albumin, insulin and oxyhaemoglobin incubated with trypsin, chymotrypsin, papain and pepsin. 2. Corticosteroids stimulated the hydrolysis of albumin and oxyhaemoglobin with trypsin between 10% and 200% and inhibited the hydrolysis of insulin by 15% (steroid/substrate molar ratio, 5:1). 3. The degree of stimulation of proteolysis for a given substrate depended on both the nature of the steroid and the protease. Corticosterone did not increase the activity of papain and pepsin with any of the substrates tested. 4. Corticosterone stimulated (fivefold) the denaturation of oxyhaemoglobin measured spectroscopically in 2.4% (w/v) sodium hydroxide. Small changes in the absorption spectrum of haemoglobin solutions were also noted at pH7.8 without a marked change in the basic properties of haemoglobin. 5. With regard to the action of corticosterone on the activity of trypsin, the lack of stimulation when benzoylarginine amide was used as a substrate, the lowering of the stimulation on prior heat denaturation of haemoglobin and the high temperature coefficient for stimulation suggest that the steroid resulted in improved access of the protease to susceptible bonds of the substrate.  相似文献   

14.
A simple method for simultaneous determination of androstenediol 3-sulfate (Adiol-3S) and dehydroepiandrosterone sulfate (DHEA-S) in human serum using isotope diluted liquid chromatography-electrospray ionization-ion trap-mass spectrometry (LC-ESI-ion trap-MS) was developed. After addition of deuterated internal standards ([2H5]Adiol-3S and [2H4]DHEA-S), human serum (100 microl) was deproteinized with acetonitrile and then applied to a solid-phase extraction cartridge, Oasis HLB. The obtained steroid sulfates fraction was washed with hexane and then analyzed by LC-ESI-MS operated in the negative ion mode. The quantification ranges of Adiol-3S and DHEA-S were 10-400 ng/ml and 0.05-8 microg/ml, respectively. The method does not require the chemical or enzymatic hydrolysis of the conjugates and purification with high-performance liquid chromatography, and shows satisfactory reproducibility and accuracy. The concentrations of these sulfates in the sera of healthy male volunteers (n=14) were 19.2-245.3 mg/ml (Adiol-3S) and 0.175-5.16 microg/ml (DHEA-S), and those of patients with prostate cancer (n=19) were 15.3-182.7 ng/ml (Adiol-3S; four samples, not detectable) and 0.110-2.421 microg/ml (DHEA-S).  相似文献   

15.
Insulin-like growth factor I (IGF-I) receptors are partially purified from human placenta by sequential affinity chromatography with wheat germ agglutinin-agarose and agarose derivatized with an IGF-I analog. Adsorption specificity to this affinity matrix demonstrates that low coupling ratios of IGF-I analog to agarose yield preparations that are highly selective in purifying IGF-I receptor with minimal cross-contamination by the insulin receptor present in the same placental extracts. Incubation of the immobilized IGF-I receptor preparation with [gamma-32P]ATP results in a marked phosphorylation of the receptor beta subunits, which appear as a doublet of Mr = 93,000 and 95,000 upon electrophoresis on dodecyl sulfate-polyacrylamide gels. The 32P-labeled receptor beta subunit doublet contains predominantly phosphotyrosine and to a much lesser extent phosphoserine and phosphothreonine residues. The immobilized IGF-I receptor preparation exhibits tyrosine kinase activity toward exogenous histone. The characteristics of the IGF-I receptor-associated tyrosine kinase are remarkably similar to those of the insulin receptor kinase. Thus, prior phosphorylation of the immobilized IGF-I receptor preparation with increasing concentrations of unlabeled ATP followed by washing to remove the unreacted ATP results in a progressive activation of the receptor-associated histone kinase activity. A maximal (10-fold) activation is achieved between 0.25 and 1 mM ATP. The concentration of ATP required for half-maximal (30 microM) activation of the IGF-I receptor kinase is similar to that of the insulin receptor kinase. Like the insulin receptor kinase, the elevated kinase activity of the phosphorylated IGF-I receptor is reversed following dephosphorylation of the receptor beta subunit with alkaline phosphatase. Furthermore, the phosphorylation of the IGF-I receptor beta subunit doublet is enhanced by 7-8-fold when reductant is included in the reaction medium, as is observed for the insulin receptor kinase. Significantly, the dose responses of both receptor types to reductant are identical. Both of the 32P-labeled IGF-I receptor beta subunit bands are resolved into six matching phosphopeptide fractions when the corresponding tryptic hydrolysates are resolved by reverse phase high pressure liquid chromatography. Significantly, four out of the six phosphopeptide fractions derived from the trypsinized IGF-I receptor beta subunits are chromatographically identical to those from the tryptic hydrolysates of 32P-labeled insulin receptor beta subunit.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
IGF-I and insulin receptors possess tyrosine-kinase enzymatic activity considered to be essential for signal transduction and thereby mediating the putative effects of these hormones on fetal growth and development. We investigated the ontogeny of IGF-I and insulin receptor tyrosine-kinase activity in at least 3 separate membrane preparations from liver of rats at 21 day of embryonic life (21ED), 1 and 5 day of postnatal life (1PD and 5PD respectively) and adult. Receptors purified by wheat germ agglutinin chromatography (WGA) were exposed to graded concentrations of IGF-I or insulin, and tyrosine-kinase activity was measured by quantifying incorporation of 32P into the exogenous substrate poly[Glu,Tyr; 4:1]. IGF-I stimulated tyrosine-kinase solely at 1 PD as documented by a maximal increase of 346 +/- 167% over basal kinase activity with 6.6 nmol/L IGF-I. While the lack of response in adult animals could be explained by a striking decrease in receptors at that age, 125I-IGF-I binding and affinity labelling of the WGA preparations indicated substantial IGF-I receptors were present in the liver at each of the perinatal ages. Furthermore, this dissociation between IGF-I binding and the tyrosine-kinase activity of these IGF-I receptors could not be attributed to the presence/absence of IGF-I binding proteins as judged by affinity labelling. In contrast, insulin-stimulated tyrosine-kinase activity was observed at all ages tested although it appeared greatest at 1PD. We conclude that (i) expression of IGF-I tyrosine-kinase activity is linked to developmental events and differs from that found for the insulin receptor tyrosine-kinase activity, (ii) during the perinatal period there is an apparent dissociation between ligand binding by the IGF-I receptor and receptor tyrosine-kinase activity. These observations suggest modulation of IGF-I receptor tyrosine-kinase activity may be an important regulator of IGF-I action during the perinatal period.  相似文献   

17.
Tsai YM  Chou SW  Lin YC  Hou CW  Hung KC  Kung HW  Lin TW  Chen SM  Lin CY  Kuo CH 《Life sciences》2006,79(13):1281-1286
Serum dehydroepiandrosterone sulfate (DHEA-S) concentration is known to be associated with the whole-body insulin sensitivity. The main purpose of the study was to investigate the effect of resistance exercise on DHEA-S concentration during a 72 h post-exercise recovery, and its relation to glucose tolerance and insulin sensitivity. Morning fasted serum samples was obtained from 19 male volunteers (aged 21.1+/-0.4 years) 24 h before the onset of exercise and 24 h, 48 h, and 72 h following exercise for measurements of DHEA-S, cortisol, and TNF-alpha. Oral glucose tolerance test (OGTT) and insulin response were determined 24 h before and 48 h after exercise. We found that resistance exercise causes a delayed suppression in serum DHEA-S levels during recovery (48 h and 72 h). This exercise challenge did not affect glucose tolerance, but insulin response during OGTT was significantly elevated. The increased insulin level was not associated with serum levels of cortisol and TNF-alpha. In conclusion, the present study found that resistance exercise has a DHEA-S lowering effect that persisted for 72 h. This change could be related to the elevated insulin concentrations during OGTT.  相似文献   

18.
Studies to be reviewed were stimulated by the clinical observation, albeit controversial, that diabetic pregnancy may be associated with lower serum oestrogen levels than nondiabetic pregnancy. Pregnant diabetic women are usually intensively treated with insulin to maintain euglycemia, frequently resulting in peripheral hyperinsulinemia. The placenta, which is the primary source of oestrogens during pregnancy, would be exposed to this elevation in circulating insulin levels. Similarly, insulin-like growth factors (IGFs), which are synthesized and secreted by placental tissues and could influence placental function in an autocrine or paracrine fashion, may be elevated in diabetic pregnancy. We will review studies, which show that (i) insulin, insulin-like growth factor-I (IGF-I), and -II inhibit the aromatase activity of human cytotrophoblasts, (ii) these peptides can inhibit aromatase by activation of their respective receptors, and (iii) the potency of IGF-II in suppressing aromatase greatly exceeds that of either insulin or IGF-I. Finally, evidence will be reviewed, which suggests that inositolglycan mediators (‘second messengers’) serve as the signal transduction system for insulin's inhibition of aromatase activity. Hence, placental exposure to increased concentrations of insulin and/or IGFs in the pregnant diabetic woman may result in inhibition of aromatase activity and decreased serum oestrogen levels.  相似文献   

19.
Summary A simultaneous azo-coupling method for the histochemical localization of d-equilenin sulfatase is described. d-Equilenin is a natural estrogenic steroid hormone, and its sulfuric acid ester was synthesized. It was found that the d-equilenin liberated during hydrolysis of d-equilenin sulfate by tissue sulfatase could be coupled with a diazonium salt to produce a purple precipitate indicating enzyme activity. d-Equilenin sulfatase was found in human tissues, but not in tissues of the rat. The optimum substrate concentration was 0.8 mM, activity was demonstrable over the wide pH range 5.0–8.0. Enzyme activity localized diffusely in the cytoplasm in optimally fixed specimens. Enzyme activity was also fairly well demonstrable in unfixed cryostat sections. Enzyme activity was completely inhibited by 0.1 M phosphate, 1 mM sodium tetraborate, 1 mM p-nitrophenyl sulfate and by 2 mM p-nitrocatechol sulfate. Estrone sulfate at concentration 0.8 mM had no effect, but at 4 mM caused marked inhibition of the reaction. At the same concentrations dehydroepiandrosterone sulfate did not inhibit the reaction. The chemical properties and tissue localizations of d-equilenin sulfatase differed from the properties of arylsulfatases A, B and C and other steroid sulfatases reported previously in the literature.  相似文献   

20.
The hypothesis that insulin action involves a membrane proteolytic step was further explored, by using isolated rat adipocytes and liver plasma membranes. (1) The maximal insulin stimulation of 2-deoxyglucose transport and lipogenesis in fat-cells was selectively inhibited (73-88%) by N alpha-p-tosyl-L-lysine chloromethyl ketone (Tos-Lys-CH2Cl; active-site inhibitor of trypsin; 30-125 microM), p-nitrophenyl p'-guanidinobenzoate (active-site inhibitor of serine proteinases; 30-125 microM) and p-tosyl-L-arginine methyl ester (arginine ester substrate analogue of proteinases; 1-2 mM), under conditions where neither the basal rate of each metabolic process nor insulin binding nor cellular ATP content were affected. In contrast, N-acetyl-L-alanyl-L-alanyl-L-alanine methyl ester (alanine ester substrate analogue of proteinases; 1-2 mM) was ineffective. (2) Endoproteinase Arg-C (0.25-40 micrograms/ml) exerted dose-dependent insulin-like effects on both 2-deoxyglucose transport and lipogenesis in fat-cells, whereas endoproteinase Lys-C (5-100 micrograms/ml) was ineffective. The maximal activation by endoproteinase Arg-C of both processes (200 and 177% of control values respectively) was shown to occur under conditions where membrane integrity (assessed by measurement of lactate dehydrogenase leakage and passive glucose diffusion) was preserved. This effect was inhibited by Tos-Lys-CH2Cl (125 microM) and was not additive with the maximal insulin effect. (3) Insulin (1-100 ng/ml) produced a dose-dependent increase in the trichloroacetic acid-soluble 125I radioactivity released after a 30 min incubation at 37 degrees C of 125I-labelled liver plasma membranes, but was ineffective on 125I-labelled bovine serum albumin. Insulin effects on both radio-labelled proteins were reproduced by wheat-germ agglutinin (20 micrograms/ml), an insulin mimicker shown to act through the insulin receptor. These data provide further evidence for the hypothesis that insulin bioeffects involve the activation of a membrane serine proteinase with arginine specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号