首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alkylphosphocholines are a new class of anticancer agents. The mechanisms by which these drugs display their antitumor activities are not known. In this work, we show that erucylphosphohomocholine, a new antineoplastic compound, significantly decreased ATP synthesis in isolated rat liver mitochondria at a concentration of 50 microm or higher via permeabilization of the inner membrane. At a concentration of 25 microm, it induced a moderate swelling of mitochondria, a slight decrease of the inner membrane potential, and an increase in state 4 respiration without an essential influence on state 3 respiration or the outer membrane permeability to cytochrome c. We found that cyclosporin A did not prevent mitochondrial swelling induced by 25-100 microm erucylphosphohomocholine. Moreover, cyclosporin A induced a fast drop of the inner membrane potential in the presence of 25-50 microm erucylphosphohomocholine that seems to be due to a strong synergistic inhibition of the respiratory activity. The ratio of uncoupled to state 3 respiration rates increased from 1.3 +/- 0.1 with 25 microm erucylphosphohomocholine and from 1.5 +/- 0.1 with 1 microm cyclosporin A to 4.5 +/- 0.3 in the presence of both drugs. On the other hand, oligomycin or cyclosporin A protected certain cancer cell lines against erucylphosphohomocholine-induced apoptosis. This protection might be related to a prevention of cellular ATP hydrolysis by permeabilized mitochondria and to the inhibition of the classical permeability transition pore, respectively. Our findings provide new insight into the mechanisms by which these unusual alterations of mitochondria might be involved in anticancer activity of alkylphosphocholines.  相似文献   

2.
The influence of substrates on the role of cyclosporin A, to promote the closure of the permeability transition pore, was studied. It was found that in succinate-oxidizing mitochondria, cyclosporin inhibited pore opening as induced by carboxyatractyloside. The opposite occurred when mitochondrial respiration was supported by malate-glutamate, i.e., cyclosporin A was unable to block pore opening promoted by carboxyatractyloside. We propose that the failure of cyclosporin A to induce pore closure could be due to a low NADH matrix content.  相似文献   

3.
The effects of cyclosporin A, carboxyatractylate, and glutamate on the protonophoric uncoupling activity of laurate in liver mitochondria have been studied. It was found that 5 μM cyclosporin A partly inhibits laurate-stimulated mitochondrial respiration, which is suggestive of its recoupling effect, i.e., the ability to suppress the protonophoric activity of this fatty acid. Under these conditions, cyclosporin A has no effect on the ability of carboxyatractylate and glutamate to inhibit the uncoupling effect of laurate. In their turn, these compounds do not influence the recoupling activity of cyclosporin A. The recoupling effects of cyclosporin A, carboxyatractylate, and glutamate are additive: acting simultaneously, they fully suppress the uncoupling activity of laurate. It is concluded that the protonophoric uncoupling activity of fatty acids in liver mitochondria is mediated not only by ADP/ATP and aspartate/glutamate antiporters, but also by a system that is sensitive to cyclosporin A, but is not related with cyclophilin D.  相似文献   

4.
We recently described that there is a feedback amplification of cytochrome c release from mitochondria by caspases. Here we investigated how caspases impact on mitochondria to induce cytochrome c release and found that recombinant caspase-3 induced opening of permeability transition pore and reduction of membrane potential in vitro. These events were inhibited by Bcl-xL, cyclosporin A and z-VAD.fmk. Moreover, caspase-3 stimulated the rate of mitochondrial state 4 respiration, superoxide production and NAD(P)H oxidation in a Bcl-xL- and cyclosporin A-inhibitable manner. These results suggest that caspase-3 induces cytochrome c release by inducing permeability transition pore opening which is associated with changes in mitochondrial respiration and redox potential.  相似文献   

5.
Hyperstimulation with cholecystokinin analogue cerulein induces a mild edematous pancreatitis in rats. There is evidence for a diminished energy metabolism of acinar cells in this experimental model. The aim of this study was to demonstrate permeability transition of the mitochondrial inner membrane as an early change in mitochondrial function and morphology. As functional parameters, the respiration and membrane potential of mitochondria isolated from control and cerulein-treated animals were measured, and changes in volume and morphology were investigated by swelling experiments and electron microscopy. Five hours after the first injection of cerulein, the leak respiration was nearly doubled and the resting membrane potential was decreased by about 17 mV. These alterations were reversed by extramitochondrial ADP or did not occur when cyclosporin A was added to the mitochondrial incubation. A considerable portion of the mitochondria isolated from cerulein-treated animals was swollen and showed dramatic changes in morphology such as a wrinkled outer membrane and the loss of a distinct cristae structure. These data provide evidence for the opening of the mitochondrial permeability transition pore at an early stage of cerulein induced pancreatitis. This suggests that the permeability transition is an initiating event for lysis of individual mitochondria and the initiation of apoptosis and/or necrosis, as had been shown to occur in this experimental model.  相似文献   

6.
We found that both benzyl isothiocyanate (ITC) and phenyl ITC inhibited respiration in the mitochondria in an electrophilic reaction-dependent manner. ITC-induced mitochondrial swelling and cytochrome c release were prevented by cyclosporin A, indicating that they are mediated through the ITC moiety-dependent reaction to critical thiol groups for the opening of membrane permeability transition-dependent pores.  相似文献   

7.
Inhibition of the mitochondrial permeability transition pore (PTP) has proved to be an effective strategy for preventing oxidative stress-induced cell death, and the pore represents a viable cellular target for drugs. Here, we report that inhibition of complex I by rotenone is more effective at PTP inhibition than cyclosporin A in tissues that express low levels of the cyclosporin A mitochondrial target, cyclophilin D; and, conversely, that tissues in which rotenone does not affect the PTP are characterized by high levels of expression of cyclophilin D and sensitivity to cyclosporin A. Consistent with a regulatory role of complex I in the PTP-inhibiting effects of rotenone, the concentrations of the latter required for PTP inhibition precisely match those required to inhibit respiration; and a similar effect is seen with the antidiabetic drug metformin, which partially inhibits complex I. Remarkably (i) genetic ablation of cyclophilin D or its displacement with cyclosporin A restored PTP inhibition by rotenone in tissues that are otherwise resistant to its effects; and (ii) rotenone did not inhibit the PTP unless phosphate was present, in striking analogy with the phosphate requirement for the inhibitory effects of cyclosporin A [Basso et al. (2008) J. Biol. Chem. 283, 26307-26311]. These results indicate that inhibition of complex I by rotenone or metformin and displacement of cyclophilin D by cyclosporin A affect the PTP through a common mechanism; and that cells can modulate their PTP response to complex I inhibition by modifying the expression of cyclophilin D, a finding that has major implications for pore modulation in vivo.  相似文献   

8.
We found that both benzyl isothiocyanate (ITC) and phenyl ITC inhibited respiration in the mitochondria in an electrophilic reaction-dependent manner. ITC-induced mitochondrial swelling and cytochrome c release were prevented by cyclosporin A, indicating that they are mediated through the ITC moiety-dependent reaction to critical thiol groups for the opening of membrane permeability transition-dependent pores.  相似文献   

9.
We investigated to what extent different types of NO donors induce caspase activation by opening of the mitochondrial permeability transition pore (PTP) or inhibition of mitochondrial respiration. We found that nitrosothiols can directly open the PTP in isolated mitochondria and cause cytochrome c release, whereas NONOate donors can not. In macrophages nitrosothiols cause caspase activation that is blocked by cyclosporin A or calcium chelation, both of which prevent PTP opening, whereas caspase activation caused by NONOates is much less sensitive to these agents. Inhibitors of mitochondrial respiration did not promote PTP opening in isolated mitochondria, and although they cause caspase activation in macrophages, this activation was slower than that caused by NO donors, and was relatively insensitive to cyclosporin and calcium chelators suggesting that PTP opening was not involved.  相似文献   

10.
Cyclosporin A modifies many intracellular functions in a variety of different cells. This study investigated the potential interaction between cyclosporin A and protein kinase C, as a possible mechanism for the development of nephrotoxicity. The activity of protein kinase C, in the cytosol of renal epithelial cells, was shown to be significantly inhibited in a dose-dependent manner by CSA. Activation of protein kinase C by 12-O-tetradecanoylphorbol-13-acetate (phorbol ester) in rat mesangial cells in culture leads to an increase in PGE2 release. Phorbol ester stimulated PGE2 release was significantly inhibited by cyclosporin A. These results would suggest that intracellular site of action of cyclosporin A, in producing alterations in intracellular function and toxicity, may be at the level of protein kinase C.  相似文献   

11.
This study was designed to determine the effect of calcium and ADP-Mg on the oxidative phosphorylation in isolated cardiac mitochondria. The influence of cyclosporin A was also evaluated. The mitochondria were extracted from rat ventricles. Their oxidative phosphorylations were determined in two respiration media with different free Ca2+ concentrations. Respiration was determined with palmitoylcarnitine and either ADP- or ADP-Mg. With elevated free Ca2+concentrations and ADP-Mg, the transition state III to state IV respiration did not occurred. The ADP:O ratio was reduced. The phenomenon was not observed in the other experimental conditions (low free Ca2+ concentration with either ADP- or ADP-Mg or elevated free Ca2+ concentration with ADP-). Uncoupling was allied with a constant AMP production, which maintained an elevated ADP level in the respiration medium and prevented the return to state IV respiration. It was also observed in a respiration medium devoid of free Ca2+ when the mitochondria were pre-loaded with Ca2+. Uncoupling was inhibited by cyclosporin A. Furthermore, the Krebs cycle intermediates released from14C-palmitoylcarnitine oxidation revealed that succinate was increased by elevated free Ca2+ and ADP-Mg. Succinate is a FAD-linked substrate with low respiration efficiency. Its accumulation could account for the decreased ADP:O ratio. The Ca2+- and ADP-Mg-induced uncoupling might be partly responsible for the mechanical abnormalities observed during low-flow ischemia. (Mol Cell Biochem 000: 000-000, 1999)  相似文献   

12.
13.
Doxorubicin (DOX) is a highly effective treatment for several forms of cancer. However, clinical experience shows that DOX induces a cumulative and dose-dependent cardiomyopathy that has been ascribed to redox-cycling of the drug on the mitochondrial respiratory chain generating free radicals and oxidative stress in the process. Mitochondrial dysfunction including induction of the mitochondrial permeability transition (MPT) and inhibition of mitochondrial respiration have been implicated as major determinants in the pathogenesis of DOX cardiotoxicity. The present work was aimed at investigating whether the inhibition of mitochondrial respiration occurs secondarily to MPT induction in heart mitochondria isolated from DOX-treated rats and whether one or both consequences of DOX treatment are related with oxidation of protein thiol residues. DOX-induced oxidative stress was associated with the accumulation of products of lipid peroxidation and the depletion of alpha-tocopherol in cardiac mitochondrial membranes. No changes in mitochondrial coenzyme Q9 and Q10 concentrations were detected in hearts of DOX-treated rats. Cardiac mitochondria from DOX-treated rats were more susceptible to diamide-dependent induction of the MPT. Although DOX treatment did not affect state 4 respiration, state 3 respiration was decreased in heart mitochondria isolated from DOX-treated rats, which was reversed in part by adding either cyclosporin A or dithiothreitol, but not Trolox. The results suggest that in DOX-treated rats, (i) induction of the MPT is at least in part responsible for decreased mitochondrial respiration, (ii) heart mitochondria are more susceptible to diamide induced-MPT, (iii) thiol-dependent alteration of mitochondrial respiration is partially reversible ex vivo with dithiothreitol. Collectively, these data are consistent with the thesis that thiol-dependent alteration of MPT and respiration is an important factor in DOX-induced mitochondrial dysfunction.  相似文献   

14.
Propionic acidemia is caused by lack of propionyl-CoA carboxylase activity. It is biochemically characterized by accumulation of propionic (PA) and 3-hydroxypropionic (3OHPA) acids and clinically by severe encephalopathy and cardiomyopathy. High urinary excretion of maleic acid (MA) and 2-methylcitric acid (2MCA) is also found in the affected patients. Considering that the underlying mechanisms of cardiac disease in propionic acidemia are practically unknown, we investigated the effects of PA, 3OHPA, MA and 2MCA (0.05–5 mM) on important mitochondrial functions in isolated rat heart mitochondria, as well as in crude heart homogenates and cultured cardiomyocytes. MA markedly inhibited state 3 (ADP-stimulated), state 4 (non-phosphorylating) and uncoupled (CCCP-stimulated) respiration in mitochondria supported by pyruvate plus malate or α-ketoglutarate associated with reduced ATP production, whereas PA and 3OHPA provoked less intense inhibitory effects and 2MCA no alterations at all. MA-induced impaired respiration was attenuated by coenzyme A supplementation. In addition, MA significantly inhibited α-ketoglutarate dehydrogenase activity. Similar data were obtained in heart crude homogenates and permeabilized cardiomyocytes. MA, and PA to a lesser degree, also decreased mitochondrial membrane potential (ΔΨm), NAD(P)H content and Ca2+ retention capacity, and caused swelling in Ca2+-loaded mitochondria. Noteworthy, ΔΨm collapse and mitochondrial swelling were fully prevented or attenuated by cyclosporin A and ADP, indicating the involvement of mitochondrial permeability transition. It is therefore proposed that disturbance of mitochondrial energy and calcium homeostasis caused by MA, as well as by PA and 3OHPA to a lesser extent, may be involved in the cardiomyopathy commonly affecting propionic acidemic patients.  相似文献   

15.
  • 1.1. It is shown that Ca2+-dependent activation of respiration of liver mitochondria from hibernating ground squirrels is accompanied by mitochondrial swelling.
  • 2.2. The swelling of mitochondria from hibernating ground squirrels, as well as the activation of mitochondrial respiration, is precluded by cyclosporin A, p-bromphenacylbromide and oligomycin. Carboxyatractiloside, on the contrary, under these conditions favors the swelling and the acceleration of respiration.
  • 3.3. It was concluded that Ca2+-dependent activation of hibernating ground squirrel liver mitochondrial respiration resulted from the appearance of a non-specific permeability pathway and from swelling of mitochondria.
  相似文献   

16.
Cyclosporin A induces closure of the mitochondrial permeability transition pore. We aimed to investigate whether this closure results in concomitant increases in mitochondrial membrane potential (DeltaPsim) and the production of reactive oxygen species. Fluorescent probes were used to assess DeltaPsim (JC-1, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzimidazolyl-carbocyanine iodide), reactive oxygen species [DCF, 5- (and 6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester] and [Ca2+][Fluo-3, glycine N-[4-[6-[(acetyloxy)methoxy]-2,7-dichloro-3-oxo-3H-xanthen-9-yl]-2-[2-[2-[bis[2-[(acetyloxy)methoxy]-2-oxyethyl]amino]-5-methylphenoxy]ethoxy]phenyl]-N-[2-[(acetyloxy)methoxy]-2-oxyethyl]-(acetyloxy)methyl ester] in human kidney cells (HK-2 cells) and in a line of human small cell carcinoma cells (GLC4 cells), because these do not express cyclosporin A-sensitive P-glycoprotein. We used transfected GLC4 cells expressing P-glycoprotein as control for GLC4 cells. NIM811 (N-methyl-4-isoleucine-cyclosporin) and PSC833 (SDZ-PSC833) were applied as selective mitochondrial permeability transition pore and P-glycoprotein blockers, respectively. To study the effect of cyclosporin A on mitochondrial function, we isolated mitochondria from fresh pig livers. Cyclosporin A and PSC833 induced a more than two-fold increase in JC-1 fluorescence in HK-2 cells, whereas NIM811 had no effect. None of the three substances induced a significant increase in JC-1 fluorescence in GLC4 cells. Despite this, cyclosporin A, NIM811 and PSC833 induced a 1.5-fold increase in DCF fluorescence (P<0.05) and a two-fold increase in Fluo-3 fluorescence (P<0.05). Studies in isolated mitochondria showed that blockage of mitochondrial permeability transition pores by cyclosporin A affected neither DeltaPsim, ATP synthesis, nor respiration rate. The mitochondrial permeability transition pore blockers cyclosporin A and NIM811, but also the non-mitochondrial permeability transition pore blocker PSC833, induced comparable degrees of reactive oxygen species production and cytosolic [Ca2+]. Neither mitochondria, effects on P-glycoprotein nor inhibition of calcineurin therefore play a role in cyclosporin A-induced oxidative stress and disturbed Ca2+ homeostasis.  相似文献   

17.
In the present study we analyzed the mechanisms of simvastatin toxicity for the PC3 human prostate cancer cell line. At 10 μM, simvastatin induced principally apoptosis, which was prevented by mevalonic acid but not by cyclosporin A, the inhibitor of calcineurin and mitochondrial permeability transition (MPT). At 60 μM, simvastatin induced the necrosis of PC3 cells insensitive to mevalonic acid. Cell necrosis was preceded by a threefold increase in cytosolic free Ca2+ concentration and a significant decrease in both respiration rate and mitochondrial membrane potential. Both mitochondrial dysfunction and necrosis were sensitive to the compounds cyclosporin A and bongkrekic acid, as well as the calcineurin inhibitor FK506. We have concluded that simvastatin-induced PC3 cells apoptosis is dependent on 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibition and independent of MPT, whereas necrosis is dependent on mitochondrial dysfunction caused, at least in part, by calcineurin.  相似文献   

18.
Edelfosine and perifosine are alkylphospholipids that have been intensively studied as potential antitumor agents. Apoptotic cell death caused by these two compounds is mediated, at least in part, through mitochondria. Additionally, previous works demonstrated that edelfosine induces changes in mitochondrial membrane permeability that are somehow reduced by using cyclosporin A. Therefore, the objective of the present study was not only to confirm mitochondrial permeability transition but also identify direct effects of both ether lipids on mitochondrial hepatic fractions, namely on mitochondrial oxidative phosphorylation and generation of hydrogen peroxide (H2O2) through the respiratory chain. Results show that edelfosine and perifosine inhibit mitochondrial respiration and decrease transmembrane electric potential. However, despite these effects, edelfosine and perifosine were still able to induce mitochondrial permeability transition in non-energized mitochondria. Interestingly, edelfosine decreased H2O2 production through the respiratory chain. In conclusion, the present work demonstrates previously unknown alterations of mitochondrial physiology directly induced by edelfosine and perifosine. The study is relevant in the understanding of mitochondrial-target effects of both compounds, as well as to acknowledge possible toxic responses in non-tumor organs.  相似文献   

19.
We have studied the effects of GD3 ganglioside on mitochondrial function in isolated mitochondria and intact cells. In isolated mitochondria, GD3 ganglioside induces complex changes of respiration that depend on the substrate being oxidized. However, these effects are secondary to opening of the cyclosporin A-sensitive permeability transition pore and to the ensuing swelling and cytochrome c depletion rather than to an interaction with the respiratory chain complexes. By using a novel in situ assay based on the fluorescence changes of mitochondrially entrapped calcein (Petronilli, V., Miotto, G., Canton, M., Colonna, R., Bernardi, P., and Di Lisa, F. (1999) Biophys. J. 76, 725-734), we unequivocally show that GD3 ganglioside also induces the mitochondrial permeability transition in intact cells and that this event precedes apoptosis. The mitochondrial effects of GD3 ganglioside are selective, in that they cannot be mimicked by either GD1a or GM3 gangliosides, and they are fully sensitive to cyclosporin A, which inhibits both the mitochondrial permeability transition in situ and the onset of apoptosis induced by GD3 ganglioside. These results provide compelling evidence that opening of the permeability transition pore is causally related to apoptosis.  相似文献   

20.
Nitrogen fixation (acetylene reduction) rates of nodules on intact field-grown soybean (Glycine max) subjected to altered oxygen concentration (0.06-0.4 cubic millimeter per cubic millimeter) returned to initial rates during an 8-hour transitory period. Hydroponically grown soybean plants also displayed a transitory (1-4 hours) response to changes in the rhizosphere oxygen concentration after which the fixation rates returned to those observed under ambient oxygen concentrations. It was hypothesized that soybean nodules contain a regulatory mechanism which maintains a stable oxygen concentration inside nodules at a sufficiently low concentration to allow nitrogenase to function. A possible physiological mechanism which could account for this regulation is adjustment in nodule respiration activity such that nodule oxygen concentration and nitrogen fixation are maintained at stable levels. Experiments designed to characterize the non-steady-state oxygen response and to test for the presence of nodule respiratory control are presented. Non-steady-state acetylene reduction and nodule respiration (oxygen uptake) rates measured after alterations in the external oxygen concentration indicated that the regulatory mechanism required 1 to 4 hours to completely adjust to changes in the external oxygen concentration. Steady-state nodule respiration, however, did not respond to alterations in the rhizosphere oxygen concentration. It was concluded that soybean nodules can adjust to a wide range of rhizosphere oxygen concentrations, but the mechanism which controls nitrogen fixation rates does not involve changes in the nodule respiration rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号